
Under review as a conference paper at ICLR 2019

LEARNING NEURON NON-LINEARITIES WITH
KERNEL-BASED DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The effectiveness of deep neural architectures has been widely supported in terms
of both experimental and foundational principles. There is also clear evidence that
the activation function (e.g. the rectifier and the LSTM units) plays a crucial role in
the complexity of learning. Based on this remark, this paper discusses an optimal
selection of the neuron non-linearity in a functional framework that is inspired
from classic regularization arguments. A representation theorem is given which
indicates that the best activation function is a kernel expansion in the training set,
that can be effectively approximated over an opportune set of points modeling
1-D clusters. The idea can be naturally extended to recurrent networks, where
the expressiveness of kernel-based activation functions turns out to be a crucial
ingredient to capture long-term dependencies. We give experimental evidence of
this property by a set of challenging experiments, where we compare the results
with neural architectures based on state of the art LSTM cells.

1 INTRODUCTION

By and large, the appropriate selection of the activation function in deep architectures is regarded as an
important choice for achieving challenging performance. For example, the rectifier function (Glorot
et al., 2011) has been playing an important role in the impressive scaling up of nowadays deep
nets. Likewise, LSTM cells (Hochreiter & Schmidhuber, 1997) are widely recognized as the most
important ingredient to face long-term dependencies when learning by recurrent neural networks.
Both choices come from insightful ideas on the actual non-linear process taking place in deep nets. At
a first glance, one might wonder why such an optimal choice must be restricted to a single unit instead
of extending it to the overall function to be learned. In addition, this general problem has been already
been solved; its solution (Poggio & Girosi, 1990; Girosi et al., 1995; 2000) is in fact at the basis of
kernel machines whose limitations as shallow nets have been widely addressed (see e.g. (LeCun et al.,
2015; Mhaskar et al., 2016)). However, the optimal formulation given for the neuron non-linearity
enjoys the tremendous advantage of acting on 1-D spaces. This strongly motivates the reformulation
of the problem of learning in deep neural network as a one where the weights and the activation
functions are jointly determined by optimization in the framework of regularization operators (Smola
et al., 1998), that are used to enforce the smoothness of the solution.

The idea of learning the activation function is not entirely new. In (Turner & Miller, 2014), activation
functions are chosen from a pre-defined set and combine this strategy with a single scaling parameter
that is learned during training. It has been argued that one can think of this function as a neural
network itself, so the overall architecture is still characterized by a directed acyclic graph (Castelli &
Trentin, 2014). Other approaches learn activation functions as piecewise linear (Agostinelli et al.,
2014), doubled truncated gaussian (Su et al., 2017) or Fourier series (Eisenach et al., 2016).

While working on this representational issues we have recently discovered the paper by (Scardapane
et al., 2017), which introduces a family of activation functions that are based on a kernel expansion at
every neuron. The proposed approach is based on the nice intuition that a kernel-based representation
at for the neuron function is computationally efficient, yet very effective in terms of representation.
The authors provide strong support to their idea by significant experimental results. Interestingly, in
this paper, where we provide additional independent support to the kernel-based representation of
the neuron function given in (Scardapane et al., 2017) by reinforcing the idea in different ways. In
particular, we prove that, like for kernel machines, the optimal solution of the variational problem that

1



Under review as a conference paper at ICLR 2019

characterizes the process of supervised learning in the framework of regularization can be expressed
by a kernel expansion, so as the overall optimization is reduced to the discovery of a finite set of
parameters. The risk function to be minimized contains the weights of the network connections, as
well as the parameters associated with the the points of the kernel expansion. Hence, the classic
learning of the weights of the network takes place with the concurrent development of the optimal
shape of the activation functions, one for each neuron. As a consequence, the machine architecture
turns out to enjoy the strong representational issues of deep networks in high dimensional spaces
that is conjugated with the elegant and effective setting of kernel machines for the learning of the
activation functions. The powerful unified regularization framework is not the only feature that
emerges from the proposed architecture. Interestingly, unlike most of the activation functions used
in deep networks, those that are typically developed during learning, are not necessarily monotonic.
This property has a crucial impact in their adoption in classic recurrent networks, since this properly
addresses classic issues of gradient vanishing when capturing long-term dependencies. Throughout
this paper, recurrent networks with activation functions based on kernel expansion, are referred to as
Kernel-Based Recurrent Networks (KBRN). The intuition is that the associated iterated map can either
be contractive or expansive. Hence, while in some states the contraction yields gradient vanishing, in
others the expansion results in to gradient pumping, which allows the neural network to propagate
information back also in case of long time dependences. The possibility of implementing contractive
and expanding maps during the processing of a given sequence comes from the capabilities of KBRN
to develop different activation functions for different neurons that are not necessarily monotonic.
This variety of units is somewhat related to the clever solution proposed in LSTM cells (Hochreiter
& Schmidhuber, 1997), where the authors realized early that there was room for getting rid of the
inherent limitation of the contractive maps deriving from sigmoidal units. This contribution to the
representation and learning in recurrent neural network is another difference with respect to the
related contribution given in (Scardapane et al., 2017).

The given experimental results provided below demonstrate this property on challenging benchmarks
that are inspired from seminal paper (Bengio et al., 1993), where the distinctive information for
classification of long sequences is only located in the first positions, while the rest contains uniformly
distributed noisy information. We get very promising results on these benchmarks when comparing
KBRN with state of the art recurrent architectures based on LSTM cells.

2 REPRESENTATION AND LEARNING

The feedforward architecture that we consider is based on a directed graph D ∼ (V,A), where
V is the set of ordered vertices and A is the set of the oriented arcs. Given i, j ∈ V there is
connection from i to j iff i ≺ j. Instead of assuming a uniform activation function for each
vertex of D, a specific function f is attached to each vertex. We denote with I the set of input
neurons, with O the set of the output neurons and with H = V \ (I ∪ O) the set of hidden
neurons; the cardinality of these sets will be denoted as |I|, |O|, |H| and |V | ≡ n. Without loss of
generality we will also assume that: I = {1, 2, . . . , |I|}, H = {|I|+ 1, |I|+ 2, . . . , |I|+ |H|} and
O = {|I|+ |H|+ 1, |I|+ |H|+ 2, . . . |I|+ |H|+ |O|}.

The learning process is based on the training set TN = { (eκ, yκ) ∈ R|I| × R|O| | κ = 1, . . . N }.
Given an input vector z = (z1, z2, . . . z|I|), the output associated with the vertices of the graph is
computed as follows1:

xi(z) = zi(i ∈ I) + fi(ai)(i /∈ I), (1)

with ai =
∑
j∈pa(i) wijxj + bi, where pa(i) are the parents of neuron i, and fi : ΩΛ → R are

one dimensional real functions; ΩΛ := [−Λ,Λ], with Λ chosen big enough, so that Eq. (1) is
always well defined. Now let f = (f1, f2, . . . , fn) and define the output function of the network
F (·, w, b; f) : R|I| → R|O| by

Fi(z, w, b; f) := xi+|I|+|H|(z), i = 1, . . . , |O|.

The learning problem can then be formulated as a double optimization problem defined on both the
weights w, b and on the activation functions fi. It is worth mentioning that while the optimization on
the weights of the graph reflects all important issues connected with the powerful representational

1We use Iverson’s notation: Given a statement A, we set (A) to 1 if A is true and to 0 if A is false

2



Under review as a conference paper at ICLR 2019

3 4

5

1 2 4

42

4

41 4N4κ· · · · · ·

a4

x4 = f4(a4)

(a) (b)

Figure 1: (a) A simple network architecture; the output evaluated using Eq. (1) is x5(z1, z2) =
f5(w53f3(w31z1 +w32z2 + b3) +w54f4(w41z1 +w42z2 + b4) + b5). (b) Highlight of the structure
of neuron 4 (encircled in the dashed line) of (a): The activation function f4 of the neuron is computed
as an expansion over the training set. Each neuron 4j , j = 1, . . . , N in the figure corresponds to the
term g(a4 − aj4) in Eq. (4).

properties of deep nets, the optimal discovery of the activation functions are somewhat related to
the framework of kernel machines. Such an optimization is defined with respect to the following
objective function:

E(f ;w, b) :=
1

2

n∑
i=1

(Pfi, Pfi) +

N∑
κ=1

V (eκ, yκ, F (eκ, w, b; f)), (2)

which accumulates the empirical risk and a regularization term (Smola et al., 1998). Here, we indicate
with (·, ·) the standard inner product of L2(ΩΛ), with P a differential operator of degree p, while V
is a suitable loss function.

Clearly, one can optimize E by independently checking the stationarity with respect to the weights
associated with the neural connections and the stationarity with respect to the activation functions.
Now we show that the stationarity condition of E with respect to the functional variables f (chosen
in a functional space Xp that depends on the order of differential operator P ) yields a solution that is
very related to classic case of kernel machines that is addressed in (Smola et al., 1998). If we consider
a variation vi ∈ C∞c (ΩΛ) with vanishing derivatives on the boundary 2 of ΩΛ up to order p− 1 and
define ϕi(t) := E(f1, . . . , fi + tvi, . . . , fn;w, b). The first variation of the functional E along vi is
therefore ϕ′i(0). When using arguments already discussed in related papers (Poggio & Girosi, 1990;
Girosi et al., 1995; Smola et al., 1998) we can easily see that

ϕ′i(0) =

∫
ΩΛ

(
Lfi(a) +

N∑
κ=1

ακi δaκi (a)
)
vi(a) da,

where ακi = ∇FV · ∂fiF and L = P ∗P , P ∗ being the adjoint operator of P . We notice in passing
that the functional dependence of E on f is quite involved, since it depends on the compositions
of linear combinations of the functions fi (see Figure 1–(a)). Hence, the given expression of the
coefficients ακi is rather a formal equation that, however, dictates the structure of the solution.

The stationarity conditions ϕ′i(0) = 0 reduce to the following Euler-Lagrange (E-L) equations

Lfi(a) +

N∑
κ=1

ακi δaκi (a) = 0, i = 1 . . . n, (3)

where aκi is the value of the activation function on the κ-th example of the training set. Let g be the
Green function of the operator L, and let k BE the solution of Lk = 0. Then, we can promptly see
that

fi(a) = k(a)−
N∑
κ=1

ακi g(a− aκi ) (4)

2We are assuming here that the values of the functions in Xp at the boundaries together with the derivatives
up to order p− 1 are fixed.

3



Under review as a conference paper at ICLR 2019

is the general form of the solution of Eq. (3). Whenever L has null kernel, then this solution is
reduced to an expansion of the Green function over the points of the training set. For example, this
happens in the case of the pseudo differential operator that originates the Gaussian as the Green
function. If we choose P = d/dx, then L = −d2/dx2. Interestingly, the Green function of the
second derivative is the rectifier g(x) = − 1

2 (|x|+ x) and, moreover, we have k(x) = mx+ q. In
this case

fi(a) = θia+ νi +
1

2

N∑
κ=1

ακi |a− aκi |, (5)

where θi = m+ 1
2

∑N
κ=1 α

κ
i , while νi = q− 1

2

∑N
κ=1 α

κ
i a
κ
i . Because of the representation structure

expressed by Eq. (4), the objective function of the original optimization problem collapses to a
standard finite-dimensional optimization on3

Ê(α,w, b) := E
(
k(a)−

∑
κ

ακg(a− aκ);w, b
)

= R(α) +

N∑
κ=1

V (eκ, yκ, F̂ (eκ, w, b;α));

here R(α) is the regularization term and F̂ (eκ, w, b;α) := F
(
eκ, w, b; k(a) −

∑
κ α

κ
i g(a − aκi )

)
.

This collapse of dimensionality is the same which leads to the dramatic simplification that gives
rise to the theory of kernel machines. Basically, in all cases in which the Green function can be
interpreted as a kernel, this analysis suggests the neural architecture depicted in Figure 1, where we
can see the integration of graphical structures, typical of deep nets, with the representation in the dual
space typical of kernel methods.

We can promptly see that the idea behind kernel-based deep networks can be extended to cyclic
graphs, that is to recurrent neural networks. In that case, the analogous of Eq. (1) is:

ht+1
i = fi(a

t+1
i ); at+1

i = bi +
∑

j∈pat→t+1(i)

wijh
t
j +

∑
j∈pat+1(i)

uijx
t+1
j .

Here we denote with xti the input at step t and with hti the state of the network. The set pat→t+1(i)
contains the vertices j that are parents of neuron i; the corresponding arcs (j, i) are associated with a
delay, while pat(i) vertices j with non-delayed arcs (j, i). The extension of learning in KBDNN to
the case of recurrent nets is a straightforward consequence of classic Backpropagation Through Time.

3 APPROXIMATION AND ALGORITHMIC ISSUES

The actual experimentation of the model described in the previous section requires to deal with a
number of important algorithmic issues. In particular, we need to address the typical problem associ-
ated with the kernel expansion over the entire training set, that is very expensive in computational
terms. However, we can early realize that KBDNNs only require to express kernel in 1-D, which
dramatically simplify the kernel approximation. Hence, instead of expanding fi over the entire
training set, we can use a number of points d with d� N . This means that the expansion in Eq. (4)
is approximated as follows

fi(a) ≈ k(a)−
d∑
k=1

χki g(a− cki ), (6)

where cki and χki are the centers and parameters of the expansion, respectively. Notice that χki are
replacing ακi in the formulation given in Section 2). We consider cki and χki as parameters to be
learned, and integrate them in the whole optimization scheme.

In the experiments described below we use the rectifier (ReLU) as Green function (g(x) = − 1
2 (|x|+

x)) and neglect the linear terms from both g(x) and k(x). We can easily see that this is compatible
with typical requirements in machine learning experiments, where in many cases the expected solution
is not meaningful with very large inputs. For instance, the same assumption is typically at the basis of
kernel machines, where the asymptotic behavior is not typically important. The regularization term

3Here we omit the dependencies of the optimization function from the parameters that defines k.

4



Under review as a conference paper at ICLR 2019

0 0.51

0.5

1
0

1

0

0.5

1

0

0.5

1

0

0.5

1

1

0

−1

−2

2 0 0 0.5

−1 0 0

0

−2

2

−0.5 0.5 0.5 1.5101
−4

−

1

− −

(a)

22 04 2 1 0 155 0

0 1 2 1 20 1 20−1−1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

−2

− − − − −

(b)

Figure 2: XOR. The plots show the activation functions learned by the simplest KBDN which
consists of one unit only for the 2-dim (2a) and 4-dim (2b) XOR. The first/second row refer to
experiments with without/with regularization, whereas the three columns correspond with the chosen
number of point for the expansion of the Green function d = 50, 100, 300.

R(χ) can be inherited from the regularization operator P . For the experiments carried out in this
paper we decided to choose the `1 norm4:

R(χ) ≈ λχ
∑

1≤k≤d
1≤i≤n

|χki |,

with λχ ∈ R being an hyper-parameter that measures the strength of the regularization.

In a deep architecture, when stacking multiple layers of kernel-based units, the non-monotonicity of
the activation functions implies the absence of guarantees about the interval on which these functions
operate, thus requiring them to be responsive to very heterogeneous inputs. In order to face this
problem and to allow kernel-based units to concentrate their representational power on limited input
ranges, it is possible to apply a normalization (Ioffe & Szegedy, 2015) to the input of the function. In
particular, given fi(aκi ), aκi can be normalized as:

âκi = γi
(aκi − µi)

σi
+ βi; where µi =

1

N

N∑
κ=i

aκi , σi =
1

N

N∑
κ=i

(aκi − µi)2;

while γi and βi are additional trainable parameters.

4 EXPERIMENTS

We carried out several experiments in different learning settings to investigate the effectiveness of the
KBDNN with emphasis on the adoption of kernel-based units in recurrent networks for capturing
long-term dependences. Clearly, KBDNN architectures require to choose both the graph and the
activation function. As it will be clear in the reminder of this section, the interplay of these choices
leads to gain remarkable properties.

4.1 THE XOR PROBLEM.

We begin presenting a typical experimental set up in the classic XOR benchmark. In this experiment
we chose a single unit with the Green function g(z) = |z|, so as y = f(w1z1 + w2z2 + b) turns out
to be

y =

d∑
k=1

χk|w1z1 + w2z2 + b− ck|

where w1,w2 and b are trainable variables and the learning of f corresponds with the discovery of
both the centroids ck and the associated weights χk. The simplicity of this learning task allows

4This choice is due to the fact that we want to enforce the sparseness of χ, i.e. to use the smallest number of
terms in expansion 6.

5



Under review as a conference paper at ICLR 2019

Iterations
A
cc
u
ra
cy

KBRN
LSTM
RNN

103 104
20

40

60

80

100

1 10 102

Figure 3: Charging Problem. The plot shows the accuracy obtained by recurrent nets with classic
sigmoidal unit, LSTM cell, and KB unit. The horizontal axis is in logarithmic scale.

us to underline some interesting properties of KBDNNs. We carried out experiment by selecting
a number of points for the expansion of the Green function that ranges from 50 to 300. This was
done purposely to assess the regularization capabilities of the model, that is very much related to
what typically happens with kernel machines. In Figure 2, we can see the neuron function f at the
end of the learning process under different settings. In the different columns, we plot function f
with a different numbers d of clusters, while the two rows refer to experiments carried out with and
without regularization. As one could expect, the learned activation functions become more and more
complex as the number of clusters increases. However, when performing regularization, the effect
of the kernel-based component of the architecture plays a crucial role by smoothing the functions
significantly.

4.2 THE CHARGING PROBLEM

Let us consider a dynamical system which generates a Boolean sequence according to the model

ht = xt + [ht−1 − 1> 0] · (ht−1 − 1)

yt = [ht> 0],
(7)

where h−1 = 0, x = 〈xt〉 is a sequence of integers and y = 〈yt〉 is a Boolean sequence, that is
yt ∈ {0, 1}. An example of sequences generated by this system is the following:

t = 0 1 2 3 4 5 6 7 8 9 10 . . .
xt = 0 0 0 4 0 0 0 0 0 0 0 . . .
yt = 0 0 0 1 1 1 1 0 0 0 0 . . . .

Notice that the system keeps memory when other 1 bit are coming, that is
t = 0 1 2 3 4 5 6 7 8 9 10 . . .
xt = 0 0 0 4 0 2 0 0 0 0 0 . . .
yt = 0 0 0 1 1 1 1 1 1 0 0 . . .

The purpose of this experiment was that of checking what are the learning capabilities of KBRN
to approximate sequences generated according to Eq. 7. The intuition is that a single KB-neuron
is capable to charge the state according to an input, and then to discharge it until the state is reset.
We generated sequences 〈xt〉 of length L = 30. Three random element of each sequence were set
with a random number ranging from 0 to 9. We compared KBRN, RNN with sigmoidal units, and
recurrent with LSTM cells, with a single hidden unit. We used a KBRN unit with d = 20 centers to
approximate the activation function. The algorithm used for optimization used the Adam algorithm
with λ = 0.001 in all cases. Each model was trained for 10000 iterations with mini-batches of size
500. Figure 3 shows the accuracy on a randomly generated test set of size 25000 during the training
process. The horizontal axis is in logarithmic scale.

4.3 LEARNING LONG-TERM DEPENDENCIES

We carried out a number of experiments aimed at investigating the capabilities of KBRN in learning
tasks where we need to capture long-term dependencies. The difficulties of solving similar problems

6



Under review as a conference paper at ICLR 2019

S
u

cc
es

sf
u

l 
tr

ia
ls

KBRN

LSTM

It
er

at
io

n
s

(INCLUSIVE) DISJUNCTION (∨)

KBRN

LSTM

CONJUNCTION (∧)

KBRN

LSTM

EXCLUSIVE DISJUNCTION (⊕)

KBRN

LSTM

EQUIVALENCE (≡)

Sequence length 

1

2
3

4

5

6

20K

40K

60K

100K

0

0

80K

20 30 40 5010
Sequence length 
20 30 40 5010

S
u

cc
es

sf
u

l 
tr

ia
ls

It
er

at
io

n
s

1

2
3

4

5

6

20K

40K

60K

100K

0

0

80K

S
u

cc
es

sf
u

l 
tr

ia
ls

It
er

at
io

n
s

1

2
3

4

5

6

20K

40K

60K

100K

0

0

80K

S
u

cc
es

sf
u

l 
tr

ia
ls

It
er

at
io

n
s

1

2
3

4

5

6

20K

40K

60K

100K

0

0

80K

Sequence length 
20 30 40 5010

Sequence length 
20 30 40 5010

Figure 4: Capturing Long-Term dependencies. Number of successful trials and average number
of iterations for a classification problem when the ∨, ∧, ⊕ and ≡ functions are used to determine the
target, given the first two discriminant bits.

0

-1

-4 4

0

-2

0

-1

-4 4 -4 4 -4 4

0

-2

0

1

0

2

0

2

0

1

0.5

1

0

1.5

0

0.5

-0.5

0.5

0

-1 -2

-1

0

-1

0

1.5

-0.5

1

0

4

-1.5

-0.5

0

0.1

Figure 5: Activation functions. The 20 activation functions corresponding to the problem of
capturing long-term dependencies in sequences that are only discriminated by the first two bit (≡
function). All functions are plotted in the interval [−4, 4]. The functions with a dashed frame are the
ones for which |f ′| > 1 in some subset of [−4, 4].

was addressed in (Bengio et al., 1993) by discussions on gradient vanishing that is mostly due to
the monotonicity of the activation functions. The authors also provided very effective yet simple
benchmarks to claim that classic recurrent networks are unable to classify sequences where the
distinguishing information is located only at the very beginning of the sequence; the rest of the
sequence was supposed to be randomly generated. We defined a number of benchmarks inspired
by the one given in (Bengio et al., 1993), where the decision on the classification of sequence 〈xt〉
is contained in the first L bits of a Boolean sequence of length T � L. We compared KBRN and
recurrent nets with LSTM cells using an architecture where both networks were based on 20 hidden
units. We used the Adam algorithm with λ = 0.001 in all cases. Each model was trained for a
maximum of 100, 000 iterations with mini-batches of size 500; for each iteration, a single weight
update was performed. For the LSTM cells, we used the standard implementation provided by
TensorFlow (following (Zaremba et al., 2014)). For KBRN we used a number of centroids d = 100
and the described normalization.

We generated automatically a set of benchmarks with L = 2 and variable length T , where the binary
sequences 〈xt〉 can be distinguished when looking simply at the first two bits, while the the rest is

7



Under review as a conference paper at ICLR 2019

KBRN

S
u

cc
es

sf
u

l 
tr

ia
ls

It
er

at
io

n
s

1

2
3

4

5

6

20K

40K

60K

100K

0

0

80K

Sequence length 
250 50 75 100 125 150 175 200

Figure 6: Capturing Long-Term dependencies. Number of successful trials and average number
of iterations when facing the ≡ problem with sequences of length ranging from 5 to 200, when the
distinguishing information is located in the first two bits.

a noisy string with uniformly random distribution. Here we report some of our experiments when
choosing the first two discriminant bits according to the ∨, ∧, ⊕ and ≡ functions.

For each Boolean function, that was supposed to be learned, and for several sequence lengths (up
to 50), we performed 5 different runs, with different initialization seeds. A trial was considered
successful if the model was capable of learning the function before the maximum allowed number
of iterations was reached. In Figure 4 we present the results of these experiments. Each of the
four quadrants of Figure 4 is relative to a different Boolean function, and reports two different
plots. The first one has the sequence length on the x-axis and the number of successful trials on
the y-axis. The second plot has the sequence length on the x-axis and, on the y-axis, the average
number of iterations required to solve the task. The analysis of these plots allows us to draw a couple
of interesting conclusions: (i) KBRN architectures are capable of solving the problems in almost
all cases, regardless of the sequence length, while recurrent networks with LSTM cells started to
experiment difficulties for sequences longer than 30, and (ii), whenever convergence is achieve,
KBRN architectures converge significantly faster than LSTM.

In order to investigate with more details the capabilities of KBRN of handling very long sequences,
we carried out another experiment, that was based on the benchmark that KBRN solved with more
difficulty, namely the equivalence (≡) problem. We carried out a processing over sequences with
length 60, 80, 100, 150, and 200. In Figure 6, we report the results of this experiment. As we can see,
KBRN are capable of solving the task even with sequences of length 150, eventually failing with
sequences of length 200.

5 CONCLUSIONS

In this paper we have introduced Kernel-Based Deep Neural Networks. The proposed KBDNN
model is characterized by the classic primal representation of deep nets, that is enriched with the
expressiveness of activation functions given by kernel expansion. The idea of learning the activation
function is not entirely new. However, in this paper we have shown that the KBDNN representation
turns out to be the solution of a general optimization problem, in which both the weights, that belong
to a finite-dimensional space, and the activation function, that are chosen from a functional space are
jointly determined. This bridges naturally the powerful representation capabilities of deep nets with
the elegant and effective setting of kernel machines for the learning of the neuron functions.

A massive experimentation of KBDNN is still required to assess the actual impact of the appropriate
activation function in real-world problems. However, this paper already proposes a first important
conclusion which involves recurrent networks, that are based on this kind of activation function. In
particular, we have provided both theoretical and experimental evidence to claim that the KBRN
architecture exhibits an ideal computational structure to deal with classic problems of capturing
long-term dependencies.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning activation functions
to improve deep neural networks. ArXiv preprint arXiv:1412.6830, 2014.

Yoshua Bengio, Paolo Frasconi, and Patrice Simard. The problem of learning long-term dependencies
in recurrent networks. In Neural Networks, 1993., IEEE International Conference on, pp. 1183–
1188. IEEE, 1993.

Ilaria Castelli and Edmondo Trentin. Combination of supervised and unsupervised learning for
training the activation functions of neural networks. Pattern Recogn. Lett., 37:178–191, February
2014. ISSN 0167-8655. doi: 10.1016/j.patrec.2013.06.013.

Carson Eisenach, Zhaoran Wang, and Han Liu. Nonparametrically learning activation functions in
deep neural nets. 2016.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural
Computation, 7:219–269, 1995.

F. Girosi, M. Jones, and T. Poggio. Regularization networks and support vector machines. Advances
in Computational Mathematics, 13(1):1–50, 2000.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436–444,
2015. doi: 10.1038/nature14539.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso A. Poggio. Learning real and boolean functions:
When is deep better than shallow. ArXiv preprint arXiv:1603.00988, 2016.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9):
1481–1497, Sept 1990. ISSN 0018-9219. doi: 10.1109/5.58326.

Simone Scardapane, Steven Van Vaerenbergh, Simone Totaro, and Aurelio Uncini. Kafnets: kernel-
based non-parametric activation functions for neural networks. arXiv preprint arXiv:1707.04035,
2017.

A.J. Smola, B. Schoelkopf, and K.R. Mueller. The connection between regularization operators and
support vector kernels. Neural Networks, 11:637– 649, 1998.

Qinliang Su, xuejun Liao, and Lawrence Carin. A probabilistic framework for nonlinearities in
stochastic neural networks. In Advances in Neural Information Processing Systems 30, pp. 4486–
4495. Curran Associates, Inc., 2017.

Andrew James Turner and Julian Francis Miller. Neuroevolution: evolving heterogeneous artificial
neural networks. Evolutionary Intelligence, 7(3):135–154, 2014.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. ArXiv
preprint arXiv:1409.2329, 2014.

9


	Introduction
	Representation and learning
	Approximation and algorithmic issues
	Experiments
	The XOR problem.
	The charging problem
	Learning Long-Term dependencies

	Conclusions

