
Simplifying Automated Pattern Selection for
Planning with Symbolic Pattern Databases

Ionut Moraru1, Stefan Edelkamp1, Moises Martinez1 and Santiago Franco2

1Informatics Department, Kings College London, UK
2School of Computing and Engineering, University of Huddersfield, UK

{firstname.lastname}@kcl.ac.uk, s.franco@hud.ac.uk

Abstract

Pattern databases (PDBs) are memory-based abstraction
heuristics that are constructed prior to the planning process
which, if expressed symbolically, yield a very efficient repre-
sentation. Recent work in the automatic generation of sym-
bolic PDBs has established it as one of the most successful
approaches for cost-optimal domain-independent planning.
In this paper, we contribute two planners, both using bin-
packing for its pattern selection. In the second one, we in-
troduce a greedy selection algorithm called Partial-Gamer,
which complements the heuristic given by bin-packing. We
tested our approaches on the benchmarks of the last three
International Planning Competitions, optimal track, getting
very competitive results, with this simple and deterministic
algorithm.

1 Introduction
The automated generation of search heuristics is one of the
holy grails in AI, and goes back to early work of Gaschnik
(1979), Pearl (1984), and Prieditis (1993). In most cases
lower bound heuristics are problem relaxations: each plan
in the original state space maps to a shorter one in some
corresponding abstract one. In the worst case, searching the
abstract state spaces at every given search nodes exceeds the
time of blindly searching the concrete search space (Val-
torta 1984). With pattern databases (PDBs), all efforts in
searching the abstract state space are spent prior to the plan
search, so that these computations amortize through multi-
ple lookups.

Initial results of Culberson and Schaeffer (1998) in
sliding-tile puzzles, where the concept of a pattern is a selec-
tion of tiles, quickly carried over to a number of combinato-
rial search domains, and helped to optimally solve random
instances of the Rubik’s cube, with non-pattern labels be-
ing removed (Korf 1997). When shifting from breadth-first
to shortest-path search, the exploration of the abstract state-
space can be extended to include action costs.

The combination of several databases into one, however,
is tricky (Haslum et al. 2007). While the maximum of two
PDBs always yields a lower bound, the sum usually does
not. Korf and Felner (2002) showed that with a certain se-
lection of disjoint (or additive) patterns, the values in differ-
ent PDBs can be added while preserving admissibility. Holte
et al. (2004) indicated that several smaller PDBs may out-

perform one large PDB. The notion of a pattern has been
generalized to production systems in vector notation (Holte
and Hernádvölgyi 1999), while the automated pattern selec-
tion process for the construction of PDBs goes back to the
work of Edelkamp (2006).

Many planning problems can be translated into state
spaces of finite domain variables (Helmert 2004), where a
selection of variables (pattern) influences both states and op-
erators. For disjoint patterns, an operator must distribute its
original cost, if present in several abstractions (Katz and
Domshlak 2008; Yang et al. 2008).

During the PDB construction process, the memory de-
mands of the abstract state space sizes may exceed the
available resources. To handle large memory requirements,
symbolic PDBs succinctly represent state sets as binary
decision diagrams (Edelkamp 2002). However, there are
an exponential number of patterns, not counting alterna-
tive abstraction and cost partitioning methods. Hence, the
automated construction of informative PDB heuristics re-
mains a combinatorial challenge. Hill-climbing strategies
have been proposed (Haslum et al. 2007), as well as more
general optimization schemes such as genetic algorithms
(Edelkamp 2006; Franco et al. 2017). The biggest issue
in this area remains assessing the quality of the PDBs (in
terms of the heuristic values for the concrete state space)
which can only be estimated. Usually, this involves gen-
erating the PDBs and evaluating them (Edelkamp 2014;
Korf 1997).

This work contributes by improving the automated pat-
tern selection process. We first define the settings of cost-
optimal action planning and give a characterization of a
pattern database. We stress spurious states, as they are in-
evitable to PDB generation. Next, we move to the encod-
ing of the pattern selection problem and how to evaluate
the heuristics resulted from them. The main contribution is
a greedy partial PDB selection mechanism, which we show
that complements well with bin packing, giving close to state
of the art results on our benchmarks (bettering the results of
the winner of the 2018 International Planning Competition).

2 Background
There are a variety of planing formalisms. Fikes and Nil-
son (1971) invented the propositional specification language
STRIPS, inspiring PDDL (McDermott 1998). Holte and

Hernádvölgyi (1999) invented the production system vector
notation (PSVN) for permutation games. Bäckström (1992)
prefers the SAS+ formalism, which is a notation of finite-
domain state variables over partial states and operators with
pre-, (prevail-,) and postconditions.
Definition 1 (SAS+ Planning Task) is a quadruple P =
〈V,O, s0, s∗〉, where V = {v1, . . . , vn} is the set of finite-
domain variable; O are the operators which consist of pre-
conditions and effects. The remaining two, s0 and s∗ are
states. A (complete) state s = (a1, . . . , an) ∈ S assigns a
value ai to every vi ∈ V , with ai in a finite domain Di,
i = 1, . . . , n. For partial states s+ ∈ S+, each vi ∈ V is
given an extended domainD+

i = Di∪{ }. We have s0 ∈ S
and s∗ ∈ S+.

A state space abstraction φ is a mapping from states in
the original state space S to the states in the abstract state
space A.

Let an abstract operator o′ = φ(o) be defined as pre′ =
φ(pre), and post′ = φ(post). For planning task described
above, the corresponding abstract task is 〈V,O′, s′0, s′∗〉
with s′0 ∈ A, s′∗ ∈ A+, The result of applying operator
o′ = (pre′, post′) to an abstract state a = s′ satisfying
pre′, sets s′i = post′i 6= , for all i = 1, . . . , n.

A cost is assigned to each operator. In the context of cost-
optimal planning, the aim is to minimize the total cost over
all plans that lead from the initial state to one of the goals.

The set of reachable states is generated on-the-fly, start-
ing with the initial state by applying the operators. In most
state-of-the-art planners, lifted planning tasks are grounded
to SAS+. A STRIPS domain with states being subsets of
propositional atoms can be seen as a SAS+ instance with a
vector of Boolean variables. The core aspect of grounding is
to establish invariances, which minimizes the SAS+ encod-
ing.
Definition 2 (State-Space Homomorphism) A homomor-
phic abstraction φ imposes that if s′ is the successor of s
in the concrete state space we have φ(s′) is the successor of
φ(s) in abstract one. This suggests abstract operators φ(o)
leading from φ(s) to φ(s′) for each o ∈ O from s of s′.

As the planning problem spans a graph by applying a se-
lection of set of rules, the planning task abstraction is gen-
erated by abstracting the initial state, the partial goal state
and the operators. Plans in the original space have counter-
parts in the abstract space, but not vice verse. Usually, the
planning task of finding a plan from φ(s0) to φ(s∗) in A is
computationally easier than finding one from s0 to s∗ in P .

The main issue encountered when working with abstrac-
tions are spurious paths in the abstract state space that have
no corresponding path in the original (concrete) space. An
intuitive example of two disconnected paths s0 → s1 →
s2 → s3 → . . . → sl and sl+1 → sl+2 → sl+3 → . . . →
sm = s∗, is shown in Figure 1 with l = 3. As we map sl
and sl+1 to the same abstract state, we have an abstract plan
which has no preimage in the original one.

Homomorphic abstractions preserve the property that ev-
ery path (plan) present in the original space is also present
(and shorter) in the abstract state space. Still, abstract oper-
ators may yield spurious states.

Figure 1: Example of the spurious path problem.

This problem also pops up in unabstracted search spaces.
One cause for this is the nature of PDB construction, namely
regression search. To illustrate this, consider the (1 × 3)
sliding-tile puzzle with two tiles 1 and 2 and one empty po-
sition, the blank. In one SAS+ encoding we have three state
variables: two for the position of the tile ti ∈ {1, 2, 3}, i ∈
{1, 2}, and one for the position of the blank b ∈ {1, 2, 3}.
Let s0 = (t1, t2, b) = (2, 3, 1) and s∗ = (1, 2,). The op-
erators have preconditions ti = x, b = x + 1, and effects
ti = x + 1, b = x, or preconditions ti = x, b = x − 1, and
effects ti = x − 1, b = x, for i = {1, 2} and x ∈ {1, 2, 3}
(whenever possible). Going backwards from s∗, the planner
does not know the location of the blank and beside the reach-
able state t1 = 2, t2 = 3, b = 3 it generates two additional
states t1 = t2 = 1, b = 2 and t1 = t2 = 2, b = 1.

How to mitigate the problem? We cannot expect to re-
move all spurious states, but there is hope to reduce their
number. In the case of the sliding-tile puzzle, there is a dual
SAS+ encoding with three variables denoting which tile (or
blank) is present at a given position p1, p2, or p3. This
exactly-one-of state invariance is inferred by the static an-
alyzer, but not used in the state encoding. The information,
however, can help to eliminate spurious states.

Either spurious paths through abstraction or though re-
gression, they do not affect the lower bound property of the
resulting abstraction heuristic. However, they can blow up
the PDBs considerably, given that there are abstract states
and paths for which no corresponding preimage in the for-
ward space exist. As a result, refined state invariants (in-
cluding mutex detection of contradicting facts) greatly im-
prove backward search and, thus, reduce the size of pattern
databases.

3 Pattern Databases
As planning is a PSPACE-complete problem (Bylander
1994), heuristic search has proven to be one of the best ways
to find solutions in a timely manner.

Definition 3 (Heuristic) A heuristic h is a mapping of the
set of states in P to positive reals R≥0. A heuristic is called
admissible, if h(s) is a lower bound of the cost of all goal-
reaching plans starting at s. Two heuristics h1 and h2 are
additive, if h defined by h(s) = h1(s)+h2(s) for all s ∈ S,
is admissible. A heuristic is consistent if for all operators o
from s to s′ we have h(s′)− h(s) + c(o) ≥ 0.

For admissible heuristics, search algorithms like A*
(Hart, Nilsson, and Raphael 1968) will return optimal plans.
If h is also consistent, no states will be reopened during
search. This is the usual case for PDBs.

Definition 4 (Pattern Database) is an abstraction map-
ping for states and operators and a lookup table that for
each abstract state a provides the (minimal) cost value from
a to the goal state.

The minimal cost value is a lower bound for reaching the
goal of the state that is mapped to a in the original state
space. PDBs are generated in a backwards enumeration of
the abstract state space, starting with the abstract goal. They
are stored in a (perfect) hash table for explicit search, and
in the form of a BDD with all abstract states of a certain h
value while in symbolic search.

Showing that PDBs yield consistent heuristics is triv-
ial (Edelkamp 2014; Haslum et al. 2005), as shortest path
distances satisfy the triangular inequality. It has also been
shown that for PDBs the sum of heuristic values obtained via
projection to a disjoint variable set is admissible (Edelkamp
2014). The projection of state variables induces a projection
of operators and requires cost partitioning, which distributes
the cost c(o) of operators o to the abstract state spaces (Pom-
merening et al. 2015). We will discuss more about cost par-
titioning in section 4.

For ease of notation, we identify a pattern database with
its abstraction function φ. As we want to optimize PDBs via
genetic algorithms, we need an objective function.

Definition 5 (Average Fitness of PDB) The average fitness
fa of a PDB φ (interpreted as a set of pairs (a, h(a))) is the
average heuristic estimate fa(φ) =

∑
(a,h(a))∈φ h(a)/|φ|,

where |φ| denotes the size of the PDB φ.

There is also the option of evaluating the quality of PDB
based on a sample of paths in the original search space.

Definition 6 (Sample Fitness of PDB) The fitness fs of a
PDB φ wrt. a given sample of (random) paths π1, . . . , πm
and a given candidate pattern selection φ1, . . . , φk in the
search space is determined by whether the number of states
with a higher heuristic value (compared to heuristic values
in the existing collection) exceeds a certain thresholdC, i.e.,

m∑
i=1

[hφ(last(πi)) >
k

max
j=1
{hφj

(last(πi))}] > C,

where [cond] = 1, if cond is true, otherwise [cond] = 0, and
last(π) denotes the last state on π.

Definition 7 (Pattern Selection Problem) is to find a col-
lection of PDBs that fit into main memory, and maximize the
average heuristic value1.

Definition 8 (Perimeter PDB) is the result of an unab-
stracted (blind) backward shortest path search until mem-
ory resources are exhausted, setting the value of all yet un-
reached abstract space to the maximum cost value found in
the perimeter, while adding the minimum cost of an operator.

In several planning tasks, generating the perimeter PDB
already solved the problem (Franco et al. 2017).

1The average heuristic value has shown empirically that it is a
good metric. While it is not the solution to evaluating the pattern
selection problem perfectly, it is a good approximation up to this
point.

Symbolic Pattern Databases
In symbolic plan search, we encode each variable domain
Dj of the SAS+ encoding, j = 1, . . . , n, in binary. Then
we assign a Boolean variable xi to each i, 0 ≤ i <
dlog2 |D1|e + . . . + dlog2 |Dn|e. This eventually results in
a characteristic function χS(x) for any set of states S. The
ordering of the variables is important for a concise repre-
sentation, so that we keep finite domain variables as blocks
and move inter-depending variables together. The optimiza-
tion problem of finding such best linear variable arrange-
ment among them is NP-hard. It is also possible to encode
operators as Boolean functions χo(x, x′) and to progress
(and regress) a set of states to accelerate this (pre)image,
the disjunction of the individual operators images could be
optimized. For action costs, always expanding the set at-
tached to the minimum cost value yields optimal results
(Edelkamp 2002). As symbolic search is available for partial
states (which denote sets of states), both the forward and the
backward symbolic exploration in plan space become simi-
lar.

There has been considerable effort to show that PDB
heuristics can be generated symbolically and used in a sym-
bolic version of A* (Edelkamp 2002). The concise rep-
resentation of the Boolean formula for these characteristic
functions in a binary decision diagram (BDD) is a technique
to reduce the memory requirement during the search. Fre-
quently, the running time for the exploration often reduces
as well.

4 Pattern Selection and Cost Partitioning
Using multiple abstraction heuristics can lead to solving
more complex problems, but to maintain optimality, we need
to distribute the cost of an operator among the abstractions.
One way of doing this is present in (Seipp and Helmert
2018). Saturated Cost Partitioning (SCP) has shown bene-
fits to simpler cost partitioning methods. Given an ordered
set of heuristics, in our case PDBs, SCP relies on only using
those costs which each heuristic uses to create an abstract
plan. The remaining costs are left free to be used by any
subsequent heuristic. However, considering the limited time
budget, this approach is more time consuming compared to
other cost partitioning methods (Seipp, Keller, and Helmert
2017).

One such method is 0/1 cost partition, which zeroes any
cost for subsequent heuristics if the previous heuristic has
any variables affected by that operator. Both SCP and 0/1 al-
low heuristics values to be added admissibly. SCP dominates
0/1 cost partitioning (given a set of patterns and enough
time, SCP would produce better heuristic values), but it is
much more computationally expensive than 0/1 cost parti-
tioning.

Franco et al., (2017) shows that, in order to find good
complementary patterns, it is beneficial to try as many pat-
tern collections as possible. As such, we implemented 0/1
cost partitioning in our work. We tested using the canonical
cost partitioning (Haslum et al. 2007) method as well when-
ever we added a new PDB, but this resulted in a very pro-
nounced slow down which increased the more PDBs have

already been selected. This was the reason we adopted a hy-
brid combination approach, where 0/1 cost partition is used
on-the-fly to generate new pattern collections, and, only af-
ter all interesting pattern collections have been selected, we
run the canonical combination method, slightly extended to
take into account that each pattern has its own 0/1 cost par-
tition.

Given a number of PDBs in the form of pattern collec-
tions (sets of individual patterns, each associated with a cost
partitioning function), canonical pattern databases will se-
lect the best admissible combination of PDB maximization
and addition. The computation of the canonical PDB is still
expensive, so we execute it only once, right before search
starts.

There are many alternatives for automated pattern se-
lection based on bin packing such as random bin packing
(PBP), causual dependency bin packing (CBP), which could
be refined by a genetic algorithm (Franco et al. 2017).

Greedy Selection
Franco et al. (2017) compared the pattern selection method
to the one of Gamer (Kissmann and Edelkamp 2011), which
tries to construct one single best PDB for a problem. Its pat-
tern selection method is an iterative process, starting with
all the goal variables in one pattern, where the causally con-
nected variables who would most increase the average h
value of the associated PDB are added to the pattern.

Following this work, we devised a new Gamer-style pat-
tern generation method, which behaves similarly, but which
adds the option of partial pattern database generation to it.
By partial we mean that we have a time and memory limit
for building each PDB. If the PDB building goes past this
limit, we truncate it in the same way we would do with a
perimeter PDB, i.e., any unmapped real state has the biggest
h value the PDB building was at when it was interrupted.

An important difference with the Gamer method is that
we do not try every possible pattern resulting of adding a
single causally connected variable to the latest pattern.

Genetic Algorithm Selection
A genetic algorithm (GA) is a general optimization method
in the class of evolutionary strategies (Holland 1975). It
refers to the recombination, selection, and mutation of genes
(states in a state-space) to optimize the fitness (objective)
function. In a GA, a population of candidate solutions is
sequentially evolved to generate a better performing popu-
lation of solutions, by mimicking the process of evolution.
Each candidate solution has a set of properties which can
be mutated and recombined. Traditionally, candidate solu-
tions are bitvectors, but there are strategies that work on real-
valued state vectors.

An early approach for the automated selection of PDB
variables by Edelkamp (2006) employed a GA with genes
representing state-space variable patterns in the form of a 0/1
matrix G, where Gi,j denotes that state variable i is chosen
in PDB j. Besides flipping and setting bits, mutations may
also add and delete PDBs in the set.

The PDBs corresponding to the bitvectors in the GA have
to fit into main memory, so we have to restrict the generation

Algorithm 1 Greedy PDBs Creation

1: function GREEDYPDBS(M ,T ,Smin ,Smax ,EM) :
Require: time and memory limits T and M , min and max

PDB size Smin ad Smax , evaluation method EM .
2: SelPDBs← ∅
3: Psel ← Psel ∪ Packer(FFD,Smin ,M, T,EM)
4: Psel ← Psel ∪ Packer(FFI,Smin ,M, T,EM)
5: Psel ← Psel ∪ PartialGamer(M,T,EM)
6: Return Psel

7: end function
8:
9: function PACKER(Method,Smin , M , T ,EM) :

10: SizeLim← Smin

11: while (t < T) and (m < M) do
12: GENERATE P(Method,SizeLim)
13: if EM(P) then
14: Psel ← P
15: end if
16: Size← Size ∗ 10
17: end while
18: Return Psel

19: end function
20:
21: function PARTIALGAMER(M , T ,EvalMethod) :
22: InitialPDB ← all goal variables
23: SelPDBs← InitialPDB
24: while (t < T) and (m < M) do
25: generate all CandidatePatterns resulting of

adding one casually connected variable to latest P ∈
Psel

26: for all P ∈ CandidatePatterns do
27: if EM(P) then
28: Psel ← P
29: break
30: end if
31: end for
32: end while
33: Return Psel

34: end function

of offsprings to the ones that represent a set of PDB that
respect the memory limitation. If time becomes an issue, we
stop evolving patterns and invoke the overall search (in our
case progressing explicit states) eventually. An alternative,
which sometimes is applied as a subroutine to generate the
initial population for the GA, is to use bin packing.

Bin Packing
The bin packing problem (BPP) is one of the first problems
shown to be NP-hard (Garey and Johnson 1979). Given ob-
jects of integer size a1, . . . , an and maximum bin sizeC, the
problem is to find the minimum number of bins k so that the
established mapping f : {1, . . . , n} → {1, . . . , k} of ob-
jects to bins maintains

∑
f(a)=i a ≤ C for all i ≤ k. The

problem is NP-hard in general, but there are good approxi-
mation strategies such as first-fit and best-fit decreasing (be-
ing at most 11/9 off the optimal solution (Dósa 2007)).

In the PDBs selection process, however, the definition of
the BPP is slightly different. We estimate the size of the PDB
by computing the product (not the sum) of the variable do-
main sizes, aiming for a maximum bin capacity M imposed
by the available memory, and we find the minimum num-
ber of bins k, so that the established mapping f of objects
to bins maintains

∏
f(a)=i a ≤ M for all i ≤ k. By taking

the logs on both sides, we are back to sums, but the sizes
become fractional. In this case,

∏
f(a)=i is an upper bound

on the number of abstract states needed.
Taking the product of variable domain sizes is a coarse

upper bound. In some domains, the abstract state spaces are
much smaller. Bin packing chooses the memory bound on
each individual PDB, instead of limiting their sum. More-
over, for symbolic search, the correlation between the cross
product of the domains and the memory needs is rather
weak. However, because of its simplicity and effectiveness,
this form of bin packing currently is chosen for PDB con-
struction.

By limiting the amount of optimization time for each BPP,
we do not insist on optimal solutions, but we want fast ap-
proximations that are close-to-optimal. Recall, that subopti-
mal solutions to the BPP do not imply suboptimal solutions
to the planning problem. In fact, all solutions to the BPP lead
to admissible heuristics and therefore optimal plans.

For the sake of generality, we strive for solutions to the
problem that do not include problem-specific knowledge but
still work efficiently. Using a general framework also en-
ables us to participate in future solver developments. There-
fore, in both of the approaches we present in this paper, we
focus on the first-fit algorithm.

First-Fit Increasing (FFI), or Decreasing (FFD), is a fast
on-line approximation algorithm that first sorts the objects
according to their sizes and, then, starts placing the objects
into the bins, putting an object to the first bin it fits into.
In terms of planning, the variables are sorted by the size of
their domains in increasing/decreasing order. Next, the first
variable is chosen and packed at the same bin with the rest of
the variables which are related to it if there is space enough
in the bin. This process is repeated until all variables are
processed.

5 Symbolic PDB Planners
Based on the results from (Franco et al. 2017), we decided
to work only with Symbolic PDBs. Further experiments sug-
gested that PDBs heuristic performs well when it is comple-
mented with other methods. One good combination was us-
ing our method to complement a symbolic perimeter PDB,
method that we used in the first of the planners we present.
The selected method to be complemented first generates a
symbolic PDB up to a fixed time limit and memory limit.
One advantage of seeding our algorithm with such a perime-
ter search is that if there is an easy solution to be found in
what is basically a brute force backwards search, we are fin-
ished before even creating a PDB. Secondly, we combined
the Partial-Gamer with bin packing and saw very good re-
sults in how they complemented each other. In Figure 2 we
see that each method gives good results on their own, Bin-

Figure 2: Coverage of Bin Packing, Partial Gamer and of both com-
bined on three latest cost-optimal IPC benchmark problems.

Packing solving 434 and Partial-Gamer 457, but when used
together they increase to 475.

In our work, however, we decided to use a hybrid, keeping
the forward exploration explicit-state, and the PDBs gen-
erated in the backward exploration symbolic. Lookups are
slightly slower than in hash tables, but they are still in time
linear to the bitvector length.

In this section, we will present two symbolic plan-
ners, Planning-PDBs and GreedyPDB, based on the Fast-
Downward planning framework (Helmert 2006). The two
differ in the pattern selection methods that we use in each of
them.

GreedyPDB
We encountered that greedily constructed PDBs outperform
the perimeter PDB, which we decided not to use. The two
construction methods do not complement well, on the ex-
treme case greedy PDBs will build a perimeter PDB after
adding all the variables. There is a significant amount of
overlapping between both methods. The collection of pat-
terns received from bin packing, however, complements well
the greedily constructed PDBs. One reason for this is that
in domains amenable to cost-partitioning strategies, i.e. al-
ternative goals are easily parallelized into a complementary
collection of PDBs, bin packing can do significantly bet-
ter than the single PDB approach. Evaluation is based on
the definition of sample fitness. The sample is redrawn each
time an improvement was found.

Figure 3: High level architecture of GreedyPDB

Algorithm 1 shows how Greedy PDBs combines two bin
packing algorithms with a greedy selection method called

Domain/Method Agr Cal DN Nur OSS PNA Set Sna Spi Ter Total
GreedyPDB 13 12 14 15 13 16 8 13 11 16 131

BP-PDB 6 12 14 12 13 19 8 11 12 16 123
Scorpion 1 12 14 12 13 0 10 13 15 14 104

SymBiDir 14 9 12 11 13 19 8 4 6 18 114
Complementary1 10 11 14 12 12 18 8 11 11 16 123
Complementary2 6 12 13 12 13 18 8 14 12 16 124

Oracle 14 12 14 15 13 19 10 14 15 18 142
Table 1: Coverage of PDB-type planners on the 2018 International Planning Competition for cost-optimal planning

Partial Gamer. The two bin packing algorithms use First Fit
Decreasing (FFD) and First Fit Increasing (FFI), same used
in Planning-PDBs. For FFD we set a limit of 50 seconds,
while for FFI we used a limit of 75 seconds (both limits
were found empirically to give the best results). To evaluate
(EM) if the generated pattern collections should be added to
our selection (Psel), we used as an evaluation method a ran-
dom walk. If enough of the sampled states heuristic values
are improved, the pattern is selected. Partial Gamer greed-
ily grows the largest possible PDB by adding causally con-
nected variables to the latest added pattern. If a pattern is
found to improve, as defined by the evaluation method, then
we add it to the list of selected pattern collections as a pattern
collection with a single PDB. Note that we are using sym-
bolic PDBs with time limits on PDB construction, hence a
PDB which includes all variables of a smaller PDB does not
necesarily dominate it since the smaller PDB might reach a
further depth.

An important difference with the Gamer method is that
we do not try every possible pattern resulting of adding a
single causally connected variable to the latest pattern. As
soon as a variable is shown to improve the pattern, we add
it and restart the search for an even larger improving pat-
tern. We found this to work better with the tight time limits
required by combining several approaches. All the resulting
pattern database collections are combined by simply max-
imizing their individual heuristic values. The PDBs inside
each collection were combined using zero-one cost parti-
tioning. The rationale behing the algorithm is that some do-
mains are more amenable to using several patterns where
costs are distributed between each patterns, while other do-
mains seem to favour looking for the best possible single
pattern.

Planning-PDBs
In Planning-PDBs2, we start with the construction of the
perimeter PDB, and continue by using two bin-packing
methods to create a collection of PDBs. The first method
uses first-fit increasing, while the second being first-fit de-
creasing. Bin-packing for PDBs creates a small number of
PDBs which use all available variables. Even though reduc-
ing the number of PDBs used to group all possible variables
does not guarantee a better PDB, by having a smaller PDB
collections, it is less likely to miss interactions between vari-
ables due to them being placed on different PDBs. The bin

2This planner has competed in the 2018 IPC on the Optimal
track (Martinez et al. 2018) - https://tinyurl.com/PlanningPDBs

packing algorithms used ensures that each PDB has a least
one goal variable.

If no solution is found after the perimeter PDB has been
finished, the method will start generating pattern collec-
tions stochastically until either the generation time limit or
the overall PDB memory limit are reached. We then decide
whether to add a pattern collection to the list of selected pat-
terns if it is estimated that adding such PDB will speed up
search. We optimize the results given by the bin-packing al-
gorithm giving it to a GA. It then resolve operator overlaps
in a 0/1 cost partitioning. To evaluate the fitness function, the
corresponding PDBs is built —a time-consuming operation,
which nevertheless payed off in most cases. Once all pat-
terns have been selected, the resulting canonical PDB com-
bination is used as an admissible heuristic to do A* search.

6 Experiments
Following is an ablation-type study were we analyze which
components worked best. We run different configurations on
the competition benchmarks on our cluster that utilized Intel
Xeon E5-2660 V4 with 2.00GHz processors. We compare
GreedyPDB and Planning-PDBs with other pattern database
and symbolic planners that competed in the 2018 Interna-
tional Planning Competition in the most prestigious and at-
tended deterministic cost-optimal track.

Year/Method 98-09 2011 2014 2018 Total
GreedyPDB 665 204 140 131 1140

Planning-PDB 678 190 131 123 1122
Scorpion 785 190 118 104 1197

SymBiDir 686 174 129 114 1064
Comp1 680 185 111 123 1099
Comp2 686 204 155 124 1169
Oracle 820 227 171 143 1361

Table 2: Overall coverage of PDB-type planners across different
International Planning Competitions for cost-optimal planning. All
benchmark sets are complete except for the 98-09, in which we use
31 of the domains

Looking at the results of various cost-optimal planners
across all domains from the IPC competitions from 1998 to
2018 in Table ??, we get a good overall picture on the PDB
planner performance. Symbolic bidirectional, the bench-
mark planner in the IPC18 (1064 problems solved overall,
412 for the last 3 IPCs) is almost on par with Scorpion (412)
and Complementary1 (419) on the last 3 IPCs, but when
adding the 98-09 domains it falls last compared with all

Planner/
Domain

Greedy
PDB

Greedy
PDB

BinPack

Greedy
PDB

PartGamer

Planning
PDB Scorpion SymBiDir Comp1 Comp2 Oracle

Agr 13 4 8 6 1 14 10 6 14
Cal 12 12 12 12 12 9 11 12 12
DN 14 14 12 14 14 12 14 13 14
Nur 14 12 16 12 12 11 12 12 16
OSS 13 13 13 13 13 13 12 13 13
PNA 18 6 17 19 0 19 18 18 19
Set 9 9 9 8 10 8 8 8 10
Sna 12 11 14 11 13 4 11 14 14
Spi 11 11 11 12 15 6 11 12 15
Ter 15 12 16 16 14 18 16 16 18

Bar14 3 3 4 3 3 6 3 3 6
Cave14 7 7 7 6 7 7 7 7 7
Child14 0 0 0 5 0 4 0 1 5
City14 10 10 10 11 14 18 10 13 18
Fl14 20 20 20 20 8 20 14 20 20
GED 20 20 20 20 20 20 20 20 20
Hike 17 17 16 12 10 10 10 19 19
Mai 5 5 5 5 5 5 5 5 5

OS14 8 3 8 5 2 8 5 13 13
Pa 4 4 4 3 6 2 3 4 6

Tet14 11 11 12 14 13 10 11 13 14
TB14 13 11 12 5 7 3 7 13 13
Tr14 9 9 9 9 10 9 9 9 10
Va14 13 14 10 14 13 7 7 15 15
Bar11 7 8 8 8 7 9 8 8 9
Elev 19 19 19 19 19 20 19 19 20
Floor 12 12 12 12 6 12 12 12 12
Mys 20 20 20 14 14 11 14 14 20
OS 19 16 16 13 14 14 18 20 20
PP 16 16 16 18 20 14 18 18 20
Pa 1 1 1 4 7 1 1 1 7

Peg 20 20 20 16 17 17 16 19 20
Scan 9 9 9 8 12 8 7 9 12
Sok 20 20 20 20 20 20 20 20 20
TB 17 15 15 12 13 9 13 17 17
Tr 11 11 11 13 13 10 10 11 13
Vis 15 16 16 14 8 9 10 17 17
Wo 18 13 13 19 20 20 19 19 20

Table 3: Complete coverage (total number of problems solved) on all of the domains from the previous 3 IPC, cost-optimal track (2011,
2014 and 2018). Domain names have been abbreviated. The planners tested are: three versions of GreedyPDB (one only using Bin Packing,
one only using Partial Gamer, and one with both approaches combined); BP-PDB planner; Scorpion and both versions of Complementary
planners from IPC 2018; SymBiDir (benchmark planner from IPC 2018).

the others. Scorpion is the overall best in term of instances
solved (1197) being by far the best on the older benchmarks.
Complementary2 solves a close number of instances 1169,
with GreedyPDB close behind with 1140 instances solved.

The reason for the swing in problems solved pre-2011 in
favour of the approach Scorpion implements is due to the
nature of the domains from that time, most of them cater-
ing towards explicit planning. It is also noteworthy that most
domains in 2011-2018 benchmarks have 20 instances, while
the pre-2011 are on average of 35, with some getting to 202.

By normalizing per domain, we get a slightly different pic-
ture, seen in Table 4. As there are some repeating domains in
the benchmark sets from different IPCs, we insist on show-
ing the results split over different IPCs, which are meant to
encourage domain-independent planning.

On the 2018 benchmark, likely the most challenging one
featuring a wide range of expressive application domain
models, GreedyPDB would have actually won the competi-
tion (Table 1). This indicates that for several planning prob-
lems, the best option is to keep growing one PDB with the

Problems
Solved Coverage Normalized

Coverage
GreedyPDBs 1140 55.04% 61.08%

Planning-PDBs 1122 54.17% 59.42%
Scorpion 1197 57.79% 59.26%

Sym-BiDir 1053 50.84% 55.46%
Complementary1 1099 53.06% 57.60%
Complementary2 1164 56.15% 62.08%

Table 4: Results as number of problems solved, coverage and nor-
malized coverage.

greedy pattern selector, and compare and merge the results
with a PDB collection based on bin packing 3.

7 Related Work
Pattern Databases have become very popular since the 2018
International Planning Competition showed that top five
planners employed the heuristic in their solver. However, the
topic has been vastly researched prior to this competition, a
lot of work going in the automated creation of a PDB, with
the best know being the iPDB of Haslum et al., (2007) and
the GA-PDB by Edelkamp (2006). The first performs a hill-
climbing search in the space of possible pattern collections,
while the other employs a bin-packing algorithm to create
initial collections, that will be used as an initial population
for a genetic algorithm. iPDB evaluates the patterns by se-
lecting the one with the higher h-value in a selected sample
set of states, while the GA of the GA-PDB uses the average
heuristic value as its fitness function.

Another two approaches related to our work is Gamer
(Kissmann and Edelkamp 2011) and CPC (Franco et al.
2017). The first is in the search of only one best PDB, start-
ing with all the goal variables, and adding the one that it will
increase the average heuristic value. CPC is a revolution of
the GA-PDB approach, aiming to create pattern collections
with PDBs that are complementary to eachother. It also em-
ployes a GA and its evaluation is based on Stratified Sam-
pling.

8 Conclusion and Discussion
The 2018 International Planning Competition in cost-
optimal planning revealed that symbolic PDB planning
probably is the best non-portfolio approach. In fact, five of
the top six IPC planners were based on heuristic search with
PDB and/or symbolic search, while the winning portfolio
used such a planner (namely SymBA*, the winner of IPC
2014) for more than half of its successful runs.

In this paper, we present two methods building on top
of the CPC approach by Franco et al., (2017), one incre-
mental on an existing work (Planning-PDB), and one that
is a reformulation of how it creates complementary pattern
collections (GreedyPDB), by combining it with an adapted
version of the Gamer approach (Kissmann and Edelkamp

3We include all the results of our experiments IPC11-18 in Ta-
ble 3. The rest are available online.

2011). In both we have only one bin-packing solver, remov-
ing the multi-armed bandit algorithm to select its packing al-
gorithm. In GreedyPDB, we also removed the optimization
done with a GA over the pattern collections, seeing that bin-
packing and partial-gamer complement already very well
each other. Overall, the structure of GreedyPDB in compar-
ison with CPC is very much simplified, with a small loss of
coverage on the problem set of the IPC 2014.

Using different pattern generators to complement the two
seeding heuristics was extremely successful. It improved our
overall results for all the methods we tested compared to
simply using the seeding heuristics. One of the best perform-
ing method is the combination of an incremental pattern se-
lection with advanced bin packing. When combining both
pattern selection methods, the results are greatly improved,
and GreedyPDB would have won the last IPC even ahead of
the best portfolio planners (solving 5 more problems), thus
contributing a new state-of-the-art in cost-optimal planning.

It is probable that using SCP instead of canonical would
improve results. It is also likely that if we used SCP online,
i.e., for evaluating whether to add a PDB to the current se-
lected set, instead of the current 0/1 approach a PDB is eval-
uated, would significantly reduce the total number of pat-
terns we can try given the IPC time limit. How to navigate
the trade-off between SCP’s better heuristic values vs 0/1’s
faster computational time is future research.

However, as seen with the impressive results of Com-
plementary2 in the 2011 and 2014 competition benchmark,
there is no free lunch. Which pattern generator method is
best depends on the benchmark domain it is applied to. By
the obtained diversity in the individual solutions, an oracle
deciding which pattern selector to take would have solved
more problems, so that a portfolio planner could exploit this.

References
[Bäckström 1992] Bäckström, C. 1992. Equivalence and

tractability results for sas+ planning. In KR, 126–137.
[Bylander 1994] Bylander, T. 1994. The computational com-
plexity of propositional strips planning. Artificial Intelli-
gence 69(1-2):165–204.

[Culberson and Schaeffer 1998] Culberson, J. C., and Scha-
effer, J. 1998. Pattern databases. Computational Intelligence
14(4):318–334.

[Dósa 2007] Dósa, G. 2007. The tight bound of first fit de-
creasing bin-packing algorithm is ffd (i) 11/9opt (i)+ 6/9. In
Combinatorics, Algorithms, Probabilistic and Experimental
Methodologies. Springer. 1–11.

[Edelkamp 2002] Edelkamp, S. 2002. Symbolic pattern
databases in heuristic search planning. In AIPS, 274–283.

[Edelkamp 2006] Edelkamp, S. 2006. Automated creation
of pattern database search heuristics. In International Work-
shop on Model Checking and Artificial Intelligence, 35–50.
Springer.

[Edelkamp 2014] Edelkamp, S. 2014. Planning with pattern
databases. In Sixth European Conference on Planning.

[Fikes and Nilsson 1971] Fikes, R. E., and Nilsson, N. J.
1971. Strips: A new approach to the application of theo-

rem proving to problem solving. Artificial intelligence 2(3-
4):189–208.

[Franco et al. 2017] Franco, S.; Torralba, A.; Lelis, L. H.;
and Barley, M. 2017. On creating complementary pattern
databases. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 4302–4309. AAAI
Press.

[Garey and Johnson 1979] Garey, M. R., and Johnson, D. S.
1979. Computers and Intractibility, A Guide to the Theory
of NP-Completeness. Freeman & Company.

[Gaschnig 1979] Gaschnig, J. 1979. A problem similarity
approach to devising heuristics: First results. 434–441.

[Hart, Nilsson, and Raphael 1968] Hart, P. E.; Nilsson, N. J.;
and Raphael, B. 1968. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics 4(2):100–107.

[Haslum et al. 2005] Haslum, P.; Bonet, B.; Geffner, H.;
et al. 2005. New admissible heuristics for domain-
independent planning. In AAAI, volume 5, 9–13.

[Haslum et al. 2007] Haslum, P.; Botea, A.; Helmert, M.;
Bonet, B.; and Koenig, S. 2007. Domain-independent con-
struction of pattern database heuristics for cost-optimal plan-
ning. 1007–1012.

[Helmert 2004] Helmert, M. 2004. A planning heuristic
based on causal graph analysis. 161–170.

[Helmert 2006] Helmert, M. 2006. The fast downward plan-
ning system. Journal of Artificial Intelligence Research
26:191–246.

[Holland 1975] Holland, J. 1975. Adaption in Natural and
Artificial Systems. Ph.D. Dissertation, University of Michi-
gan.

[Holte and Hernádvölgyi 1999] Holte, R. C., and
Hernádvölgyi, I. T. 1999. A space-time tradeoff for
memory-based heuristics. In AAAI/IAAI, 704–709. Citeseer.

[Holte et al. 2004] Holte, R.; Newton, J.; Felner, A.; Meshu-
lam, R.; and Furcy, D. 2004. Multiple pattern databases.
122–131.

[Katz and Domshlak 2008] Katz, M., and Domshlak, C.
2008. Optimal additive composition of abstraction-based
admissible heuristics. In ICAPS, 174–181.

[Kissmann and Edelkamp 2011] Kissmann, P., and
Edelkamp, S. 2011. Improving cost-optimal domain-
independent symbolic planning. In Twenty-Fifth AAAI
Conference on Artificial Intelligence.

[Korf and Felner 2002] Korf, R. E., and Felner, A. 2002.
Chips Challenging Champions: Games, Computers and Ar-
tificial Intelligence. Elsevier. chapter Disjoint Pattern
Database Heuristics, 13–26.

[Korf 1997] Korf, R. E. 1997. Finding optimal solutions to
Rubik’s Cube using pattern databases. 700–705.

[Martinez et al. 2018] Martinez, M.; Moraru, I.; Edelkamp,
S.; and Franco, S. 2018. Planning-pdbs planner in the ipc
2018. IPC-9 planner abstracts 63–66.

[McDermott 1998] McDermott, D. 1998. The 1998 ai plan-
ning systems competition. In AI Magazine, 35–55.

[Pearl 1984] Pearl, J. 1984. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-Wesley.

[Pommerening et al. 2015] Pommerening, F.; Helmert, M.;
Röger, G.; and Seipp, J. 2015. From non-negative to gen-
eral operator cost partitioning. In Twenty-Ninth AAAI Con-
ference on Artificial Intelligence.

[Preditis 1993] Preditis, A. 1993. Machine discovery of ad-
missible heuristics. Machine Learning 12:117–142.

[Seipp and Helmert 2018] Seipp, J., and Helmert, M. 2018.
Counterexample-guided cartesian abstraction refinement for
classical planning. Journal of Artificial Intelligence Re-
search 62:535–577.

[Seipp, Keller, and Helmert 2017] Seipp, J.; Keller, T.; and
Helmert, M. 2017. A comparison of cost partition-
ing algorithms for optimal classical planning. In Twenty-
Seventh International Conference on Automated Planning
and Scheduling.

[Valtorta 1984] Valtorta, M. 1984. A result on the compu-
tational complexity of heuristic estimates for the A* algo-
rithm. Information Sciences 34:48–59.

[Yang et al. 2008] Yang, F.; Culberson, J.; Holte, R.; Zahavi,
U.; and Felner, A. 2008. A general theory of additive
state space abstractions. Journal of Artificial Intelligence
Research 32:631–662.

	Introduction
	Background
	Pattern Databases
	Symbolic Pattern Databases

	Pattern Selection and Cost Partitioning
	Greedy Selection
	Genetic Algorithm Selection
	Bin Packing

	Symbolic PDB Planners
	GreedyPDB
	Planning-PDBs

	Experiments
	Related Work
	Conclusion and Discussion

