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ABSTRACT

We give a formal procedure for computing preimages of convolutional network
outputs using the dual basis defined from the set of hyperplanes associated with
the layers of the network. We point out the special symmetry associated with
arrangements of hyperplanes of convolutional networks that take the form of reg-
ular multidimensional polyhedral cones. We discuss the efficiency of large num-
ber of layers of nested cones that result from incremental small size convolutions
in order to give a good compromise between efficient contraction of data to low
dimensions and shaping of preimage manifolds. We demonstrate how a specific
network flattens a non linear input manifold to an affine output manifold and dis-
cuss its relevance to understanding classification properties of deep networks.

1 INTRODUCTION

Deep convolutional networks for classification map input data domains to output domains that ide-
ally correspond to various classes. The ability of deep networks to construct various mappings has
been the subject of several studies over the years (1; 3; 10) and in general resulted in various esti-
mates of capacity given a network structure. The actual mappings that are learnt by training a specific
network however, often raise a set of questions such as why are increasingly deeper networks advan-
tageous (13; 14) ? What are the mechanisms responsible for the successful generalisation properties
of deep networks ? Also the basic question why deep learning over large datasets is so much more
effective than earlier machine learning approaches is still essentially open, (7). These questions are
not in general answered by studies of capacity. A more direct approach based on actual trained net-
works and the mappings they are efficiently able to produce seems needed in order to answer these
questions. It seems ever more likely e.g that the ability of deep networks to generalize is connected
with some sort of restriction of mappings that they theoretically can produce and that these map-
pings are ideally adapted to the problem for which deep learning has proven successful, Due to the
complexity of deep networks the actual computation of how input domains are mapped to output
classifiers has been considered prohibitively difficult. From general considerations of networks with
rectifier (ReLU) non linearities we know that these functions must be piecewise linear (10) but the
relation between network parameters such has convolutional filter weights and fully connected layer
parameters and the actual functions remains largely obscure. In general, work has therefore been
concentrated on empirical studies of actual trained networks (6; 8; 9)

Recently however there have been attempts to understand the relation between networks and their
mapping properties from a more general and theoretical point of view. This has included specific
procedures for generating preimages of network outputs (4) and more systematic studies of the
nature of piecewise linear functions and mappings involved in deep networks, (2; 11; 15).

In this work we will make the assertion that understanding the geometry of deep networks and
the manifolds of data they process is an effective way to understand the comparative success of
deep networks. We will consider convolutional networks with ReLU non linearities. These can be
completely characterised by the corresponding hyperplanes associated with individual convolutional
kernels . We will demonstrate that the individual arrangement of hyperplanes inside a layer and the
relative arrangement between layers is crucial to the understanding the success of various deep
network structures and how they map data from input domains to output classifiers.

We will consider only the convolutional part of a deep network with a single channel. We will
assume no subsampling or max pooling. This will allow us to get a clear understanding of the role
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of the convolutional part. A more complete analysis involving multiple channels and fully connected
layers is possible but more complex and will be left to future work.

The focus of our study is to analyse how domains of input data are mapped through a deep network.
A complete understanding of this mapping and its inverse or preimage will give a detailed descrip-
tion of the workings of the network. Since we are not considering the final fully connected layers we
will demonstrate how to compute in detail the structure of input data manifold that can be mapped
to a specified reduced dimensionality affine manifold in the activity space of the final convolutional
output layer. This flattening of input data is often considered as a necessary preprocessing step for
efficient classification.

The understanding of mappings between layers will be based on the specific understanding of how
to compute preimages for networks activities. We will recapitulate and extend the work in (4)
based on the construction of a dual basis from an arrangement of hyperplanes. By specialising to
convolutional networks we will demonstrate that the arrangement of hyperplanes associated with a
specific layer can be effectively described by a regular multidimensional polyhedral cone oriented
in the identity direction in the input space of the layer. Cones associated with successive layers are
then in general partly nested inside their predecessor. This leads to efficient contraction and shaping
of the input domain data manifold. In general however contraction and shaping are in conflict in
the sense that efficient contraction implies less efficient shaping. We will argue that this’ conflict is
resolved by extending the number of layers of the network with small incremental updates of filters
at each layer.

The main contribution of the paper is the exploitation of the properties of nested cones in order
to explain how non linear manifolds can be shaped and contracted in order to comply with the
distribution of actual class manifolds and to enable efficient preprocessing for the final classifier
stages of the network. We will specifically demonstrate the capability of the convolutional part
of the network to flatten non linear input manifolds which has previously been suggested as an
important preprocessing step in object recognition, (5; 12)

2 LAYER MAPPINGS IN RELU NETWORKS AND THEIR PREIMAGE

Transformations between layers in a network with ReLU as nonlinear elements can be written as

y = [Wx+ b ]+ (1)

Where [ ]+ denotes the ReLU function max(0, xi). applied component wise to the elements of the
input vector x which will be confined to the positive orthant of the d-dimensional Euclidean input
space. It divides the components of the output vector y into two classes depending on the location
of the input x:

{j : wT
j x+ bj > 0} → yj = wT

j x+ bj

{i : wT
i x+ bi ≤ 0} → yi = 0 (2)

In order to analyse the way domains are mapped through the network we will be interested in the set
of inputs x that can generate a specific output y.

P (y) = {x : y = [Wx+ b ]+} (3)

This set, known as the preimage of y can be empty, contain a unique element x or consist of a whole
domain of the input space. This last case is quite obvious by considering the ReLU nonlinearity that
maps whole half spaces of the input domain to 0 components of the output y.

The preimage will depend on the location of the input relative to the arrangement of the hyperplanes
defined by the affine part of the mapping:

Πi = {x : wT
i x+ bi = 0} i = 1, 2, . . . d (4)

These hyperplanes divides the input space into a maximum of 2d number of different cells with
the maximum attained if all hyperplanes cut through the input space which we take as the non
negative orthant of the d-dimensional Euclidean space Rd

+. Understanding the arrangement of these
hyperplanes in general and especially in the case of convolutional mappings will be central to our
understanding of how input domains are contracted and collapsed through the network.
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The preimage problem can be treated geometrically using these hyperplanes as well as the constraint
input domains defined by these. For a given output y we can denote the components where yj > 0
as yj1 , yj1 . . . yjq and the complementary index set where yi = 0 as i1, i1 . . . ip With each positive
component of y we can associate a hyperplane:

Π∗
j = {x : yj = wT

j x+ bj} j = j1, j2, . . . jq (5)

which is just the hyperplane Πj translated with the output yj For the 0-components of y we can
define the half spaces

X−
i = {x : wT

i x+ bi ≤ 0} i = i1, i2, . . . ip (6)

I.e the half space cut out by the negative side of the plane Πi. These planes and half spaces together
with the general input domain constraint of being inside R+

d define the preimage constraints given
the output y.
If we define the affine intersection subspace:

Π∗ = Π∗
j1 ∩Π∗

j2 ∩ . . . ∩Π∗
jq (7)

and the intersection of half spaces:

X− = X−
i1
∩X−

i2
∩ . . . ∩X−

ip
(8)

the preimage of y can be defined as:

P (y) = Π∗ ∩X− ∩Rd
+ (9)

The constraint sets and the preimage set is illustrated in figure 1 for the case of d = 3 and various
outputs y with different number of 0-components.

For fully connected networks, computing the preimage set amounts to finding the intersection of an
affine subspace with a polytope in d− dimensional space. This problem is known to be exponential
in d and therefore intractable. However, we will see that this situation is changed substantially when
we consider convolutional instead of fully connected networks.

3 THE DUAL BASIS FOR EXPRESSING THE PREIMAGE

In order to get more insight into the nature of preimages we will devise a general method of
computing that highlights the nature of the arrangement of hyperplanes. The set of hyperplanes
Πi, i = 1 . . . d will be assumed to be in general position, i.e. no two planes are parallel. The
intersection of all hyperplanes excluding plane i:

Si = Π1 ∩Π2 ∩ . . . ∩Πi−1 ∩Πi+1 . . . ∩Πd (10)

is then a one-dimensional affine subspace Si that is contained in all hyperplanes Πj excluding j = i.
For all i we can define vectors ei in Rd parallel to Si. The general position of the hyperplanes then
guarantees that the set ei is complete in Rd. By translating all vectors ei to the point in Rd which is
the mutual intersection of all planes Πi

Π1 ∩Π2 ∩ . . . ∩Πd (11)

they can therefore be used as a basis that spans Rd. This construction also has the property that the
intersection of the subset of hyperplanes:

Πj1 ∩Πj2 ∩ . . . ∩Πjq (12)

is spanned by the complementary dual basis set

ei1 , ei2 . . . eip (13)

The dual basis can now be used to express the solution to the preimage problem. The affine inter-
section subspace P ∗ associated with the positive components j1j2 . . . jq of the output y is spanned
by the complementary vectors associated with the negative components i1i2 . . . ip . These indices
also define the hyperplanes Π1,Π2 . . .Πp that constrain the preimage to lie in the intersections of
half spaces associated with the negative sides.
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We now define the positive direction of the vector ei as that associated with the negative side of
the plane Πi. If we consider the intersection of the subspace P ∗ and the subspace generated by the
intersections of the hyperplanes Πi associated with the negative components of y we get:

Π∗
j1 ∩Π∗

j2 ∩ . . . ∩Π∗
jq ∩Πi1 ∩ . . . ∩Πip (14)

Due to complementarity of the positive and negative indices, this is a unique element x∗ ∈ Rd

(marked “output” in figure 1 which lies in the affine subspace of the positive output components P ∗

as well as on the intersection of the boundary hyperplanes Πi that make up the half space intersection
constraint X− for the preimage. if we take the subset of the dual basis vectors with ei1 , ei2 . . . eip
and move them to this intersection element, they will span the part of the negative constraint region
X− associated with the preimage. I.e. the preimage of the output y is given by:

P (y) = {x ∈ Rd
+ : x = x∗ +

i=ip∑
i=1

αiei αi ≥ 0} (15)
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Figure 1: Left: 3 planes in general position and the preimage (red) of the output (black dot) e2 and
e3 components of dual basis used to generate preimage. Right: Polyhedral cone of 3 planes from
a circulant layer transformation matrix. (two different views) The nesting property of the cone will
refer to it’s ability to “grip” the coordinate axis of the input space.

4 ARRANGEMENTS OF HYPERPLANES FOR CONVOLUTIONAL LAYERS FORM
REGULAR POLYHEDRAL CONES

We will now specialise to the standard case of convolutional networks. In order to emphasize the
basic role of geometric properties we will consider only a single channel with no subsampling.
Most of what we state will generalize to the more general case of multiple channels with different
convolutional kernels but needs a more careful analysis we will exploit the fact that convolutional
matrices are in most respects asymptotically equivalent to those of circulant matrices where each
new row is a one element cyclic shift of the previous. For any convolution matrix we will consider
the corresponding circulant matrix that appends rows at the end to make it square and circulant.
Especially when the support of the convolution is small relative to the dimension d, typically the
order of 10 in relation to 1000, this approximation will be negligible. Except for special cases the
corresponding circulant will be full rank, which means that properties about dual basis etc. derived
previously will apply also here. As is standard we will assume that the bias b is the same for all
applications of the convolution kernels.

The first thing to note about hyperplanes associated with circulant matrices is that they all intersect
on the identity line going through the origin and the point (1, 1, . . . 1) . Denote the circulant matrix
asC with elements ci,j . The circulant property implies ci+1,j = ci,j−1, i = 1 . . . d−1, j = 2 . . . d
and ci+1,1 = ci,d. Each row is shifted one step cyclically relative to the previous. For the hyperplane
corresponding to row i we have:

j=d∑
j=1

ci,jxj + b = 0 (16)
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It is easy to see that the circulant property implies that the sum of all elements along a row is the
same for all rows. Let the sum of the row be a. We then get: xj = −b/a for j = 1 . . . d as a solution
for this system of equations which is a point on the identity line in Rd.

The arrangement of the set of hyperplanes:

wT
i x+ b = 0 i = 1 . . . d (17)

with wT
i the i:th row of the circulant augmented convolutional matrix W , will be highly regular.

Consider a cyclic permutation Px of the components of the input x described by the single shift
matrix P i.e xi is mapped to xi+1 for i = 1 . . . d− 1 and xd is mapped to x1. We then get:

wT
i Px+ b = wT

i+1x+ b = 0 i = 1 . . . d− 1

wT
d Px+ b = wT

1 x+ b = 0 (18)

which states that points on the hyperplane associated with weights wi are mapped to hyperplane
associated with weights wi+1. The hyperplanes associated with the weights wi i = 1 . . . d there-
fore form a regular multidimensional polyhedral cone in Rd around the identity line, with the apex
located at xT = (−b/a,−b/a . . . − b/a) controlled by the bias b and the sum of filter weights a.
Geometrically, the cone is determined by the apex location, the angle of the planes to the central
identity line and its rotation in d-dimensional space. Apex location and angle are two parameters
which leaves d − 2 parameters for the multidimensional rotation in Rd. This maximum degree of
freedom is however attained only for unrestricted circulant transformations. The finite support of
the convolution weights in CNN:s will heavily restrict rotations of the cone. The implications of this
will be discussed later.

5 NESTED CONES EFFICIENTLY CONTRACT INPUT DATA

Any transformation between two layers in a convolutional network can now be considered as a
mapping between two regular multidimensional polyhedral cones that are symmetric around the
identity line in Rd. The coordinate planes of the input space Rd

+ can be modelled as such a cone as
well as the output space given by the convolution. The strong regularity of these cones will of course
impose strong regularities on the geometric description of the mapping between layers. Just as in
the general case, this transformation will be broken down to transformations between intersection
subspaces of the two cones.

In order to get an idea of this we will start with a simple multi layer network with two dimensional
input and output and a circulant transformation:

x
(l+1)
1 = [a(l)x

(l)
1 + b(l)x

(l)
2 + c(l)]+

x
(l+1)
2 = [b(l)x

(l)
1 + a(l)x

(l)
2 + c(l)]+ (19)

Figure 2 illustrates the mapping of data from the input space (x1, x2) to the output space (y1, y2)
for two networks with 3 and 6 layers respectively. The dashed lines represent successive preimages
of data that maps to a specific location at a layer. By connecting them we get domains of input data
mapped to the same output at the final layer, i.e they are contraction flows depicting how data is
moved through the network. Note that in both layers the major part of the input domain is mapped
to output (0, 0). This is illustrated for the first trivial bias only layer with a = 1, b = 0. The domain
of the input that is mapped to output domain is just quite trivial planar manifolds.

The second network with more varied weights illustrates how input domain manifolds with more
structure can be created. It also demonstrates the importance of the concept of “nested cones” and
how this affects the input data manifolds. The red lines represent data that is associated with layer
cones that are completely nested inside its predecessors, while the black lines represent data where
the succeeding cone has a wider angle than its predecessor. When this happens, the hyperplanes
associated with the output cone will intersect the hyperplanes of the input cone and input data beyond
this intersection is just transformed linearly. Since all data in figure 2 is remapped to the input space
this has the effect that data is not transformed at all. This has no effect at all at the shaping of the input
manifold. One could say that these layers are “wasted” beyond the location of the intersection as far
as network properties are concerned since they neither contribute to the shaping or the contraction of
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Figure 2: Illustration of how data in 2d input space (x1, x2) contracts by successive layers in multi
layer 2 node networks with circulant transformations. Left: Transformation (a, b) = (1, 0) . Only
the bias differs between layers. Alternating red and blue frames show successive layers remapped to
the input space. Right: Arbitrary circulant transformations. Note how the nesting property insures
a good variation in the generated manifolds. When nesting becomes less pronounced for higher
values of input the variation of the manifolds diminishes.

input data manifolds. The effect of this on the input manifold can be seen as a less diverse variation
of its shape (black) compared to the previous part associated with the completely nested part of the
layer cones.

In higher dimensions the effects of nested vs. partially nested cones appear in the same way but
more elaborate. In addition to the 2d case we also have to consider rotations of the cone, which
as was pointed out earlier, has d − 2 degrees of freedom for cones in d dimensional space. The
effects of contraction of data from higher to lower dimensions also become more intricate as the
number of different subspace dimensionalities increases. Most of these effects can be illustrated
with 3 dimensional input and output spaces. For d = 3 the generic circulant matrix can be used to
define a layer transformation:

y1 = [ax1 + bx2 + cx3 + d]+
y2 = [cx1 + ax2 + bx3 + d]+
y3 = [bx1 + cx2 + ax3 + d]+ (20)

The transformation properties of this network are most easily illustrated if we start with the pure
bias case with transformation W = I , i.e a = 1, b = 0, c = 0. A specific element in input space
is mapped according to its position relative to the hyperplanes. If we use the dual basis to define
the coordinates of the output data, the mapping for the input element will be the same in input cells
with the same relation to all hyperplanes. In d dimensions, the hyperplanes divide the input space
into 2d cells where elements are mapped to a specific associated intersection subspace in the output
domain.

In figure 3, the grey shaded boxes indicate two cells with different numbers of negative constraints
1 and 2 respectively. The content of the upper one with one negative constraint including all its
bounding faces and their intersections is mapped to a specific 2d hyperplane in the output domain
while the content of the lower one with two negative constraints is mapped to the 1d intersection of
two hyperplanes. This illustrates the most important property of the nesting of the cones associated
with the input and output layer: For a range of transformations in the vicinity of the identity mapping,
the input space, properly normalised in range, is divided into cells where the elements of the cells
including their bounding faces an their intersections are mapped to output intersection subspaces
with equal or lower dimension. This means that the content of the cell is irreversibly contracted to
lower dimensions.
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nesting
   limit

Figure 3: Illustration of how data maps between intersection subspaces in two successive layers
of 3 node networks with circulant transformations Left: Identity transformation and bias only. An
element in the input space maps according to it’s cell location determined by the sign relative to
the output hyperplanes. The figure illustrates how two different cells, dark grey and light grey
are mapped to red 2d plane and red 1d line in the output layer. Note that both 3d volume, 2d
faces and 1d edges maps to the same output intersection subspace. This means that dimension of
subspace location for the element is non increasing which implies that data gets contracted. This
is a consequence of the nesting properties of the output and input polyhedral cones. Right The
transformation is now such that the angle of the cone is increased. The planes of the output layer
now intersects the coordinate axis of the input space. Beyond the intersections the non increasing
contraction property ceases. The dark gray areas indicate preimages of points located on the output
1-d coordinate axis. Note how they are decreases in size between the left and right examples.

Figure 3 also contains examples of preimages to individual elements (dark shaded grey rectangles)
and the components of the dual bases used to span these. Note that these are affected by changing the
angle of the output cone. It introduces a limit of the nesting beyond which the mapping properties
of the transformation are changed so that data no longer maps to a manifold of equal or lower
dimensionality. I.e the contraction property is lost in those regions of the input space where nesting
of cones ceases.

We will formally define this important property of nested cones as:

Let Rd
+ be the non negative orthant of the Euclidean d-space. Let Π0

i be the
hyperplane defined as xi = 0 for (x1 . . . xd) ∈ Rd

+. Consider a set of corre-
sponding hyperplanes Π1 . . .Πd in Rd

+ associated with a circulant matrix. Take a
subset i1 . . . ip of these hyperplanes and form the intersection subset: Mi1...ip =
Πi1 ∩ . . . ∩ Πip . If for each x in Mi1...ip the positive span S+(ej1 . . . ejq ) of the
associated dual basis contains an element in the corresponding intersection sub-
set Π0

i1
∩ . . . ∩ Π0

ip
and thereby in each subset of planes with these indexes, but

no other subset, we say that the cone formed by the hyperplanes Π is completely
nested in the cone formed by the hyperplanes Π0.

We see that this definition implies that the cone formed by planes Π is completely contained in that
formed by the planes Π0 but also that its relative rotation is restricted. We will have reason to relax
the condition of inclusion of all elements i1 . . . ip in the intersection subset and talk about cones
with restricted nesting. Complete nesting implies contraction of data from one layer to the next
which can be seen from the fact that all elements of the complete intersection subset Π0

i1
∩ . . .∩Π0

ip

and thereby in each subset are mapped to the intersection subset Mi1...ip = Πi1 ∩ . . . ∩ Πip with
same dimensionality. In addition elements from intersection subsets formed by subsets of indexes
i1 . . . ip will also be mapped to this same intersection subset. The subsets associated with these
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indexes are however of higher dimension. Consequently, mapping of data between layers will be
from intersection subsets to intersection subsets with equal or lower dimension. This is the crucial
property connecting degree of nesting with degree of contraction.

By going further through the network to higher layers this contraction is iterated and data is in-
creasingly concentrated on intersection subspaces with lower dimension which is reflected by the
increased sparsity of the nodes of the network. The convolutional part of a deep network can there-
fore be seen as a component in a metric learning system where the purpose of the training will be
to create domains in input space associated with different classes that are mapped to separate low
dimensional outputs as a preprocessing for the final fully connected layers that will make possible
efficient separation of classes.

There is therefore a conflict between the diversity of input manifolds that contract to low dimensional
outputs and the degree of contraction that can be generated in a convolutional network. The efficient
resolution of this conflict seems to lie in increasing the number of layers in the network in order to
be able to shape diverse input manifolds but with small incremental convolution filters that retain
the nesting property of the cone in order to preserve the proper degree of contraction. Empirically,
this is exactly what has been demonstrated to be the most efficient way to increase performance of
deep networks (13; 14).

6 MAPPING NONLINEAR INPUT TO AFFINE OUTPUT MANIFOLD

We are now in a position to give a general characterizaton of the preimage corresponding to a
specified output domain at the final convolutional output layer assuming the property of nested
layer cones. Ideally we would like to include the final fully connected layers in this analysis but it
will require a special study since we cannot assume the nesting property to be valid for these. In
the end the network should map different classes to linearly separable domains in order to enable
efficient classification. It is generally suggested that the preprocessing part of a network corresponds
to flattening nonlinear input manifolds in order to achieve this final separation at the output. In order
to be able to draw as general conclusions as possible we shall demonstrate the exact structure of a
nonlinear input manifold that maps to a prespecified affine manifold at the final convolutional layer.
We denote this manifold M and the output at the final convolutional layer by x(l). The final layer
can be characterised by the set of hyperplanes: Π

(l)
1 . . .Π

(l)
d . Let the zero components of the output

x(l) be i1, i2 . . . iq . It can then be associated with the intersection of the output manifold and the
corresponding hyperplanes

M ∩Π
(l)
i1
∩Π

(l)
i2
∩ . . . ∩Π

(l)
iq

(21)

The degree of intersection q will depend on the dimensionality of M . If M is a d − 1 dimensional
hyperplane in general position it will intersect any combination of hyperplanes at output level l.
This is the maximum complexity situation that will generate a d − 1 - dimensional input manifold.
Reducing dimensionality of M means reducing the possible intersection with combinations of hy-
perplanes. Note that ifM intersects the set the intersection of planes i1, i2 . . . ip it also intersects the
intersection of any subset of these. Intersecting M with each of these subsets will generate pieces of
intersections linked together. These are affine subsets with different dimensionality and the preim-
age of each piece will be generated by complementary dual basis components. This is illustrated by
figure 4 for the case of an affine plane in R3

+ intersecting to give a triangular domain. In this case
we have three points on the coordinate axis, and three lines connecting these. The three points will
all span 2d planes bases on different pairs of complementary dual basis components. In addition
to these, the points on the lines of the triangle generated by intersecting M with each of the three
individual output planes will generate 1d lines that jointly will span a 2d plane. This plane will
connect continuously with the planes spanned from the points on the axis to yield a piecewise planar
input manifold to the final layer. Continuing through the network, this piecewise planar manifold
will intersect with the planes of layer l − 1 and the procedure is iterated until we reach the input
layer.

This procedure generalises to arbitrary dimensions but the complexity of course grows with the
increasing combinatorics. The basic principle of layer by layer recursively generating piecewise
affine manifolds still holds. The complexity lies in the fact that each intersection of the manifold M
with every subset of possible hyperplane intersections will generate a seeding hyperplane and and
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each of these will act as a new manifold M at the next layer. Note however that the nested cone
property substantially reduces complexity compared to the general case of arbitrary hyperplanes.

Figure 4: Piecewise planar manifold in 3d input space that maps to affine manifold (blue triangle)
at the final convolutional layer in a 3-node 3-layer network with circulant transformations. All
data is remapped to the input space. Left: Red patches are mapped to 0 dimensional red points at
the three output coordinate axis Blue patches are mapped to 1d lines connecting the points. (dark
red is outside light red is inside of the manifold Right: Patches that are generated by selective
components of the dual basis at each layer. The positive span generated by selective components of
the dual basis emanating from the red output points on the triangle as well as from each intersection
with coordinate lines in early layers, intersects with the arrangement of hyperplanes representing
the preceding layer. The 1-d intersections are then used as seed points for new spans that intersect
next preceding layer etc. The 2d intersections together with selective edges from the spans generate
linking patches that ensures the continuity of the input manifold.
as

It should be pointed out that these manifold do not necessarily correspond to actual class manifolds
since we are not considering the complete network with fully connected layers. They can however
be considered as more elaborate and specific building blocks in order to construct the actual class
manifolds of a trained network.

7 SUMMARY AND CONCLUSIONS

We have defined a formal procedure for computing preimages of deep linear transformation net-
works with ReLU non linearities using the dual basis extracted from the set of hyperplanes represent-
ing the transformation. Specialising to convolutional networks we demonstrate that the complexity
and the symmetry of the arrangement of corresponding hyperplanes is substantially reduced and we
show that these arrangements can be modelled closely with multidimensisional regular polyhedral
cones around the identity line in input space. We point out the crucial property of nested cones which
guarantees efficient contraction of data to lower dimensions and argue that this property could be
relevant in the design of real networks. By increasing the number of layers to shape input manifolds
in the form of preimages we can retain the nested cone property that most efficiently exploits net-
work data in order to construct input manifolds that comply with manifolds corresponding to real
classes and would explain the success of ever deeper networks for deep learning. The retaining of the
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nested cone property can be expressed as a limitation of the degrees of freedom of multidimensional
rotation of the cones. Since convolutional networks essentially always have limited spatial support
convolutions, this is to a high degree built in to existing systems. The desire to retain the property
of nesting could however act as an extra constraint to further reduce the complexity of the convo-
lutions. This of course means that the degrees of freedom are reduced for a network which could
act as a regularization constraint and potentially explain the puzzling efficiency of generalisation of
deep networks in spite of a high number of parameters.

We demonstrate that it is in principle possible to compute non linear input manifolds that map
to affine output manifolds. This demonstrates the possibility of deep convolutional networks to
achieve flattening of input data which is generally considered as an important preprocessing step
for classification. Since we do not consider a complete network with fully connected layers at the
end we cannot give details how classification is achieved. The explicit demonstration of non linear
manifolds that map to affine outputs however indicates a possible basic structure of input manifolds
for classes. It is easy to see that a parallel translation of the affine output manifold would result
in two linearly separable manifolds that would be generated by essentially parallel translated non
linear manifolds in the input space. This demonstrates that convolutional networks can be designed
to exactly separate sufficiently “covariant “ classes. and that this could be the reason for the relative
success of convolutional networks over previous machine learning approaches to classification and
explain why using a large number of classes for training is advantageous since they all contribute to
very similar individual manifolds.

Disregarding these speculations the fact remains that these manifolds will always exist since they
are derived on purely formal grounds from the structure of the network. If they have no role in
classification their presence will have to be explained in other ways.
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