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ABSTRACT

Obtaining high-quality uncertainty estimates is essential for many applications of
deep neural networks. In this paper, we theoretically justify a scheme for esti-
mating uncertainties, based on sampling from a prior distribution. Crucially, the
uncertainty estimates are shown to be conservative in the sense that they never un-
derestimate a posterior uncertainty obtained by a hypothetical Bayesian algorithm.
We also show concentration, implying that the uncertainty estimates converge to
zero as we get more data. Uncertainty estimates obtained from random priors
can be adapted to any deep network architecture and trained using standard su-
pervised learning pipelines. We provide experimental evaluation of random priors
on calibration and out-of-distribution detection on typical computer vision tasks,
demonstrating that they outperform deep ensembles in practice.

1 INTRODUCTION

Deep learning has achieved huge success in many applications. In particular, increasingly often, it
is used as a component in decision-making systems. In order to have confidence in decisions made
by such systems, it is necessary to obtain good uncertainty estimates, which quantify how certain
the network is about a given output. In particular, if the cost of failure is large, for example where
the automated system has the capability to accidentally hurt humans, the availability and quality
of uncertainty estimates can determine whether the system is safe to deploy at all (Carvalho, 2016;
Leibig et al., 2017; Michelmore et al., 2018). Moreover, when decisions are made sequentially, good
uncertainty estimates are crucial for achieving good performance quickly (Bellemare et al., 2016;
Houthooft et al., 2016; Ostrovski et al., 2017; Burda et al., 2018).

Because any non-Bayesian inference process is potentially sub-optimal (De Finetti, 1937), these
uncertainty estimates should ideally be relatable to Bayesian inference with a useful prior. Deep en-
sembles (Lakshminarayanan et al., 2017), one of the most popular methods available for uncertainty
estimation in deep networks today, struggle with this requirement. While deep ensembles can be
related (Rubin, 1981) to Bayesian inference in settings where the individual models are trained on
subsets of the data, this is not how they are used in practice. In order to improve data efficiency,
all ensembles are typically trained using the same data (Lakshminarayanan et al., 2017), resulting
in a method which does not have a theoretical justification. Moreover, deep ensembles can give
overconfident uncertainty estimates in practice. On the other hand, Monte-Carlo dropout can be
viewed (Gal & Ghahramani, 2016) as a certain form of Bayesian inference. However, doing so re-
quires requires either a limit to be taken or a generalization of variational inference to a quasi-KL
divergence (Hron et al., 2018). In practice, MC dropout can give arbitrarily overconfident estimates
(Foong et al., 2019). More broadly, a category of approaches, known as Bayesian Neural Networks
(Blundell et al., 2015; Welling & Teh, 2011; Neal, 1996), maintains a distribution over the weights
of the neural network. These methods have a sound Bayesian justification, but training them is both
difficult and carries an accuracy penalty, particularly for networks with convolutional architectures
(Osawa et al., 2019). Moreover, tuning BNNs is hard and achieving a good approximation to the
posterior is difficult (Brosse et al., 2018).

We use another way of obtaining uncertainties for deep networks, based on fitting ran-
dom priors (Osband et al., 2018; 2019). Random priors are easy to train and were found
to work very well in practice (Burda et al., 2018). To obtain the uncertainty estimates,
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Figure 1: On top, two predictors
(green) were trained to fit two randomly-
generated priors (red). On the bottom, we
obtain uncertainties from the difference
between predictors and priors. Dots cor-
respond to training points xi.

we first train a predictor network to fit a prior. Two ex-
amples of prior-predictor pairs are shown in the top two
plots of Figure 1.Faced with a novel input point, we
obtain an uncertainty (Figure 1, bottom plot) by mea-
suring the error of the predictor network against this
pattern. Intuitively, these errors will be small close to
the training points, but large far from them. The pat-
terns themselves are drawn from randomly initialized
(and therefore untrained) neural networks. While this
way of estimating uncertainties was known before (Os-
band et al., 2019), it did not have a theoretical justifi-
cation beyond Bayesian linear regression, which is too
limiting for modern applications.

Contributions We provide a sound theoretical frame-
work for obtaining uncertainty estimates by fitting ran-
dom priors, a method previously lacking a principled
justification. Specifically, we justify estimates in the
uncertainty of the output of neural networks with any
architecture. In particular, we show in Lemma 1 and
Proposition 1 that these uncertainty estimates are con-
servative, meaning they are never more certain than a
Bayesian algorithm would be. Moreover, in Proposi-
tion 2 we show concentration, i.e. that the uncertainties
become zero with infinite data. Empirically, we evalu-
ate the calibration and out-of-distribution performance
of our uncertainty estimates on typical computer vision
tasks, showing a practical benefit over deep ensembles
and MC dropout.

2 PRELIMINARIES

We are going to reason about uncertainty within the for-
mal framework of stochastic processes. We now intro-
duce the required notations.

A stochastic process is a collection of random variables
{f(x)}. We consider processes where x ∈ RK and the
random-variable f(x) takes values in RM . A stochastic process has exchangeable outputs if the dis-
tribution does not change when permuting theM entries in the output vector. Allowing a slight abuse
of notation, we denote the finite-dimensional distribution of the process {f(x)} for the set X =
{xi}i=1,...,N as f(x1, . . . , xN ) = f(X). In practice, the finite-dimensional distribution reflects the
idea of restricting the process to points x1, . . . , xN and marginalizing over all the other points. Infer-
ence can be performed on stochastic processes similarly to probability distributions. In particular, we
can start with some prior process {f(x)}, observe a set of N training points X = {xi}i=1,...,N and
labels y = {yi}i=1,...,N and then consider the posterior process {fXy(x)}, whose finite-dimensional
distributions are given by fXy(x?1 . . . x

?
N ′) = f(x?1 . . . x

?
N ′ |x1, . . . , xN , y1, . . . , yN ) for any set of

testing points x?1 . . . x
?
N ′ . We use subscripts to denote conditioning on the dataset throughout the

paper. We denote the variance of fXy(x?) with σ2
Xf (x?). A stochastic process is called Gaussian if

if all its finite-dimensional distributions are Gaussian. Given a test point x?, we denote the posterior
GP mean with µXy(x?) and posterior GP variance with σ2

X(x?). We provide more background on
GPs in Appendix D.

3 ESTIMATING UNCERTAINTY FROM RANDOM PRIORS

Intuition Uncertainties obtained from random priors have an appealing intuitive justification.
Consider the networks in the top part of Figure 1. We start with a randomly initialized prior network,
shown in red. Whenever we see a datapoint, we train the predictor network (green) to match this
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prior. Uncertainties can then be obtained by considering the squared error between the prior and
the predictor at a given point. An example uncertainty estimate is shown as the shaded blue area
in the bottom of Figure 1. While it may at first seem that the squared error is a poor measure of
uncertainty because it can become very small by random chance, we formally show in Section 4.1
that this is very improbable. In Section 4.2, we show that this error goes down to zero as we observe
more data. Similarly to GP inference, uncertainty estimation in our framework does not depend on
the regression label. The prediction mean (blue curve in the bottom part of Figure 1) is obtained by
fitting a completely separate neural network. In section 6, we discuss how this framework avoids
the overconfidence characteristic of deep ensembles (Lakshminarayanan et al., 2017).

Prior The process of obtaining network uncertainties involves randomly initialized prior networks,
which are never trained. While this may at first appear very different from they way deep learning is
normally done, these random networks are a crucial component of our method. We show in Section
4.1 that the random process that corresponds to initializing these networks can be interpreted as a
prior of a Bayesian inference procedure. A prior conveys the information about how the individual
data points are related. The fact that we are using random networks has both practical and theo-
retical benefits. Practically, since the prior does not depend on the data, there is no way that it can
overfit. The use of random priors also has strong empirical support – randomly initialized networks
have been recently used as priors to obtain state-of-the-art performance on computer vision tasks
(Ulyanov et al., 2018; Cheng et al., 2019). Theoretically, using random priors satisfies the likelihood
principle (Robert, 2007). Moreover, random priors can be viewed as a safe choice since they make
the minimum reasonable assumption that the network architecture is appropriate for the task. In
fact, whenever deep learning is used, with or without uncertainty estimates, practitioners are already
implicitly making that assumption.

Algorithm 1 Training the predictors.

function TRAIN-UNCERTAINTIES(X)
for i = 1 . . . B do
f i ∼ {f(x)} . random prior
hXfi ← FIT(X, f i(X))

end for
return fi, hXfi

end function

function FIT(X, f i(X))
L(h) ,

∑
x∈X ‖f

i(x)− h(x)‖2
hXfi ← OPTIMIZE(L) . SGD or similar
return hXfi . return trained predictor

end function

Algorithm The process of training the predictor
networks is shown in Algorithm 1. The function
TRAIN-UNCERTAINTIES first generates random
priors, i.e. neural networks with random weights. In
our notation, it corresponds to sampling functions
from the prior process {f(x)}. These priors, eval-
uated at points from the dataset X = {xi}i=1,...,N

are then used as labels for supervised learning, per-
formed by the function FIT. After training, when
we want to obtain an uncertainty estimate φ at a
given test point x?, we use the formula

σ̂2(x?) = max(0, σ̂2
µ(x?) + βv̂σ(x?)− σ2

A). (1)

Here, the quantity σ̂2
µ is the sample mean of the

squared error. We will show in Section 4 that it is
an unbiased estimator of a variable that models the uncertainty. On the other hand, v̂σ is the sample-
based estimate of the standard deviation of squared error across bootstraps, needed to quantify our
uncertainty about what the uncertainty is. The hyper-parameter β controls the degree to which this
uncertainty is taken into account. Formally, the quantities are defined as

σ̂2
µ(x?) ,

∑B
i=1

1
MB ‖f(x?)− hXfi(x?)‖

2, (2)

v̂σ(x?) ,
√∑B

i=1
1
B (σ̂2

µ(x?)− 1
M ‖f(x?)− hXfi(x?)‖2)2. (3)

In the above equations, B is the number of prior functions and each prior and predictor network has
M outputs. Because the predictors are trained independently, uncertainty estimates obtained from
each of the B predictor-prior pairs are independent. We defer the discussion of details of network
architecture to Section 5. Our experiments (Section 7) show that it is often sufficient to use B = 1
in practice.
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4 THEORETICAL RESULTS

In Section 3, we introduced a process for obtaining uncertainties in deep learning. We now seek to
provide a formal justification. We define the expected uncertainties as

σ̃2
µ(x?) , Ef

[
σ̂2
µ(x?)

]
= Ef

[
1
M ‖f(x?)− hXf (x?)‖

2
]
. (4)

In other words, σ̃2
µ is the expected version of the sample-based uncertainties σ̂2

µ(x?) introduced
in equation 2. Since Bayesian inference is known to be optimal (De Finetti, 1937; Jaynes, 2003;
Robert, 2007), the most appealing way of justifying uncertainty estimates σ̃2

µ and σ̂2
µ is to relate

them to a Bayesian posterior σ2
Xf (x?). We do this in two stages. First, in Section 4.1, we prove that

the obtained uncertainties are larger than ones arrived at by Bayesian inference. This means that our
uncertainties are conservative, ensuring that our algorithm is never more certain than it should be.
Next, in Section 4.2, we show that uncertainties concentrate, i.e., they become small as we get more
and more data. These two properties are sufficient to justify the use of our uncertainties in many
applications.

4.1 UNCERTAINTIES FROM RANDOM PRIORS ARE CONSERVATIVE

From the point of view of safety, it is preferable to overestimate the ground truth uncertainty than
to underestimate it. We now show that this property holds for uncertainties obtained from random
priors. We first justify conservatism for the expected uncertainty σ̃2

µ defined in equation 4 and then
for the sampled uncertainty σ̂2

µ defined in equation 2.

Amortized Conservatism We first consider a weak form of this conservatism, which we call
amortized. It guarantees that σ̃2

µ is never smaller than the average posterior uncertainty across labels
sampled from the prior. Formally, amortized conservatism holds if for any test point x? we have

σ̃2
µ(x?) ≥ Ef(X)

[
σ2
Xf (x?)

]
. (5)

Here σ2
Xf corresponds to the second moment of the posterior process {fXf (x)}. We will introduce

a stronger version of conservatism, which does not have an expectation on the right-hand side, later
in this section (eq. 8). For now, we concentrate on amortized conservatism. In Lemma 1 (proof in
appendix), we show that it holds under very general conditions.

Lemma 1. For any function h : RN×(K+1) → RM , for any test point x? ∈ RK and for any
stochastic process {f(x)}x∈RK with all second moments finite and exchangeable outputs

σ̃2
µ(x?) = Ef(X)

[
σ2
Xf (x?) +

1
M ‖µXf (x?)− hXf (x?)‖

2
]
. (6)

Relation to a GP Lemma 1 holds for any prior process {f(x)}. However, the prior process used
by Algorithm 1 is not completely arbitrary. The fact that prior samples are obtained by initializing
neural networks with independently sampled weights gives us additional structure. In fact, it can
be shown that randomly initialized neural networks become close to GPs as the width of the layers
increases. While the original result due to Neal (1996) held for a simple network with one hidden
layer, it has been extended to a wide class of popular architectures, including to CNNs and RNNs
of arbitrary depth (Matthews et al., 2018; Lee et al., 2018; Novak et al., 2019; Williams, 1997;
Le Roux & Bengio, 2007; Hazan & Jaakkola, 2015; Daniely et al., 2016; Garriga-Alonso et al.,
2019). Recently, it has been shown to hold for a broad class of functions trainable by gradient
descent (Yang, 2019). While the precise statement of these results involves technicalities which fall
beyond the scope of this paper, we recall the key insight. For a family of neural networks {fW (x)},
where the weights are sampled independently and W is the width of the hidden layers, there exists
a limiting kernel function k∞ such that

lim
W→∞

[{fW (x)}] = GP(0, k∞). (7)

In other words, as the size of the hidden layers increases, the stochastic process obtained by initializ-
ing networks randomly converges in distribution to a GP. In the context of our uncertainty estimates,
this makes it reasonable for W large enough to consider the prior to be a GP. We stress that the
GP assumption has to hold only for the prior network, which is never trained. We do not make any
assumptions about connections between the predictor training process and GPs.
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Strict Conservatism Denoting the posterior GP variance with σ2
X(x?), we define uncertainty es-

timates to be strictly conservative when

σ̃2
µ(x?) ≥ σ2

X(x?). (8)

This statement is stronger than the amortized conservatism in equation 5. Intuitively, equation 8
can be interpreted as saying that our uncertainty estimates are never too small. This confirms the
intuition expressed by Burda et al. (2018) that random priors do not overfit. Below, in Proposition
1, we outline how to guarantee strict conservatism formally. It is proved in Appendix F.1.

Proposition 1 (Strict Conservatism in Expectation). Assume that f is a GP. Then for any function
h : RN×K → RM , we have

σ̃2
µ(x?) = σ2

X(x?) + Ef(X)

[
1
M ‖µXf (x?)− hXf (x?)‖

2
]︸ ︷︷ ︸

≥0

. (9)

Moreover, equality holds if and only if hXf (x?) = µXf (x?).

Conservatism with Finite Bootstraps Lemma 1 above shows conservatism for expected uncer-
tainties, i.e. σ̃2

µ introduced in equation 5. However, in practice we have to estimate this expectation
using a finite number of bootstraps, and use the sampled uncertainties σ̂2

µ defined in equation 2. We
now state a conservatism guarantee that holds even in the case of just one bootstrap (B = 1). The
proof is deferred to Appendix F.1.

Corollary 1 (Strict Conservatism for Finite Bootstraps). Assume that f is a GP. Assume that the
random variable σ̂2

µ(x?) has finite variance upper bounded by vUB. Then with probability 1− δ, for
any function h : RN×K → RM , we have

σ̂2
µ(x?) +

1√
δ
vUB ≥ σ̃2

µ(x?) ≥ σ2
X(x?). (10)

However, applying Corollary 1 requires the knowledge of vUB. We now provide an upper bound.

Lemma 2. Assume that the GP {f(x)} is zero mean with exchangeable outputs and the function
hXf takes values in [−U,U ]M . Assume that permuting the outputs of f produces the same permu-
tation in the outputs of hXf . With probability 1− δ, we have

Varf1,...,fB
[
σ̂2
µ(x?)

]
≤ vUB, (11)

where vUB is expressible in terms of observable quantities.

The proof and the explicit formula for vUB is deferred to Appendix F.1. In cases where conser-
vatism is desired, but not absolutely essential, we can avoid the torturous calculation of Lemma 2
and replace vUB with the sample-based estimate v̂σ(x?), defined in equation 2. In this case, the con-
servatism guarantee is only approximate. This is how we obtained equation 1, used by the algorithm
in practice.

4.2 UNCERTAINTIES FROM RANDOM PRIORS CONCENTRATE

While the conservatism property in Proposition 1 is appealing, it is not sufficient on its own for the
uncertainty estimates to be useful. We also need concentration, i.e. a guarantee that the uncertainties
σ̂2 become small with more data. We can gurantee this formally by assuming that the class of neural
networks being fitted is Lipschitz-continuous and bounded. Intuitively, by assumption of Lipschitz
continuity, the predictors hXf cannot behave very differently on points from the training and test
sets, since both come from the same data distribution. We can then show concentration by using
standard Rademacher tools to obtain a bound on the expected uncertainty in terms of the squared
error on the training set. This process is formalized in Proposition 2.

Proposition 2. If the training converges, i.e. the training loss 1
MN

∑N
i=1 ‖f(xi)−hXf (xi)‖2 = σ2

A
for arbitrarily large training sets, then assuming the predictors hXf are bounded and Lipschitz
continuous with constant L, then under technical conditions the uncertainties concentrate, i.e.
σ̂2(x?)→ 0 as N →∞ and B →∞ with probability 1.
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Figure 2: Architecture of the random prior networks f and predictor networks hXf . The predictor
networks hXf typically share the same architectural core, but have additional layers relative to the
prior networks. Both the green and red parts of the predictor networks are trained.

The proof and the technical conditions are given in Appendix F. Proposition 2 assumes that the
training error is zero for arbitrarily large training sets, which might at first seem unrealistic. We
argue that this assumption is in fact reasonable. The architecture of our predictor networks (Figure
2, right diagram) is a superset of the prior architecture (Figure 2, left diagram), guaranteeing the
existence of weight settings for the predictor that make the training loss zero. Recent results on deep
learning optimization (Du et al., 2019; Allen-Zhu et al., 2019) have shown that stochastic gradient
descent can in general be expected to find representable functions.

5 PRACTICAL CONCLUSIONS FROM THE THEORY

We now re-visit the algorithm we defined in Section 3, with the aim of using the theory above to
obtain practical improvements in the quality of the uncertainty estimates.

Architecture and Choosing the Number of Bootstraps Our conservatism guarantee in Proposi-
tion 1 holds for any architecture for the predictor hXf . In theory, the predictor could be completely
arbitrary and does not even have to be a deep network. In particular, there is no formal requirement
for the predictor architecture to be the same as the prior. On the other hand, to show concentration
in Proposition 2, we had to ensure that the prior networks are representable by the predictor. In
practice, we use the architecture shown in Figure 2, where the predictor mirrors the prior, but has
additional layers, giving it more representational power. Moreover, the architecture requires choos-
ing the number of bootstraps B. Our experiments in Section 7 show that even using B = 1, i.e. one
bootstrap, produces uncertainty estimates of high quality in practice.

Modeling Epistemic and Aleatoric Uncertainty Proposition 1 and Proposition 2 hold for any
Gaussian Process prior. By choosing the process appropriately, we can model both epistemic
and aleatoric uncertainty. Denote by {n(x)} a stochastic process obtained by randomly initial-
izing neural networks and denote by {ε(x)σ2

A} the noise term, modeling the aleatoric (observa-
tion) noise, where samples are obtained from ε(x) ∼ N (0, 1) at each x independently (see Ap-
pendix D for more background on aleatoric noise). We can now choose the prior process as a sum
{f(x)} = {n(x) + ε(x)σ2

A} of epistemic component {n(x)} and the noise term. The amount of
aleatoric uncertainty can be adjusted by choosing σ2

A.

Prior Choice, Weight Copying and Conservatism One question that can be asked about our
architecture (Figure 2) is whether it is possible for the predictor to exactly copy the prior weights,
giving zero uncertainty everywhere. A useful edge case to consider here is when we are solving
a one-dimensional regression problem, σ2

A = 0 and the both the priors and predictors are linear
functions. In this case, after training on two points, the predictors will agree with the priors every-
where and uncertainty estimates will be zero. However, this is still consistent with our conservatism
guarantee The reason for this is once we assume such a linear prior, we are comparing to a GP with
a linear kernel. But a GP with that kernel will also have zero uncertainty after seeing two samples.
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In practice, this means that we have to choose the architecture of the prior networks be expressive
enough, which is no different from choosing a reasonable prior for Bayesian inference. Empirically,
the tested network architecture did not show weight copying.

6 PRIOR WORK

Randomized Prior Functions (RPFs) Our work was inspired by, and builds on, Randomised
Prior Functions (Osband et al., 2019; 2018), but it is different in two important respects. First, the
existing theoretical justification for RPFs only holds for Bayesian linear regression (Osband et al.,
2018, equation 3) with non-zero noise1 added to the priors. In contrast, our results are much more
general and hold for any deep network with or without added aleatoric noise. Second, we are target-
ing a different setting. While RPFs were designed as a way of sampling functions from the posterior,
we provide estimates of posterior uncertainty at a given test point. Our algorithm is based on the
work by Burda et al. (2018), who applied RPFs to exploration in MDPs, obtaining state-of-the art
results, but without justifying their uncertainty estimates formally. Our paper provides this miss-
ing justification, while also introducing a way of quantifying the error in estimating the uncertainty
itself. Moreover, since Burda et al. (2018) focused on the application of RPFs to Reinforcement
Learning, they only performed out-of-distribution evaluation on the relatively easy MNIST dataset
(LeCun, 1998). In contrast, in Section 7 we evaluate the uncertainties on more complex vision tasks.
The term prior networks has also been used (Malinin & Gales, 2018) to denote deep networks that
output the parameters of a prior distribution, an approach fundamentally different from our work.

Deep Ensembles The main alternative approach for obtaining uncertainties in deep learning are
deep ensembles (Lakshminarayanan et al., 2017). Building on the bootstrap (Efron & Tibshirani,
1994), deep ensembles maintain several models and quantify epistemic uncertainty by measuring
how their outputs vary. Crucially, deep ensembles use representations trained on regression labels,
and tend to learn similar representations for different inputs with similar labels, which can lead to
over-fitting the uncertainty estimates. A useful edge case to consider is if the each of the models in
the ensemble is convex in the weights. In this case, models in a deep ensemble will all converge to
the same weights and produce zero uncertainty. While deep learning models used in practice aren’t
normally convex, we show empirically in section 7 that deep ensembles can give overconfident un-
certainty estimates in practical vision tasks, particularly on points that have the same label as points
in the training set. Since our method avoids overconfidence, it can be understood as complementary
to deep ensembles, to be used in situations where obtaining conservative estimates is more important
than the representational benefit of using labels. In practice, deep ensembles also require using more
bootstraps to achieve the same OOD performance. Moreover, they do not have theoretical support
in the case when all the members of the ensemble are trained on the same data, which is how they
are used in practice (Lakshminarayanan et al., 2017).

Dropout In cases where it is not economical to train more than one network, uncertainties can be
obtained with dropout (Srivastava et al., 2014; Gal & Ghahramani, 2016). Monte-Carlo dropout can
be viewed (Gal & Ghahramani, 2016) as a form of approximate Bayesian inference. However, to do
so requires a rather unnatural approximating family from the perspective of approximate inference.
Also, one has then either to take a limit or generalize variational inference to a quasi-KL (Hron
et al., 2018) divergence. In addition, dropout can be interpreted in terms of MAP inference (Nalis-
nick et al., 2019). Another alternative view of MC dropout is as an ensemble method in which the
ensemble members have shared parameters (which means they are trained together) and where the
ensembling is applied at test time too. This latter view is arguably as natural as the Bayesian inter-
pretation. For this reason we discuss MC dropout separately from BNNs. Since dropout implicitly
approximates non-Gaussian weight distribution with Gaussians, it exhibits spurious patterns in the
obtained uncertainties, which can lead to arbitrarily overconfident estimates (Foong et al., 2019). In
contrast, due to the conservatism property, random priors avoid such overconfidence.

Bayesian Neural Networks (BNNs) Bayesian Neural Networks (Blundell et al., 2015; Kingma &
Welling, 2014; Rezende et al., 2014; Welling & Teh, 2011; Brosse et al., 2018) explicitly model the

1The existing justification of RPFs (Osband et al., 2019, Section 5.3.1) involves a division by the noise
variance.
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distribution over weights of a neural network. While BNNs provide a link between deep learning
and Bayesian inference, they are very slow to train. Even recent tuned implementations of BNNs
(Osawa et al., 2019) are several times slower than supervised learning. This happens despite using a
battery of technical optimizations, including distributed training and batch normalization. Moreover,
modern convolutional BNNs still carry a significant accuracy penalty when deployed with realistic
settings of prior variance.2

7 EXPERIMENTS

Encouraged by the huge empirical success of random priors in Reinforcement Learning (Burda et al.,
2018), we wanted to provide an evaluation in a more typical supervised learning setting. We tested
the uncertainties in two ways. First, we investigated calibration, i.e. whether we can expect a higher
accuracy for more confident estimates. Next, we checked whether the uncertainties can be used for
out-of-distribution detection. We compared to two competing approaches for uncertainty detection:
deep ensembles (Lakshminarayanan et al., 2017) and spatial concrete dropout (Gal et al., 2017).
The same ResNet architecture served as a basis for all methods. Details of the implementation are
provided in Appendix A.

RP DE DE
+AT DR

B=1
Train v. cat/deer 0.99 0.83 0.96 0.81
Train v. vehicles 1.00 0.82 0.96 0.76
Train v. excluded 1.00 0.82 0.96 0.77
Train v. SVHN 0.95 0.88 0.96 0.86

B=10
Train v. cat/deer 1.00 0.95 0.99 0.82
Train v. vehicles 1.00 0.92 0.98 0.78
Train v. excluded 1.00 0.93 0.98 0.79
Train v. SVHN 0.97 0.94 0.99 0.87

Table 1: Out-of-distribution AUROC for random
priors (RP), deep ensembles (DE), deep ensem-
bles with adversarial training (DE+AT) and spa-
tial concrete dropout (DR). Estimated confidence
intervals are provided in Appendix B.

Out-Of-Distribution Detection We evalu-
ated the uncertainty estimates on out-of-
distribution detection. To quantify the results,
we evaluated the area under the ROC curve
(AUROC) for the task of deciding whether a
given image comes from the same distribution
or not. All methods were trained on four classes
from the CIFAR-10 (Krizhevsky et al., 2009)
dataset (training details are provided in Ap-
pendix A). We then tested the resulting net-
works on images from withheld classes and on
the SVHN dataset (Netzer et al., 2011), which
contains completely different images. Results
are shown in Table 1. Considering the statisti-
cal errors (see Appendix B), random priors per-
formed slightly better than deep ensembles with
adversarial training for B = 1 and about the
same for B = 10. For dropout, B refers to
the number of dropout samples. Dropout per-
formed worse, but was cheaper to train. In order to gain a more finely-grained insight into the
quality of the uncertainties, we also show uncertainty histograms in Figure 3. The figure shows
the distribution of uncertainty estimates for seen data (top row) vs. unseen data (bottom row) for
bootstrap sizesB = {1, 5, 10}. The main conclusion is that uncertainties obtained from random pri-
ors are already well-separated with B = 1, while deep ensembles need more bootstraps to achieve
the full separation between test and train examples. We provide additional experimental results,
showing OOD accuracy and an evaluation on CIFAR 100 in Appendix B.

Calibration Good uncertainty estimates have the property that accuracy increases as we become
more certain, a property known as calibration. We measured it by evaluating average accuracy on
the subset of images with uncertainty smaller than a given value. We trained on four classes from
the CIFAR-10 (Krizhevsky et al., 2009) dataset. We then tested the resulting networks on the whole
dataset, which included both the seen and unseen classes. Results are shown in Figure 4. Ideally, in a
calibrated method, these curves should be increasing, indicating that a method always becomes more
accurate as it becomes more confident. In coarse terms, Figure 4 confirms that all methods except
a degenerate deep ensemble with only one bootstrap are roughly monotonic. However, uncertainty
estimates from random priors are more stable, showing monotonicity on a finer scale as well as
on a large scale. Interestingly, calibration improved only slightly when increasing the number of
bootstraps B.

2See appendix E of the paper by Osawa et al. (2019).
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Figure 3: Distribution of uncertainty estimates for various algorithms. Top row shows seen data,
bottom row shows unseen data from CIFAR-10. For random priors (RP), uncertainties are σ̂2. For
other algorithms, they are 1 − max(pµ), where pµ is the averaged output of models in ensemble
(Lakshminarayanan et al., 2017).
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Figure 4: Calibration curves showing the relationship between uncertainty (horizontal axis) and
accuracy (vertical axis) for B = 1, 5, 10 on CIFAR-10.

RP DE DE
+AT DR

B=1
Train v. excluded 1.00 0.90 0.89 0.91
Train v. SVHN 1.00 0.95 0.94 0.97

B=10
Train v. excluded 1.00 0.94 0.90 0.92
Train v. SVHN 1.00 0.97 0.95 0.97

Table 2: Out-of-distribution AUROC for the same
models as above (see Tab. 1) on subsampled data.
Numbers are accurate up to ±0.01.

Subsampling Ablation In the previous ex-
periment, we kept the architectural and opti-
mization choices fixed across algorithms. This
ensured a level playing field, but meant that we
were not able to obtain zero training error on
the predictor networks used by random priors.
However, we also wanted to evaluate random
priors in the setting of near-zero training error.
To do this, we used a smaller set of training im-
ages, while still keeping the network architec-
ture the same. This allowed us to obtain near-
complete convergence (details in Appendix A).
Results of this ablation are shown in Figures 5 and 6, as well as Table 2, analogous to our results on
the full dataset presented above. In this sub-sampled regime, the random prior method easily outper-
formed competing approaches, showing better calibration (Fig. 5). The histograms in Figure 6 also
demonstrate good separation between seen and unseen data. In the out-of-distribution benchmarks
reported in Table 2, the random prior method has comfortably outperformed the baselines. While
this training regime is not practical for real-life tasks, it demonstrates the potential performance of
random priors when trained to full convergence.

Sensitivity to Initialization Scale We performed an ablation to test the robustness of our algorithm
to the scaling of the weight initialization in the prior. Results are shown in Figure 7, where we plot
the relationship between initialization scale (taken from the set {0.01, 0.1, 1.0, 2.0, 5.0, 10.0}) and
AUROC performance on the CIFAR-10 task. OOD performance is relatively robust with respect to
the weight initialization within one order of magnitude.
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Figure 5: The relationship between uncertainty (horizontal axis) and accuracy (vertical axis) forB =
1, 5, 10 on a subset of 75 samples from CIFAR-10. In well-calibrated models, accuracy increases as
uncertainty declines.
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Figure 6: Distribution of uncertainty estimates for various algorithms. Top row shows seen data,
bottom row shows unseen data from CIFAR-10, where we trained on a sample of 75 images from
the training set. For random priors (RP), uncertainties are σ̂2. For other algorithms, they are 1 −
max(pµ), where pµ is the averaged output of models in ensemble (Lakshminarayanan et al., 2017).
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Figure 7: Robustness
of OOD perfromance
to initialization scale.
Conf. bars present, but
small, denoting high
confidence. Horizontal
axis is logarithmic.

Summary of experiments We have shown that uncertainties obtained
from random priors achieve competitive performance with fewer boot-
straps in a regime where the network architecture is typical for standard
supervised learning workloads. Random priors showed superior perfor-
mance in a regime where the predictors can be trained to near-zero loss.

8 CONCLUSIONS

We provided a theoretical justification for the use of random priors for
obtaining uncertainty estimates in the context of deep learning. We have
shown that the obtained uncertainties are conservative and that they con-
centrate for any neural network architecture. We performed an extensive
empirical comparison, showing that random priors perform similarly to
deep ensembles in a typical supervised training setting, while outperforming them in a regime where
we are able to accomplish near-zero training loss for the predictors.
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APPENDICES

APPENDIX A REPRODUCIBILITY AND DETAILS OF EXPERIMENTAL SETUP

APPENDIX A.1 SYNTHETIC DATA

For the 1D regression experiment on synthetic data (Fig 1), we used feed-forward neural networks
with 2 layers of 128 units each and a 1-dimensional output layer. We used an ensemble size of 5.
The network was trained on 20 points sampled from the negative domain of a sigmoid function and
tested on 20 points sampled from the positive domain.

APPENDIX A.2 EXPERIMENTAL SETUP

Model architecture For the CIFAR-10 experiments, we adapted the setup from the
cifar10-fast model.3 For the network predicting the mean, we used the exact same archi-
tecture as in this model. For the prior networks in our uncertainty estimators, the architecture for
the prior network was the same as the mean network, but using a final linear layer instead of the
softmax layer. We used squared error on that last layer to get the uncertainties. For the predictor
networks in the uncertainty estimators, we added two additional layers at the end to make sure the
prior functions are learnable (see Fig. 2).

We followed Burda et al. (2018) in choosing the output size to be M = 512 and using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001. We optimized the initialization
scale of our networks as a hyperparameter on the grid {0.01, 0.1, 1.0, 2.0, 10.0} and chose 2.0. We
chose a scaling factor of β = 1.0 for the uncertainty bonus of the random priors and fixed it for all
experiments.

Data For the CIFAR-10 experiment, we trained on the classes {bird, dog, frog, horse} and ex-
cluded {cat, deer, airplane, automobile, ship, truck}. For the small CIFAR-10 ablation experiment,
we trained on 75 images sampled from the classes {ship, truck} and excluded the remaining classes.

Training Error The training error was 0.57 ± 0.20 on the CIFAR experiment and 0.03 ± 0.02 on
the sub-sampled ablation (the symbol ± denotes 90% confidence intervals).

Out-of-distribution classification For computing the areas under the receiver-operator charac-
teristic curves (AUROC) in the OOD classification tables, we used the roc auc score function
from the Python package sklearn (Pedregosa et al., 2011), using the predicted uncertainties as
predicted label scores and binary labels for whether or not the samples were from the training set.

APPENDIX B ADDITIONAL RESULTS

APPENDIX B.1 CONFIDENCE INTERVALS FOR AUROCS

We provide confidence intervals for AUROC measurements in Table 3.

RP DE DE
+AT DR

B=1
Train v. cat/deer 0.99 ± 0.002 0.83 ± 0.065 0.96 ± 0.008 0.81 ± 0.001
Train v. vehicles 1.00 ± 0.000 0.82 ± 0.070 0.96 ± 0.007 0.76 ± 0.001
Train v. excluded 1.00 ± 0.001 0.82 ± 0.069 0.96 ± 0.007 0.77 ± 0.002
Train v. SVHN 0.95 ± 0.013 0.88 ± 0.101 0.96 ± 0.009 0.86 ± 0.002

Table 3: Out-of-distribution AUROC for random priors (RP), deep ensembles (DE), deep ensembles
with adversarial training (DE+AT) and spatial concrete dropout (DR). The errors are computed from
ten samples each in the B = 1 case. The ± symbol denotes one standard error.

3https://github.com/davidcpage/cifar10-fast
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APPENDIX B.2 OOD CLASSIFICATION ACCURACIES

In addition to AUROC results, we also provide accuracy figures on the same OOD tasks. The
thresholding for classification was obtained by cross-validation.

They are in Table 4 and 5.

RP DE DE
+AT DR

B=1
Train v. cat/deer 0.97 ± 0.001 0.83 ± 0.008 0.97 ± 0.006 0.82 ± 0.000
Train v. vehicles 0.99 ± 0.001 0.81 ± 0.008 0.96 ± 0.004 0.86 ± 0.000
Train v. excluded 0.98 ± 0.001 0.87 ± 0.022 0.97 ± 0.007 0.70 ± 0.002
Train v. SVHN 0.91 ± 0.006 0.91 ± 0.025 0.96 ± 0.008 0.78 ± 0.001

B=10
Train v. cat/deer 0.98 0.88 0.96 0.82
Train v. vehicles 0.99 0.87 0.95 0.86
Train v. excluded 0.99 0.89 0.96 0.71
Train v. SVHN 0.92 0.88 0.96 0.78

Table 4: Out-of-distribution classification accuracy for random priors (RP), deep ensembles (DE),
deep ensembles with adversarial training (DE+AT) and spatial concrete dropout (DR). These values
augment the AUROC values reported in Table 1. The ± symbol denotes one standard error.

RP DE DE
+AT DR

B=1
Train v. excluded 1.00 0.90 0.88 0.91
Train v. SVHN 1.00 0.95 0.90 0.97

B=10
Train v. excluded 1.00 0.95 0.89 0.91
Train v. SVHN 1.00 0.97 0.95 0.96

Table 5: Out-of-distribution accuracy for the same models as above (see Tab. 4) on subsampled data.
These values augment the AUROC values reported in Table 2.

APPENDIX B.3 SUPERVISED IN-DISTRIBUTION CLASSIFICATION ACCURACIES

RP* DE DE
+AT DR

CIFAR-10 0.86 0.88 0.86 0.86
Subsampled CIFAR-10 0.82 0.81 0.82 0.75
CIFAR-100 0.90 0.91 0.90 0.89

Table 6: In-distribution supervised classification accuracies on the respective test sets of the different
data sets for random priors (RP), deep ensembles (DE), deep ensembles with adversarial training
(DE+AT) and spatial concrete dropout (DR).
*Since random priors do not have an intrinsic supervised prediction model, we used the predictions
from the DE+AT model in all our experiments instead, setting B = 1.

APPENDIX B.4 CIFAR100 EXPERIMENT

As additional empirical support for our method, we ran experiments on another data set, namely
CIFAR-100 (Krizhevsky et al., 2009). Again, we include 5 classes in the training set and exclude
the remaining classes. The results are reported in the following (Figs. 8, 9; Tabs. 7, 8). They
qualitatively and quantitatively support the same conclusions as our previous experiments.

APPENDIX C BACKGROUND ON BAYES RISK

For completeness, we recall the definition of Bayes Risk. We are often interested in minimizing the
Mean Squared Error Ef

[
(f(x?)− w)2

]
, where x? is a given test point and w is a variable we are
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Figure 8: Distribution of uncertainty estimates for various algorithms. Top row shows seen data,
bottom row shows unseen data from CIFAR-100. For random priors (RP), uncertainties are σ̂2. For
other algorithms, they are 1 − max(pµ), where pµ is the averaged output of models in ensemble
(Lakshminarayanan et al., 2017).
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Figure 9: The relationship between uncertainty (horizontal axis) and accuracy (vertical axis) forB =
1, 5, 10 on samples from CIFAR-100. In well-calibrated models, accuracy increases as uncertainty
declines.

allowed to adjust. A known result of Bayesian decision theory (Robert, 2007; Murphy, 2012) is that
the minimizer of the MSE is given by the expected value of f , i.e.

argmin
w

Ef
[
(f(x?)− w)2

]
= Ef [f(x?)]. (12)

Equation 12 holds for any stochastic process f , including when f is a posterior process obtained by
conditioning on some dataset. A consequence of equation 12 is that it is impossible to obtain a MSE
lower than the one obtained by computing the posterior mean of f .

APPENDIX D GAUSSIAN PROCESSES

A stochastic process is Gaussian (Williams & Rasmussen, 2006), if all its finite-dimensional distri-
butions are Gaussian. The main advantage of GPs is that the posterior process can be expressed in
a tractable way. GPs are often used for regression, where we are learning an unknown function4

φ : RK → R from noisy observations. Since a Gaussian distribution is completely identified by its
first two moments, a GP can be defined by a mean function and a covariance function. Formally, the
notation GP(µ, k) refers to a GP with with mean function µ : RK → R, a positive-definite kernel
function k : RK × RK → R. GPs can be used to model two kinds of uncertainty: epistemic un-
certainty, which reflects lack of knowledge about unobserved values of φ and aleatoric uncertainty,
which reflects measurement noise. When performing regression, we start with a zero-mean prior
GP(0, k) and then observe N training points X = {xi}i=1,...,N and labels y = {yi}i=1,...,N where

4We depart from standard notation, which uses f , because we will be using f to denote a sample from the
prior process.
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RP DE DE
+AT DR

B=1
Train v. excluded 1.00 ± 0.000 0.93 ± 0.003 0.98 ± 0.001 0.88 ± 0.002
Train v. SVHN 1.00 ± 0.000 0.96 ± 0.004 0.99 ± 0.001 0.82 ± 0.002

B=10
Train v. excluded 1.00 0.96 0.99 0.90
Train v. SVHN 1.00 0.99 1.00 0.82

Table 7: Out-of-distribution classification AUROCs on CIFAR-100 for random priors (RP), deep
ensembles (DE), deep ensembles with adversarial training (DE+AT) and spatial concrete dropout
(DR). The ± symbol denotes one standard error.

RP DE DE
+AT DR

B=1
Train v. excluded 1.00 ± 0.001 0.91 ± 0.002 0.97 ± 0.001 0.82 ± 0.003
Train v. SVHN 0.97 ± 0.003 0.95 ± 0.003 0.99 ± 0.001 0.74 ± 0.003

B=10
Train v. excluded 1.00 0.94 0.98 0.83
Train v. SVHN 0.98 0.98 0.99 0.74

Table 8: Out-of-distribution classification accuracy on CIFAR-100 for random priors (RP), deep
ensembles (DE), deep ensembles with adversarial training (DE+AT) and spatial concrete dropout
(DR). The± symbol denotes one standard error. These values augment the AUROC values reported
in Table 7.

yi = φ(xi) + εi. Here, the i.i.d. random variables εi ∼ N (0, σ2
A) model the aleatoric noise. We

obtain the posterior process on GP(µXy, kX). For GPs, the mean and covariance of the posterior
GP on y evaluated at x? can be expressed as

µXy(x?) = k>? (K + σ2
AI)
−1y and (13)

σ2
X(x?) , kX(x?, x?) + σ2

A = k?? − k>? (K + σ2
AI)
−1k? + σ2

A. (14)

In particular, the posterior covariance does not depend on y. In the formula above, we use the kernel
matrix K ∈ RN × RN defined as Kij = k(xi, xj), where xi and xj are in the training set. We also
use the notation k? ∈ RN for the vector of train-test correlations {k?}i = k(xi, x

?), where xi is in
the training set and k(x?, x?) is similarly defined. The shorthand σ2

X(x?) introduced in equation 14
denotes the posterior variance at a single point.

APPENDIX E LIST OF SYMBOLS DENOTING VARIANCE

Below, we give a list of symbols used for variance of various random variables.

σ2
Xf posterior variance of stochastic process
σ2
X posterior variance of Gaussian process
σ2
0 prior variance of stochastic process
σ̂2
0 sample-based estimate of prior GP variance
σ̂2 combined uncertainty estimate (see equation 1)
σ̂2
µ sample-based mean part of uncertainty estimate (see equation 2)
σ̃2
µ Ef

[
σ̂2
µ

]
v̂σ sample-based variance part of uncertainty estimate (see equation 3)
vUB upper bound on variance of σ̂2

µ

σ2
A aleatoric variance (observation noise)

APPENDIX F PROOFS

We now give formal proofs for the results in the paper.
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APPENDIX F.1 PROOFS RELATING TO CONSERVATISM

Lemma 1. For any function h : RN×(K+1) → RM , for any test point x? ∈ RK and for any
stochastic process {f(x)}x∈RK with all second moments finite and exchangeable outputs

σ̃2
µ(x?) = Ef(X)

[
σ2
Xf (x?) +

1
M ‖µXf (x?)− hXf (x?)‖

2
]
. (6)

Proof. We prove the statement by re-writing the expression on the left.

σ̃2
µ(x?) =

1
M Ef(X),f(x?)

[
‖f(x?)− hXf (x?)‖2

]
(15)

= 1
M Ef(X)

[
Ef(x?|f(X))

[
‖f(x?)− hXf (x?)‖2

]]
(16)

= 1
M Ef(X)

[
Ef(x?|f(X))

[∑M
m=1(f

m(x?)− hmXf (x?))2
]]

(17)

= 1
M Ef(X)

[
Ef(x?|f(X))

[∑M
m=1(f

m(x?))
2 − 2fm(x?)h

m
Xf (x?) + (hmXf (x?))

2
]]

(18)

= 1
M Ef(X)

[∑M
m=1 σ

2
Xfm(x?) + (µXfm(x?))

2 − 2µXfm(x?)h
m
Xf (x?) + (hmXf (x?))

2
]

(19)

= 1
M Ef(X)

[∑M
m=1 σ

2
Xfm(x?) + (µXfm(x?)− hmXf (x?))2

]
(20)

= Ef(X)

[
σ2
Xf (x?) +

1
M ‖µXf (x?)− hXf (x?)‖

2
]

(21)

Here, the equality in (16) holds by definition of conditional probability. The equality in (19) holds
by definition of posterior mean and the equality 21 follows by assumption that the process has
exchangeable outputs. While this argument follows a similar pattern to a standard result about
Bayesian Risk (see Appendix Appendix C), it is not identical because the function hXf depends on
f .

Proposition 1 (Strict Conservatism in Expectation). Assume that f is a GP. Then for any function
h : RN×K → RM , we have

σ̃2
µ(x?) = σ2

X(x?) + Ef(X)

[
1
M ‖µXf (x?)− hXf (x?)‖

2
]︸ ︷︷ ︸

≥0

. (9)

Moreover, equality holds if and only if hXf (x?) = µXf (x?).

Proof. We instantiate Lemma 1 by setting f to be a GP. By equation 14, the posterior covariance
of a GP does not depend on the target values, i.e. σ2

Xf (x?) = σ2
X(x?). The first part of the result

can be shown by pulling σ2
X(x?) out of the expectation. Moreover, since ‖ · ‖ is a norm and hence

positive semi-definite, equality holds if and only if hXf (x?) = µXf (x?).

Lemma 3. Assume that the random variable σ̂2
µ(x?) has finite variance upper bounded by vUB.

With probability 1− δ, we have σ̂2
µ(x?) +

1√
δ
vUB ≥ σ̃2

µ(x?).

Proof. The proof is standard, but we state it in our notation for completeness. Applying Chebyshev’s
inequality to the random variable σ̂2

µ(x?), we have that Prob
(
|σ̃2
µ(x?)− σ̂2

µ(x?)| ≥ 1√
δ
vUB

)
≤ δ,

implying the statement.

Corollary 1 (Strict Conservatism for Finite Bootstraps). Assume that f is a GP. Assume that the
random variable σ̂2

µ(x?) has finite variance upper bounded by vUB. Then with probability 1− δ, for
any function h : RN×K → RM , we have

σ̂2
µ(x?) +

1√
δ
vUB ≥ σ̃2

µ(x?) ≥ σ2
X(x?). (10)

Proof. Combine Lemma 3 and Proposition 1.
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Lemma 2. Assume that the GP {f(x)} is zero mean with exchangeable outputs and the function
hXf takes values in [−U,U ]M . Assume that permuting the outputs of f produces the same permu-
tation in the outputs of hXf . With probability 1− δ, we have

Varf1,...,fB
[
σ̂2
µ(x?)

]
≤ vUB, (11)

where vUB is expressible in terms of observable quantities.

Proof. We seek to decompose the variance of σ̂2
µ(x?) into the part that comes from the prior and the

part that comes from the fitted function hXfm .

Varf1,...,fB
[
σ̂2
µ(x?)

]
(22)

= Varf1,...,fB

[∑B
i=1

1
MB ‖f(x?)− hXfi(x?)‖

2
]

(23)

= 1
B Varf

[
1
M ‖f(x?)− hXfi(x?)‖

2
]

(24)

= 1
B

1
M2 Varf

[
(
∑M
m=1(f

m(x?)− hXfm(x?))2
]

(25)

= 1
B

1
M2

∑M
m=1

∑M
l=1 Covf

[
(fm(x?)− hXfm(x?))2, (f l(x?)− hXf l(x?))2

]
(26)

≤ 1
B

1
M2M

2 Varf
[
(fm(x?)− hXfm(x?))2

]
(27)

= 1
B Varf

[
(fm(x?)− hXfm(x?))2

]
(28)

≤ 1
B Ef

[
(fm(x?)− hXfm(x?))4

]
(29)

= 1
B (Ef

[
(fm(x?))

4
]
− 4Ef

[
(fm(x?))

3hXfm(x?)
]
+ 6Ef

[
(fm(x?))

2(hXfm(x?))
2
]

− 4Ef
[
fm(x?)(hXfm(x?))

3
]
+ Ef

[
(hXfm(x?))

4
]
) (30)

Here, line 27 holds by exchangeability of outputs and the Cauchy-Schwarz inequality.

Since hXfm(x?) is has support in [−U,U ], we have

Ef
[
(hXfm(x?))

2)
]
≤ U2, Ef

[
(hXfm(x?))

4)
]
≤ U4, Ef

[
(hXfm(x?))

6)
]
≤ U6. (31)

Moreover, since f(x?) is Gaussian and zero mean, we can write out the moments explicitly.

Ef
[
(fm(x?))

4)
]
= 3(Ef

[
(fm(x?))

2)
]
)2

Ef
[
(fm(x?))

6)
]
= 15(Ef

[
(fm(x?))

2)
]
)3 (32)

Since f(x?) is Gaussian, we can use a sample-based estimate of the prior variance and obtain an
probabilistic confidence interval. In particular, we know that Ef

[
(fm(x?))

2)
]
≤ σ̂2

0(x?)
B0−1
χ2
I(δ)

with

probability 1 − δ, where χ2
I denotes the inverse CDF of the Chi-Squared distribution with B0 − 1

degrees of freedom. We denote this upper bound with wUB = σ̂2
0(x?)

B0−1
χ2
I(δ)

.

We proceed by bounding the individual terms in equation 30 separately.

Ef
[
(fm(x?))

4
]
= 3(Ef

[
(fm(x?))

2
]
)2

−Ef
[
(fm(x?))

3hXfm(x?)
]
≤
√

Ef [(fm(x?))6] Ef [(hXfm(x?))2]

Ef
[
(fm(x?))

2(hXfm(x?))
2
]
≤
√

Ef [(fm(x?))4] Ef [(hXfm(x?))4]

−Ef
[
fm(x?)(hXfm(x?))

3
]
≤
√

Ef [(fm(x?))2] Ef [(hXfm(x?))6]

Combining the above, equation 30 and the bounds on individual moments in equations 31 and 32,
we obtain

Varf1,...,fB
[
σ̂2
µ(x?)

]
≤ 1

B

(
3w2

UB + 4
√

15w3
UBU

2 + 6
√
3w2

UBU
4 + 4

√
wUBU6 + U4

)
︸ ︷︷ ︸

vUB

. (33)

Here, wUB = σ̂2
0(x?)

B0−1
χ2
I(δ)

, σ̂2
0(x?) is a sample-based estimate of the prior variance obtained with

B0 samples, where χ2
I denotes the inverse CDF of the Chi-Squared distribution with B0−1 degrees

of freedom.
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APPENDIX F.2 PROOFS RELATING TO CONCENTRATION

We now proceed to the proofs showing concentration. We begin by formally defining a class of
predictor networks.

Definition 1 (Class HU of Lipschitz networks). Consider functions h : RK → RM . Let
j, j′ = 1, . . . ,M , index the outputs of the function. We define HU so that each h ∈ HU
has the following properties for each j, j′. (P1) hj is Lipschitz continuous with constant L, i.e.
‖hj(x) − hj(x

′)‖2 ≤ L‖x − x‘‖2 for all x, x′ with ‖x‖∞ ≤ 1 and ‖x′‖∞ ≤ 1, (P2) outputs
are exchangeable, i.e. {hj : h ∈ HU} = {hj′ : h ∈ HU}, (P3) the class is symmetric around
zero, i.e. hj ∈ {hj : h ∈ HU} implies −hj ∈ {hj : h ∈ HU}. (P4) hj is bounded, i.e.
max‖x‖∞≤1 |hj(x)| ≤ U .

While the conditions in Definition 1 look complicated, they are in fact easy to check for predictor
networks that follow the architecture in Figure 2. In particular, Lipschitz continuity (P1) has to hold
in practice because its absence would indicate extreme sensitivity to input perturbations. Output
exchangeability (P2) holds since reordering the outputs does not change our architecture. Symmetry
around zero (P3) holds by flipping the sign in the last network layer. Boundedness (P4) is easy to
ensure by clipping outputs. In the following Lemma, we obtain a bound on the expected uncertainty.

Lemma 4. Consider a target function f : RK → RM , where j = 1, . . . ,M , with the domain
restricted to ‖x‖∞ ≤ 1. Introduce a constant U such that max‖x‖∞≤1 |fj(x)| ≤ U . Denote the
data distribution with support on {x : ‖x‖∞ ≤ 1} asD. Moreover, assumeK ≥ 3. For hXf ∈ HU ,
with probability 1− δ we have

Ex?∼D[
1
M ‖f(x?)− hXf (x?)‖

2] ≤ 1
MN

∑N
i=1 ‖f(xi)− hXf (xi)‖2 + LU O

(
1
K√
N

√
log(1/δ)

N

)
.

(34)

Proof. The proof uses standard Rademacher tools. To avoid confusion across several conventions,
we explicitly define the Rademacher complexity of a function class G as:

R̂N (G) , Eui

[
supg∈G

1
N

∑N
i=1 uig(xi)

]
= Eui

[
supg∈G

1
N

∣∣∣∑N
i=1 u

j
ig(xi)

∣∣∣]. (35)

Here, the random variables ui are sampled i.i.d. using a discrete distribution with Prob(ui =
−1) = Prob(ui = 1) = 1

2 and the the second equality follows by using property (P3). We
start by applying the generic Rademacher bound (Mohri et al., 2018) to the function class M =
{x1, . . . , xN , t1 . . . , tN → 1

U2
1
M ‖ti − h(xi)‖

2, h ∈ HU}, which contains the possible errors of the
predictor.

Ex?∼D[
1
B2

1
M ‖f(x?)− hXf (x?)‖

2]

≤ 1
MN

1
B2

∑N
i=1 ‖f(xi)− hXf (xi)‖2 + R̂N (M) +O

(√
log(1/δ)

N

)
. (36)

We now introduce the function classM′ = {x1, . . . , xN , t1 . . . , tN → 1
B2 (t

j
i−hj(xi))2, h ∈ HU},

which models the per-output squared error. Because of property (P2),M′ does not depend on the
output index j. By pulling out the sum outside the supremum in equation 35, we get

R̂N (M) ≤ R̂N (M′). (37)

by Talagrand’s Lemma (Mohri et al., 2018; Duchi, 2009), we also have

R̂N (M′) ≤ 4R̂N (H1). (38)

Here, H1 = { 1
U h

j : h ∈ HU}. By property (P1), functions in H1 are Lipschitz continuous
with constant L/U . Instantiating a known bound for Lipschitz-continuous functions (Luxburg &
Bousquet, 2004, Theorem 18 and Example 4), and using the assumption K ≥ 3, we get R̂N (H1) ≤
L
U O

(
1
K√
N

)
. The Lemma follows by combining this with equation 37 and equation 38, plugging

into equation 36 and re-scaling by U2.
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Lemma 4 allowed us to relate the error on the training set to the expected error on the test set. It
also shows that the two will be closer for small values of the Lipschitz constant L. We now use this
Lemma to show our main concentration result (Proposition 2).

Proposition 2. If the training converges, i.e. the training loss 1
MN

∑N
i=1 ‖f(xi)−hXf (xi)‖2 = σ2

A
for arbitrarily large training sets, then assuming the predictors hXf are bounded and Lipschitz
continuous with constant L, then under technical conditions the uncertainties concentrate, i.e.
σ̂2(x?)→ 0 as N →∞ and B →∞ with probability 1.

Proof. We are assuming the technical conditions of Lemma 4. Instantiating Lemma 4, setting the
training loss to σ2

A in the RHS of equation 34 and letting N → ∞, we obtain the following with
probability 1:

lim
N→∞

Ex?∼D[σ̂
2
µ(x?)] = σ2

A. (39)

This implies:

lim
N→∞

Ex?∼D[max(0, σ̂2
µ(x?)− σ2

A)] = 0. (40)

From the continuity of f and hXf we have that σ̂2
µ is continuous in x?. Together with the property

that the expression under the expectation is non-negative, this gives that for every x?.

lim
N→∞

max(0, σ̂2
µ(x?)− σ2

A) = 0. (41)

Since the right-hand side does not depend on B, we also have

lim
B→∞

lim
N→∞

max(0, σ̂2
µ(x?)− σ2

A) = 0. (42)

From the definition of v̂σ , we have that

lim
B→∞

lim
N→∞

v̂σ = 0. (43)

We show the Lemma by combining equation 42 and equation 43 with equation 1.
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