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Abstract

Extremely small objects (ESO) have become observable on clinical routine magnetic resonance
imaging acquisitions, thanks to a reduction in acquisition time at higher resolution. Despite their
small size (usually <10 voxels per object for an image of more than 10° voxels), these markers
reflect tissue damage and need to be accounted for to investigate the complete phenotype of com-
plex pathological pathways. In addition to their very small size, variability in shape and appearance
leads to high labelling variability across human raters, resulting in a very noisy gold standard. Such
objects are notably present in the context of cerebral small vessel disease where enlarged perivascu-
lar spaces and lacunes, commonly observed in the ageing population, are thought to be associated
with acceleration of cognitive decline and risk of dementia onset. In this work, we redesign the
RCNN model to scale to 3D data, and to jointly detect and characterise these important markers of
age-related neurovascular changes. We also propose training strategies enforcing the detection of
extremely small objects, ensuring a tractable and stable training process.

1. Introduction

The vascular network that supplies the brain changes with age, inducing alterations to surround-
ing tissue. Macroscopic changes, hallmark of cerebral small vessel disease, can be observed on
structural MR images and include white matter hyperintensities, lacunar infarcts, cerebral micro-
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Figure 1: Examples of EPVS and lacunes on which agreement was high (top row) or low (bottom
row) on the three structural modalities of interest (T1, FLAIR, T2). The red dot indicates
the centre of mass of the object of interest.

haemorrhages and enlarged perivascular spaces (EPVS), among others (Wardlaw et al., 2013).
More specifically, perivascular spaces are thought to be used as a lymphatic pathway in a drainage
mechanism, where entrapped fluid can extend this space, making it visible in MR images, often
as linearly-shaped fluid-like structure (Figure 1 top right). In clinical practice, their presence is
classically assessed using visual scales on T2 MR images, described as elongated bright ellipsoids
(Potter et al., 2015). The use of such visual scales requires extensive training and expertise, is prone
to inter/intra rater variability, suffers from flooring/ceiling effects and is time-consuming for the
operator. Some works have recently been proposed to automatically assess the EPVS burden (Boe-
spflug et al., 2018)(Dubost et al., 2019) in clinical grade MR data, while others propose to segment
EPVS at higher field (7T) (Zhang et al., 2016). In contrast, lacunar infarcts, observed with a much
lower frequency, are areas of dead tissue due to complete ischemia. Their shape signature is an
ovoid object of 3 — 15mm of diameter, with a cerebrospinal fluid (CSF) -like intensity in the centre.
Often, on T2 weighted Fluid attenuated inversion recovery (FLAIR) images, they are surrounded
by a rim of hyperintensity (see Figure 1 top left). In practice, even for trained radiologists, distin-
guishing between EPVS and lacunes can be very challenging (see Figure 1 bottom). This results
in double counting of uncertain objects (del C. Valdés Herndndez et al., 2013), and under-counting
when objects branch from the same point. This task is however of clinical importance as these mark-
ers reflect tissue damage and are key to understand complex pathological pathways of age-related
vascular changes (Ramirez et al., 2016).

To account for the above-mentioned challenges, we propose to adapt the 2D RCNN model
presented by He et al (He et al., 2017) that allows for multiclass multi-instances simultaneous de-
tection and segmentation to multirater 3D data, in the context of EPVS and lacune detection and
size characterisation, with the perspective of a future expansion to more object classes (e.g.white
matter hyperintensities) and their semantic segmentation. After a brief description of the 2D RCNN
framework, we detail the challenges inherent to 3D data of such a framework in the capture of
extremely small objects, and describe the introduction of multirater predictions.
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2. Methods
2.1. Two dimensional RCNN

In the original RCNN framework, a backbone network is trained to extract generic features. This
initial training is then complemented by two stages: a region proposal network and a final classifica-
tion network applied to selected boxes whose shapes have been modified to fit a specified mask. In
the 2D setting, the region proposal network is based on the classification as positive or negative of a
series of predefined boxes created based on anchors, regularly spaced on the 2D grid with different
ratios of height and width. All selected grid are then resampled (pooled) to a user-specified shape
and fed to the final segmentation classification branch of the framework.

2.2. Challenges and strategies for a multirater 3D extension

The main challenges related to the extension of the successful RCNN framework to 3D data lay in
the memory and data requirements, as well as an extreme class imbalance. In terms of memory,
the generation of grid anchors become notably prohibitive in 3D. Additionally, when dealing with
ESOs, any interpolation induced by the region pooling may obscure relevant features and render the
segmentation meaningless. In order to account for these challenges, the following strategies were
adopted at the different stages of the framework:

Backbone network The 3D HighResNet proposed by Li et al. (Li et al., 2017) was used as back-
bone network to extract features. This architecture has a large contextual field of view at reduced
parameter cost. This network uses three levels of residual convolutional networks with dilated con-
volutions with increasing dilation factor, each level consisting of three dilated convolutions with
fixed dilation factor alternating with batch normalisation and ReLu activation. In the presented set-
ting, the network was applied to regress a distance map with a root mean square error loss. The
distance map is calculated from each given element’s segmentation.

Region Proposal Network (RPN) In order to alleviate the memory burden of having to explicitly
describe anchors and associated boxes, the RPN, consisting of one classification and one regression
branch, was applied in a convolutional fashion to every voxel. The features extracted at the backbone
level were fed into a small convolutional network with a single common 33 kernel, followed by
either a classification layer or a regression layer. The classification layer establishes if the centre of
the patch is likely to be the centre of mass of the target object, while the regression part outputs four
values: three values representing the distance to the closest object centre of mass, and the fourth
representing the scale of the targeted object. Classification and regression were learnt from 300
samples on the patch, with a 50/50 balance between positive and negative samples. To avoid any
impact on the regression branch, negative samples did not bear any weight on the regression loss. A
cross-entropy loss was used for the classification branch while a smooth distance loss was applied
on the regression branch for the estimation of the distance to the closest element centre of mass.
Denoting r,, the absolute error between predicted value and ground truth for a given sample n, the
smooth distance loss DL is expressed as:

-y 0.5r7 if r, <0.5
DL = N Z f(ra) where f(r,) =< (r,—0.125)> -2 ifr, >2.125
n=1 rp, —0.125 otherwise

449



3D MULTIRATER RCNN

Refinement/Classification Network (RCN) From the location of proposed ESO centres-of-mass,
boxes were associated with ground-truth objects, and extracted masks are directly fed so as to clas-
sify the boxes and adjust the regression of the centre of mass.

The branch jointly classifying the element and regressing centre of mass and object scale con-
sisted of a convolutional layer of kernel size 7, followed by a fully connected layer. After average
pooling, classification and bounding box regression were established. For the regression branch,
the target prediction was the residual between the RPN prediction and the ground truth for the three
location elements, and a scale correction factor for the size. A similar smooth distance loss was
applied as a cost function. In contrast to the original RCNN framework, selected boxes were nei-
ther resized nor pooled to a predefined shape. This is in order to avoid interpolation that would be
detrimental, given that many of the targeted elements are one voxel wide.

Multirater encoding For each of the manually-segmented elements, the raters were asked to
attribute one of the following class: 1)Nothing; 2) Lacune; 3) EPVS; 4) Undecided between lacune
and EPVS; Instead of a crisp classification, a soft probability label was obtained as the average of
the multiple raters involved in the classification and used as target. For each rater, a fully connected
layer was added in order to directly infer the classification of each individual. The architecture
framework is displayed in Figure 2.

2.3. Implementation

Sampling and data normalisation The existence of two types of imbalance (foreground vs back-
ground, and between EPVS vs lacunes) required a purpose-specific sampling scheme. A probabilis-
tic weight sampling was adopted as suggested by Ronneberger et al (Ronneberger et al., 2015) to
extract patches of size 64° over the images. For this purpose, the inverse of the distance maps
from segmented EPVS and lacunes were smoothed and linearly combined using a ratio of 1/100
reflecting the relative frequency of occurrence of these two classes. These maps were clipped to
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Figure 2: Architecture of the 3D multirater RCNN for extremely small objects.
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Figure 3: Repartition of agreement between raters responsible for the final crisp classification (left)
and distribution of the size of the targeted elements (right).

a minimum of 1073 to reflect the overall background/foreground ratio. All input data (T1, T2 and
FLAIR images) was bias field corrected, skull stripped, and then z-scored to the white matter region
statistics, segmented independently (Sudre et al., 2015).

Training scheduling and loss functions The framework was implemented within NiftyNet (Gib-
sonetal.,2018) (niftynet.io)and will be merged into the main codebase at the time of publica-
tion. The network was trained progressively per stage to mitigate training stability issues. Sections
where classification and regression were combined (RPN and RCN) were trained in two steps: the
first one consisted of the classification training with a sigmoid applied to the regression loss, and
the second step was the sum of the two losses. Each of the steps was trained for 1000 iterations
with learning rate of 0.0001. In order to account for scale differences observed across combined
loss functions, notably between classification and positioning regression losses, empirical weights
were chosen and progressively modified throughout the training of the network in order to always
ensure a balance between classification accuracy and box positioning.

Inference At inference, a similar patch size was used as for the training step in order to expect a
similar number of proposals (limited to 300). In order to prune the potential positions of centre of
mass, the information from the score map and the distance map were combined. The score map was
thresholded at 0.25 and the morphological skeleton of the underlying distance map were extracted.
The corresponding distance score maxima were then taken as potential proposed centres of mass.
Centres of mass closer than 2mm were pruned as a form of non-maximum suppression.

3. Data and experiments

3.1. Data

16 subjects were selected out of a longitudinal tri-ethnic cohort of elderly subjects aiming at inves-
tigating the relationship between cardiovascular risk factors and brain health (Tillin et al., 2012). At
the third wave of investigation, subjects of this cohort underwent an MR session including the ac-
quisition of 3D Imm? isotropic T1 weighted, T2 weighted and T2-weighted FLAIR images (Sudre
et al., 2018). The 16 subjects were chosen for their elevated vascular burden visually assessed by
a trained radiologist. EPVS and lacunes were manually segmented on the three available structural
MR sequences using ITKSnap (Yushkevich et al., 2006). Performed by a rater accustomed to the
use of the segmentation software, the delineation of EPVS and lacunes for a single subject required
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Ground truth  Distance map  Score map

Figure 4: Two holdout cases with the three input channels (T1, FLAIR, T2), gold standard segmen-
tation, inferred distance maps and score map.

an average of 20h. Segmentations were done in a multi-view manner to ensure geometrical consis-
tency, with all images aligned to the T1 sequence as a geometrical reference. Segmentation masks
were then automatically corrected and voxels with inappropriate signal identity signature were re-
moved. Individual EPVS and lacunes were further classified at the level of connected components
by six operators with a varied range of expertise using an in house dedicated viewer. Only ele-
ments with a volume of more than 5 voxels were considered in this work, resulting in a database
of 2442 elements. The volumes of segmented elements ranged thus from 5 to 350, with 48.8%
with a size below 10 voxels. Perfect agreement among raters was reached only in 36.6% of the
cases, and only 2.8% of the elements were ultimately classified as lacunes. Figure 3 presents an
histogram of element size, and a pie chart representing the proportion or rater agreement. The poor
inter-rater classification agreement hints at the complexity of the task. Uncertainty over the seg-
mentation would have to be evaluated over multiple raters before envisioning moving the proposed
object RCNN detection model to a full Mask-RCNN, also performing segmentation. Due to the
lack of more training data, 14 of the subjects were used for training and 2 were hold-out for testing.

3.2. Experiments

In order to compare the performance of a standard segmentation approach to the proposed multi-
class detection framework, we trained semantic segmentation models with multiple combinations
of architectures, loss functions (e.g Generalised Dice Loss), learning rates (from 107%to 1073) and
regularisation. Parameter choice was similar to the one used for the backbone network, with ranges
that have been shown to perform well on unbalanced data. Unfortunately, no network was able to
segment any foreground class.

We present hereafter the results obtained at the different stages of the model in terms of distance
regression, score map, RPN and multirater classification.
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4. Results

Each step of the framework was assessed on the two held out test subjects using the same metrics
as the loss functions. Figure 4 presents the input data for the three modalities along with the ground
truth segmentation, the regressed distance map and the inferred score map.

Interestingly, some elements not present in the gold standard segmentation but detected as per
the score map were a posteriori considered as valid enlarged perivascular spaces as can be seen on
Figure 5.

Given the limitations of the available gold standard in terms of inter-rater element classification,
and potential missing objects, the validation focused on the sensitivity of the trained model and the
relationship of the results with the multi-rater uncertainty. A sensitivity of 72.7% was observed
across the two test subjects with a significant difference in element size between false negatives and
true positives (Wilcoxon ranksum test p<<0.00001). Investigating the relationship between the ratio
of overlap between best matching detected box and ground truth proposal, a significant association
between agreement of raters and overlap was observed (p=0.002) with a median overlap of 59%
when all raters agreed and an overlap of 30% for the more uncertain cases (at least one rater consid-
ering the element not to be relevant). Note that overlap is measured on the predicted box, which can
vary widely in its size. Figure 6 presents boxplots of relationship between ESO scale and detection
(left), and overlap ratio with rater uncertainty (right).

Figure 7 presents the ground truth and matching predicted boxes where the color reflects the
probability of belonging to each of the classes (nothing - lacune - EPVS - undecided).

5. Discussion and conclusion

In this work we proposed a 3D deep learning model for the detection and characterisation of ex-
tremely small objects incorporating multi-rater labels and agreement. In this context, two types of
extreme class imbalance were found, with a very low ratio of foreground to background, as well
as a strong imbalance between the estimated classes where the prevalence of enlarged perivascular
spaces being much higher than the number of lacunes.

Extracted boxes

Score map

Figure 5: ESOs rightly detected by the network but missed during manual labelling. From left to
right, T1, predicted score map and predicted boxes.
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Figure 6: Left: Gold standard scale of ESO versus detection (False negative/True positive). Right:
Relationship between multi-rater disagreement and box overlap performance. Note that
overlap ratio is higher for more certain objects.

The different steps of the framework were evaluated, showing a good sensitivity of the region
proposal network. Specificity was not ideal, probably limited by the missing annotation of individ-
ual branching elements (currently considered as a single ESO). Future work will use the multi-rater
gold standard to better guide network updates by penalising classification errors made on definite
classifications more strongly. Additionally, the segmentation, currently only used to obtain the orig-
inal distance map, could enrich the model by defining a soft labelling at the edges and/or obtaining
additional manual ratings. Furthermore, it must be noted that the training accuracy heavily depends
on the quality of the initial co-registration of the different modalities, as one voxel of shift may
lead to an aberrant intensity signature. At this stage, proposal boxes are cuboid, since a single scale
factor is regressed at training. Future work will also involve transforming the scale regression of the

Nothing Lacune EPVS Undecided

GT

Predicted

Figure 7: Probabilistic ground truth (GT) and predicted boxes for the different classes. All blue
boxes correspond to low classification probabilities (p<0.5), and illustrate rating vari-
ability. Yellow to red boxes represent probabilities ranging from 0.5 to 1, and represent
confident ESOs classifications.

454



3D MULTIRATER RCNN

RCNN into a multi direction scale factor transformation thus providing further information on the
shape of the enclosed object.
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