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ABSTRACT

The checkerboard phenomenon is one of the well-known visual artifacts in the
computer vision field. The origins and solutions of checkerboard artifacts in the
pixel space have been studied for a long time, but their effects on the gradient
space have rarely been investigated. In this paper, we revisit the checkerboard
artifacts in the gradient space which turn out to be the weak point of a network ar-
chitecture. We explore image-agnostic property of gradient checkerboard artifacts
and propose a simple yet effective defense method by utilizing the artifacts. We
introduce our defense module, dubbed Artificial Checkerboard Enhancer (ACE),
which induces adversarial attacks on designated pixels. This enables the model
to deflect attacks by shifting only a single pixel in the image with a remarkable
defense rate. We provide extensive experiments to support the effectiveness of our
work for various attack scenarios using the state-of-the-art attack methods. Fur-
thermore, we show that ACE is even applicable to large-scale datasets including
ImageNet dataset and can be easily transferred to various pretrained networks.

1 INTRODUCTION

The checkerboard phenomenon is one of the well-known artifacts that arise in various applications
such as image super resolution, generation and segmentation (Shi et al., 2016; Gao et al., 2018;
Sajjadi et al., 2017). In general, the checkerboard artifacts indicate an uneven pattern on the output
of deep neural networks (DNNs) that occurs during the feed-forward step. Odena et al. (2016) have
investigated in-depth the origin of the phenomenon that the artifacts come from the uneven overlap
of the deconvolution operations (i.e., transposed convolution, Dumoulin et al. (2016)) on pixels. Its
solutions have been suggested in various studies (Wojna et al., 2017; Aitken et al., 2017).

Interestingly, a possible relationship between the checkerboard artifacts and the robustness of neural
networks has been noted by Odena et al. (2016) but not has it been seriously investigated. Moreover,
while the previous works (Long et al., 2015; Noh et al., 2015; Odena et al., 2016; Feinman et al.,
2017) have concentrated on the artifacts in the pixel space, studies have been rare on the artifacts in
the gradient space that occur during the backward pass of the convolution operation.

To show that the gradient checkerboard artifacts phenomenon is crucial for investigating the network
robustness and is indeed a weak point of a neural network, we focus on analyzing its effects on the
gradient space in terms of adversarial attack and defense. By explicitly visualizing the gradients, we
demonstrate that the phenomenon is inherent in many contemporary network architectures such as
ResNet (He et al., 2016), which use strided convolutions with uneven overlap. It turns out that the
gradient checkerboard artifacts substantially influence the shape of the loss surface, and the effect is
image-agnostic.

Based on the analysis, we propose an Artificial Checkerboard Enhancer module, dubbed ACE. This
module further boosts or creates the checkerboard artifacts in the target network and manipulates
the gradients to be caged in the designated area. Because ACE guides the attacks to the intended
environment, the defender can easily dodge the attack by shifting a single pixel (Figure 1) with
a negligible accuracy loss. Moreover, we demonstrate that our module is scalable to large-scale
datasets such as ImageNet (Deng et al., 2009) and also transferable to other models in a plug and
play fashion without additional fine-tuning of pretrained networks. Therefore, our module is highly
practical in general scenarios in that we can easily plug any pretrained ACE module into the target
architecture.
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Figure 1: Defense procedure using the proposed Arti�cial Checkerboard Enhancer (ACE) mod-
ule. ACE shapes the gradient into a checkerboard pattern, thus attracting adversarial attacks to the
checkerboard artifacts. Since the defender is aware of the guided location in advance, adversarial
attacks can be easily de�ected during inference by padding the image with a single row/column and
discarding the opposite row/column.

Our contributions are summarized as three-fold:

Analysis of gradient checkerboard artifacts. We investigate the gradient checkerboard artifacts
in depth which are inherent in many of the contemporary network architectures with the uneven
overlap of convolutions. To the best of our knowledge, this is the �rst attempt to analyze the arti-
facts of the gradient space in terms of network robustness. We empirically show that the gradient
checkerboard artifacts incur vulnerability to the network.

Arti�cial Checkerboard Enhancer (ACE). We introduce ACE module that strengthens gradient
artifacts and induces adversarial attacks to our intended spaces. After guiding the attacks to the
pre-speci�ed area using ACE, we de�ect adversarial attacks by one-pixel padding. Our extensive
experimental results support that our proposed defense mechanism using ACE module successfully
defends various adversarial attacks on CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al.,
2009) datasets.

Scalability. We show that ACE is readily transferable to any pretrained model without �ne-tuning,
which makes the module scalable to a large-scale dataset. To the best of our knowledge, this is the
�rst defense method that attempts and succeeds to defend the attacks with the projected gradient
descent algorithm (PGD) (Madry et al., 2017; Athalye & Sutskever, 2017) on ImageNet dataset.

2 PRELIMINARY

2.1 BACKGROUND AND RELATED WORKS

Adversarial attacks can be conducted in various ways depending on how much the adversary, also
known as the threat model, has access to the target model. If the attacker can acquire the gradients
of the target, gradient-based attacks can be performed, which are usually very effective because
iterative optimization becomes possible (Goodfellow et al., 2014; Kurakin et al., 2016; Moosavi-
Dezfooli et al., 2016; Papernot et al., 2016a; Carlini & Wagner, 2016). Score-based attacks can be
valid when the adversary can use the logits or the predicted probabilities for generating adversarial
examples (Su et al., 2017). If generated adversarial examples are not from the target model, we call
this transfer-based attack (Papernot et al., 2017). Recently, a new type of attack, called a decision-
based attack, has been introduced where the adversary only has knowledge about the �nal decision
of the model (e.g., top-1 class label) (Brendel et al., 2017).

According to Papernot et al. (2017), defense methods can be largely categorized into gradient mask-
ing and adversarial training. Gradient masking methods usually make adversaries dif�cult to com-
pute exact gradients and make it challenging to fool the target. Gradient obfuscation, which is a
recently introduced term of gradient masking by Athalye et al. (2018), includes speci�c gradient cat-
egories such as stochastic gradients, shattered gradients and vanishing/exploding gradients. Works
related to our defense method can be considered as input transformations which focus on the input
image (Xie et al., 2017; Prakash et al., 2018; Cao & Gong, 2017; Xu et al., 2017; Guo et al., 2017).

On the other hand, adversarial training has been known to make models robust against adversarial
perturbation (Madry et al., 2017; Na et al., 2017; Tram�er et al., 2017), but there remains an issue
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that the robustness comes with the cost of accuracy (Tsipras et al., 2018; Su et al., 2018). Moreover,
according to Sharma & Chen (2018), restricting onl1 bounded perturbations during adversarial
training has limited robustness to attacks with different distortion metrics.

2.2 NOTATION

We would like to de�ne the following terms here and will use them without further explanation
throughout this paper.Gradient Overlap (
( x i )) represents the number of parameters associated
with a single pixel in the inputx . For more explanation on its calculation, see Appendix C. We
de�ne the set of pixels whose gradient overlap is in the topp fraction asG(p) (e.g.,G(1:0) rep-
resents the entire pixel set).Gradient Checkerboard Artifacts (GCA) is a phenomenon which
shows checkerboard patterns in gradients. The existence of GCA has been introduced in Odena
et al. (2016), although not has it been thoroughly examined. GCA occurs when a model uses a
convolution operation of kernel sizek that is not divisible by its strides.

3 REVISITING GRADIENT CHECKERBOARDARTIFACT IN TERMS OF

GRADIENT OVERLAP

3.1 MOTIVATION

We �rst introduce a simple experiment that motivated the design of our proposed ACE module. We
conduct an experiment to visualize the attack success rate of a given image set using a single pixel
perturbation attack. For each pixel of an input image, we perturb the pixel to white (i.e., a pixel
with RGB value of (255, 255, 255)). Next, we use our toy model based on LeNet (LeCun et al.,
1998) (see Appendix A for the detailed architecture) and ResNet-18 (He et al., 2016) to measure the
attack success rate on the test images in CIFAR-10 dataset. Note that the attack success ratePattack
in Figure 2 is de�ned as the average number of successful attacks per pixel on the entire set of test
images.

As we can see in Figure 2a and Figure 2c, checkerboard patterns in the attack success rate are clearly
observable. This pattern can be considered as image-agnostic because it is the result of the average
over the entire set of the test images of CIFAR-10 dataset. Then a natural question arises:What is
the cause of this image-agnostic phenomenon?We speculate that the uneven gradient overlap is
the cause of this phenomenon, which is directly associated with the number of parameters that are
connected to a single pixel. As depicted in Figure 2b and Figure 2d, we can observe checkerboard
patterns in the gradient overlap. In fact, this uneven overlap turns out to be substantially susceptible
to the adversarial attacks. We will provide the supporting results on this in the following sections.

(a)Pattack

of Toy model
(b) 
( x i )

of Toy model
(c) Pattack

of ResNet-18
(d) 
( x i )

of ResNet-18

Figure 2: Illustration of the attack success ratePattack and the gradient overlap
( x i ) of toy model
and ResNet-18. The illustrated gradient overlap of ResNet-18 comes from the features after the �fth
convolutional layer. Attack success rate (a) and (c) are computed by perturbing each pixel of an
image to white (i.e., (255, 255, 255)), over the entire set of test images in CIFAR-10 dataset. Note
that higher probability at a pixel denotes a higher success rate when it is attacked. We can observe
patterns inPattackaligned to our gradient overlap on (b) toy model and (d) ResNet-18.
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Table 1: Top-1 test accuracy (%) after performing various adversarial attacks on every pixelG(p =
1:0), its subsetG(p = 0 :3), and their differences (i.e., diff) on CIFAR-10 dataset. The toy model
(see Appendix A) and ResNet-18 achieved 81.4% and 94.6% top-1 test accuracy, respectively. Note
that all the diffs are close to zero.

Toy Model ResNet-18
Attack Methods p = 1 :0 p = 0 :3 diff p = 1 :0 p = 0 :3 diff

OnePixel (Su et al., 2017) 56.6 58.4 1.7 57.2 59.5 2.4
JSMA (Papernot et al., 2016a) 0.2 0.4 0.2 3.2 9.8 6.6
DeepFool (Moosavi-Dezfooli et al., 2016) 18.5 18.6 0.1 7.2 11.5 4.3
CW (Carlini & Wagner, 2016) 0.0 0.0 0.0 0.0 0.0 0.0
PGD (Madry et al., 2017) 0.0 1.6 1.6 0.0 0.0 0.0

3.2 ADVERSARIAL ATTACK VIA GRADIENT OVERLAPS

To show that the pixels with high gradient overlaps are indeed a weak point of network, we generate
adversarial examples onG(p). We evaluate top-1 accuracy of our toy model (the model de�ned as
in the previous subsection) and ResNet-18 on CIFAR-10 dataset after performing �ve adversarial
attacks (Su et al., 2017; Papernot et al., 2016a; Moosavi-Dezfooli et al., 2016; Carlini & Wagner,
2016; Madry et al., 2017) forp 2 f 1:0; 0:3g (Table 1). Interestingly, constraining the domain of the
attacks toG(0:3) barely decreases the success rate compared to the attacks onG(1:0).

We can observe that the pixels with the high gradient overlaps are more susceptible (i.e., likely to
be in a vulnerable domain) to the adversarial attacks. Considering all the observations, we leverage
the vulnerable domain of the pixels for adversarial defense. If we can intentionally impose the GCA
onto a model input and let GCA occupy the vulnerable domain, we can fully induce the attacks on
it so that the induced attacks can be dodged easily by a single padding operation.

4 ACE (ARTIFICIAL CHECKERBOARDENHANCER)

4.1 MODULE DESCRIPTION

In this section, we propose the Arti�cial Checkerboard Enhancer (ACE) module, which arti�cially
enhances the checkerboard pattern in the input gradients so that it induces the vulnerable domain
to have the identical pattern. Figure 3a illustrates our proposed ACE module, which is based on a
convolutional autoencoder. The encoder consists of convolutional layers where the �rst layer'sk
is not divisible bys (k 6� 0 mod s), for example, whenk = 1 ands = 2 . In order to preserve
the information of the inputx, we add an identity skip connection that bypasses the input of ACE
module to the output. The hyperparameter� is to control the magnitude of checkerboard artifacts in
the input gradients.

(a) ACE module (b) ResNet-18-ACE (c) ResNet-18

Figure 3: Our proposed ACE module and the gradient heatmaps of ResNet-18. (a) The schematic
illustration of the ACE module. (b) ResNet-18-ACE (� = 10) and (c) ResNet-18.
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