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Abstract—VCells, the proposed Edge-Weighted Centroidal Voronoi Tessellations

(EWCVTs)-based algorithm, is used to generate superpixels, i.e., an

oversegmentation of an image. For a wide range of images, the new algorithm is

capable of generating roughly uniform subregions and nicely preserving local

image boundaries. The undersegmentation error is effectively limited in a

controllable manner. Moreover, VCells is very efficient with core computational

cost at OðK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc �N
p

Þ in which K, nc, and N are the number of iterations,

superpixels, and pixels, respectively. Extensive qualitative discussions are

provided, together with the high-quality segmentation results of VCells on a wide

range of complex images. The simplicity and efficiency of our model are

demonstrated by complexity analysis, time, and accuracy evaluations.

Index Terms—Superpixels, k-means, centroidal Voronoi tessellations, image

segmentation, image labeling, clustering.

Ç

1 INTRODUCTION

SUPERPIXELS are an oversegmentation of an image. The superpixel
concept was originally developed by Ren and Malik [20], and
suggests that small image segments obtained by the pixel grouping
process might be a more natural and perceptually meaningful
representation of reality. Because the superpixel graph is obtained
by contracting and grouping the pixel graph, computation costs
can be greatly reduced, thereby achieving an important, practical
advantage over other, more traditional methods of image
segmentation.

Region segmentation algorithms used to generate superpixels

generally fall into two categories—those that have no constraint on

compactness and those that embed certain constraints on compact-

ness. Algorithms that have no compactness constraint—such as

Mean Shift [3], local variation [9], or watershed [26] algorithms—are

fast. Due to the lack of a compactness constraint, however, these

segmentation algorithms may lead to large undersegmentation

errors when the image has poor contrast or shadows. An example of

irregular boundaries and shapes is shown in Figs. 1d, 1e, and 1f.
The second category of superpixel algorithms embed certain

compactness constraints. Normalized Cuts (N-Cuts) [20], [30],

TurboPixels [15], and the VCells proposed in this paper are

algorithms of this type. Based on the N-Cuts algorithm (e.g., [23],

[22]), Ren and Malik proposed a superpixel algorithm [20] that

partitions the image into a large number of small, homogeneous

regions. As one of the most popular and widely used graph cut

algorithms, N-Cuts is very powerful in feature extraction and

visual perceptual grouping. The high computational cost, how-

ever, prohibits its use in high superpixel density or megapixel

sized images [15]. In addition, the speedup strategies (e.g., [5], [21])

often sacrifice the flexibility of the algorithm and/or the quality of

the resulting superpixels. It may be hard to control the number of
superpixels and they may not be uniform in size, shape, and other
qualities.

More recently, Levinshtein et al. proposed a very efficient
algorithm called TurboPixels [15] to generate superpixels. The
TurboPixels algorithm segments an image into a set of lattice-like
structures. It is the first attempt and successful application to
solving superpixel problems by using geometric flow ideas. When
the TurboPixels algorithm is used, superpixel accuracy is compar-
able to N-Cuts, but because the computational cost increases
linearly in proportion to the number of pixels, computational cost
is significantly less.

Due to the increasing application of superpixels in the past
few years [1], some improved algorithms for superpixels have
been developed [24], [4], [19], [25], [1]. Quick shift [24], for
example, is a variant of Mean Shift, but is more practical and
efficient. Couprie et al. proposed combining graph-cuts, random
walker, and optimal spanning forest under a unified framework
[4]. Suggested ideas [19], [25] are based on graph-cuts, but lattice-
cut algorithms pose restrictions on superpixel shapes [25].
Achanta et al. [1] proposed a linear iterative clustering algorithm
leading to relatively lower computational cost.

In this paper, we propose a novel approach to solve superpixel
problems based on a generalized concept of Centroidal Voronoi
Tessellations (CVTs) (e.g., [27], [6], [7], [11], [13], [8], [14]). In simple
cases, CVTs are the same as k-means clustering, an algorithm that
is widely known and easily implemented [6]. However, because of
the lack of compactness constraint, classic CVT-based algorithms
are very sensitive to image “noise” (e.g., [8], [27]). To overcome this
limitation, we developed Edge-Weighted Centroial Voronoi
Tessellations (EWCVTs) [27], [28] by introducing a new energy
term related to the clusters’ boundary length. Essentially, limiting
the boundary length is a compactness constraint. The EWCVT
algorithm has been successfully used for general image segmenta-
tion purposes [27]. However, the segments produced by EWCVT
may lack spatial connectivity. Therefore, we developed special
mechanisms named “Looking-Nearest-Neighbors” (LNN) and
“Detecting-Segment-Breaking” (DSB) to ensure the resulting
segments are spatially connected.

We named our algorithm Voronoi-Cells, or VCells. Compared
with existing superpixel algorithms, our algorithm has several
desirable advantages. First, the boundaries of superpixels are
naturally formed during the iteration process. This eliminates
concerns about boundary crossing, collision, and other qualities of
the region-grow methods. Second, VCells is very efficient. Third,
the accuracy of our algorithm is comparable to N-Cuts and
TurboPixels. Finally, the compactness constraint, i.e., the boundary
energy term in our algorithm, is controllable, and thus leads to
greater flexibility.

In Section 2, we give a detailed explanation and discussion of
the VCells algorithm. Accuracy and performance evaluations are
presented in Section 3, together with numerical examples, and in
Section 4, we give some concluding remarks.

2 THE VCELLS SUPERPIXEL ALGORITHM

The VCells superpixel algorithm has two stages. In the first stage,
the image is divided into small segments of uniform size and
shape; the second stage is used to apply EWCVT-LNN to these
segments. We will first introduce some basic notations before
moving into a more detailed discussion of these two stages.

2.1 Basic Notations

For a digital image, let D denotes the set of pixels p and uðpÞ the
gray levels or colors. For each pixel p, we denote IN!ðpÞ the
collection of pixels inside the disk whose radius is ! and centered

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 6, JUNE 2012 1241

. J. Wang and X. Wang are with the Department of Scientific Computing,
Florida State University, Tallahassee, FL 532306-4120.
E-mail: jiewangustc@gmail.com, wwang3@fsu.edu.

Manuscript received 14 Nov. 2011; accepted 18 Jan. 2012; published online 30
Jan. 2012.
Recommended for acceptance by M. Brown.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-11-0821.
Digital Object Identifier no. 10.1109/TPAMI.2012.47.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



at p. If pixel q is inside IN!ðpÞ, we call q a “neighbor pixel” of p.

Moreover, if the spatial distance between pixel p and its neighbor

pixel q is 1, we call q a “direct neighbor pixel” of p. Clearly, the direct

neighbor pixels of p are the four adjacent pixels.
Suppose, we have a digital image UU ¼ fuðpÞgp2D, where a

partition P ¼ fPignci¼1 of the image is a collection of pixel sets fPi; i ¼
1; . . . ; ncg such that Pi

T
Pj ¼ � if i 6¼ j andD ¼

Snc
i¼1 Pi. Each Pi is in

fact a segment. nc is the number of segments. Therefore, “clusters/

segments boundaries” can be naturally formulated by the set of pixels

B ¼
S
i¼1;...;nc

fp 2 Pi : ðIN1ðpÞ n pÞ
T
ðD n PiÞ 6¼ ;g.

2.2 First Stage of VCells: Uniform Segmentation

The objective of the first stage of VCells is to generate small

segments which are roughly the same shape and size. Our choice

for stage one is Lloyd’s algorithm [17], an effective tool for

partitioning and grouping data points. For the VCells superpixel

algorithm, we use CfCVDT [12], which is very efficient. CfCVDT is

able to generate more than 10,000 small segments in 1 second and

its runtime is independent of the image size. This means that

CfCVDT requires roughly the same runtime for a very large image

as it does for a small image.
In general, CfCVDT leads to small segments with a hexagonal

shape, as shown in Fig. 4. As long as we can divide the image into

segments with the same approximate shape and size, any method

can be used. For example, we can simply divide the entire image

into uniform squares or rectangles, as seen in Figs. 8 and 5.
Note that the first stage is independent of the image intensities

and colors, and the segmentation results are reusable for images

with the same number of superpixels. (For different image sizes,

we can simply scale the image to obtain the desired results.) This

feature is very useful in handling a large number of images.
In short, the first stage is actually an initialization process of

VCells. The computed segments are used as the initial partition

P ¼ fPignci¼1 for the next stage: EWCVT-LNN. Further discussion of

the initialization is given in Section 3.1.

2.3 Second Stage of VCells: EWCVT-LNN

The EWCVT algorithms were carefully developed with the

appropriately detailed definitions, theorems, proofs, and discus-

sions [27]. EWCVT-LNN is a modified version of EWCVT. The key

differences are the special mechanism Looking-Nearest-Neighbor

and its companion Detecting-Segment-Breaking, which are used to

ensure the resulting segments are spatially connected.

2.3.1 Algorithm for EWCVT-LNN

Given a partition P ¼ fPignci¼1 of image UU ¼ fuðpÞgp2D. The

centroid of each Pi is defined as

~gei ¼
1

jPij
X
p2Pi

uðpÞ; ð1Þ

where jPij is the number of pixels belong to Pi. Since the centroids

are calculated by using the colors of pixels, we highlight them as

“color centroids.”
Given a weight, �, we can define the Edge-Weighted Distance.

Definition 1. Suppose we have a digital image UU and we are given a

partition P ¼ fPignci¼1 and a set of colors G ¼ fgignci¼1. The edge-

weighted distance from a pixel p to gk is defined as

distðp; gkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juðpÞ � gkj2 þ 2�~nkðpÞ

q
; ð2Þ

where ~nkðpÞ ¼ jIN!ðpÞ n ðPk [ pÞj, the number of pixels within

IN!ðpÞ n ðPk [ pÞ.

The EWCVT algorithm can be summarized as follows:

. Step 1: Partition the image into small segments.

. Step 2: Compute the color centroids of all segments.

. Step 3: For each pixel, evaluate the edge-weighted distance
between the pixel and all color centroids and assign the
pixel to the segment whose color centroid is nearest to it.

. Step 4: If there is no pixel going into a different segment in
one iteration, return the current segments as the EWCVTs;
otherwise, go to step 2 and repeat the iteration.

The EWCVT algorithm has been proven very successful for

general image segmentation problems [27]. The segments obtained

by EWCVT, however, may not be spatially connected. For some

applications, this feature is useful and conceptually meaningful, as

demonstrated in the European landmass in Fig. 2. The landmass in

the image is not spatially connected, and although the islands are

separated by the ocean, they should belong to the same cluster as

1242 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 6, JUNE 2012

Fig. 1. Superpixels obtained by (a) VCells, (b) TurboPixels, (c) N-Cuts, (d) Local variation, (e) Mean shift, (f) WaterShed. Images (b) to (f) are from [15].

Fig. 2. Segmented the “Europe at night” image by EWCVT proposed in [27].



the mainland. For superpixel purposes, this “good” feature
becomes unacceptable.

In Step 3 of the EWCVT algorithm, breakages may occur.
According to the algorithm, if the edge-weighted distance
distðp; gkÞ � distðp; giÞ for all i ¼ 1; . . . ; nc, p should be put into
Pk whether p is physically connected to Pk or not. If p is an interior
point of Pl in which l 6¼ k, then we will definitely have an
unconnected segment.

A simple but effective strategy to significantly reduce the
chance of segment breaking is LNN. By LNN, we actually mean
that for each iteration in Step 3, we only evaluate distðp; gkÞ in
which p is a boundary pixel, i.e., p 2 B; Pk contains at least one
direct neighbor pixel of p. Therefore, a pixel p can only be assigned
to a segment which is physically connected to it and thus
unconnected segments can be mostly avoided. We can see that
the computational cost is significantly reduced by LNN since there
is no need to evaluate the edge-weighted distance between a pixel
and all color centroids.

Fig. 3 plots the probability of segment breaking versus the
number of superpixels after we incorporate LNN to EWCVT. For a
different preset number of superpixels, we apply EWCVT com-
bined with LNN to the 300 images of the Berkeley data set [18] and
record the number of broken segments. The probability of segment
breaking is the averaged number of broken segments divided by the
predefined number of superpixels. We can see the chance of
segment breaking is very small, approximately 2 to 3 percent. In
general, smaller superpixels are more likely to break because they
are comparable to local regions which are highly irregular and
inhomogeneous.

In order to guarantee the connectivity of the resulting segments,
we can simply extract all of the “connect components” [10] and
relabel them. This process is called “Detecting-Segment-Breaking.”
The key to DSB is the “Flood Fill” [2] algorithm, which can be
written as a function: ncc ¼ FloodFillðp; tc; rcÞ. The inputs of
FloodFill are pixel p, the index of target cluster tc, and the
replacement cluster rc. FloodFill searches all pixels which are
connected to p by a path inside cluster tc and relabels them as a
new cluster rc. The output ncc is the size of the connected
component containing p. DSB is summarized by Algorithm 1.

Algorithm 1. DSB

Given: an image UU and an arbitrary partition fPignci¼1;

1: mark all pixels p and segments Pi as unvisited;

2: for all pixel p 2 D do

3: if p is unvisited then

4: mark p as visited;

5: say p 2 Pk;
6: if Pk is unvisited then

7: mark Pk as visited;

8: ncc ¼ FloodFillðp; k; kÞ;
9: if ncc 6¼ jPkj then

10: update color centroid gk; {Pk is broken}

11: end if

12: else

13: nc ¼ nc þ 1;

14: ncc ¼ FloodFillðp; k; ncÞ;
15: compute color centroid gnc ;

16: end if

17: end if

18: end for

Return: fgignci¼1 and fPignci¼1

After we apply DSB, since the groups of pixels that have the

same label are all connect components, the resulting segments are

guaranteed to be spatially connected. Algorithm 2 is a full version

of EWCVT-LNN incorporated with DSB. LNN is implemented in

Steps 5 and 6 of Algorithm 2. Note that in Step 7, if l 6¼ m, we need

to transfer p to a different cluster, which is equivalent to an update

of Pl and Pm. We apply DSB at the last step of EWCVT-LNN to

extract the connect component and do the relabeling, and thus the

resulting superpixels are all spatially connected.

Algorithm 2. EWCVT-LNN

Given: an image UU and an arbitrary partition fPignci¼1;

1: calculate the color centroids fgignci¼1 of fPignci¼1;

2: bPixelMoved ¼ true;

3: while bPixelMoved do

4: bPixelMoved ¼ false

5: for all pixel p 2 B do

6: say p 2 Pl, evaluate distðp; gkÞ defined in (2)

for all fk : IN!ðpÞ
T
Pk 6¼ ;g;

7: find m ¼ arg mink¼1;...;ncdistðp; gkÞ, say, from Pl to Pm;

8: if l 6¼ m then

9: bPixelMoved ¼ true;

10: transfer p to Pm;

11: replace gl and gm with the color centroids of the

modified clusters Pl and Pm respectively;

12: end if

13: end for

14: end while

15: apply Algorithm 1 {DSB};

Return: fgignci¼1 and fPignci¼1

2.3.2 Another Perspective of Algorithm EWCVT

Algorithm 2 is actually a generalization of the classic k-means or

Lloyd’s algorithm [17]. As we pointed out in an earlier model, this

algorithm is equivalent to “minimize” the Edge-Weighted CVT

Clustering Energy, which is defined by

bEðG;PÞ ¼ ECVT ðG;PÞ þ ELðPÞ

¼
XL
l¼1

X
p2Pl
juðpÞ � glj2 þ �

X
p2D

nLðpÞ:
ð3Þ

nLðpÞ is the number of neighbor pixels of p which do not belong to

the same cluster of p. The first term ECV T ðG;PÞ on the right-hand

side of (3) is the classic CVT clustering energy. The second part

ELðPÞ is the so called “edge energy,” which is proven to be an

approximation of the cluster’s edge length [27].

2.4 Summary of VCells Superpixel Algorithm and Its
Complexity

Based on the former preparation, we can now give a clear

description of VCells.
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Fig. 3. Probability of segment breaking.



Algorithm 3. VCells

Given: an image UU and an integer nc;

1: apply CfCVDT to compute segments P ¼ fPignci¼1 uniformly in

shape and size;

2: take UU, nc and P as input, then apply EWCVT-LNN;

Return: fPignci¼1 updated by EWCVT-LNN as superpixels.

Because CfCVDT is independent of the image size, the

computational cost in the first stage of VCells is negligible. In the

second stage, because EWCVT only considers the boundary pixels,

the computational cost in each iteration is OðnBÞ, in which nB is the

number of boundary pixels. Suppose the image contains N pixels

and the number of superpixels is nc. Each superpixel should

contain approximately N
nc

pixels and thus
ffiffiffiffi
N
nc

q
boundary pixels.

Therefore,

nB � O nc

ffiffiffiffiffi
N

nc

s
Þ ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc �N

p !
:

For K iterations, the total computational cost is OðK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc �N
p

Þ. In

addition, the complexity of DSB is mainly due to the flood fill

algorithm which is OðNÞ. Excluding the cost of DSB and the

initialization of EWCVT, the main computational cost of VCells

algorithm is OðK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc �N
p

Þ.

3 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first discuss some important issues of VCells,

including initialization and parameters’s effects. Then the evalua-

tion of the performance of VCells is presented together with other

five algorithms: Turbopixels, Normalized Cuts, FH, Mean shift,

and Watershed. The images used in this paper are all from the

Berkeley database [18], which contains 300 (481� 321 or 321� 481)

images. We use the entire data set to evaluate each algorithm. All

free parameters were left at their default values for each of the six

algorithms. The numerical experiments were performed on a

laptop with an Intel Duo Core processor at 2.4 GHz.

3.1 Initial Clusters

As discussed in Section 2.2, we use CfCVDT to compute uniform
hexagon segments for initialization. For most experiments in this
paper, CfCVDT takes only several milliseconds. The first row of
Fig. 4 shows the segmentation result by CfCVDT. As we mentioned
in Section 2.2, the first stage of VCells is to compute a uniform
segmentation of the image. Therefore, we can divide the image into
small square boxes of approximately equal side length, size, and
shape. Fig. 5 shows the results obtained by VCells using Square
Box as initializer. Clearly, the shape deformation of superpixels is
more severe than that of VCells with CfCVDT, see Fig. 8. Therefore,
in the sense of deformation, VCells with CfCVDT results in more
stable results.

3.2 Illustrations of Parameters’ Effects

As we hypothesized, the mechanism in VCells, i.e., limiting the
length of the boundaries, is in fact a compactness constraint. Thus,
the weight factor � of the edge energy can be used to control this
constraint. Generally speaking, larger � results in shorter and
smoother boundaries and vice versa. The second and third rows of
Fig. 4 show the superpixels obtained by VCells by using
� ¼ 100; 300, respectively.

Consider the region highlighted by the green ellipse; clearly
smaller � results in more irregular superpixels with zigzag
boundaries. However, compared with the original image, the
superpixels fit the local image structure better. Let us take the
“spear”-shaped superpixel inside the ellipse as an example.
The spear’s boundary is not smooth and its shape greatly differs
from other superpixels. The expected brightness of the spear,
however, is obviously much higher than its surroundings, which
implies it is a good representation of the local image structure. For
values of � below 300, the spear disappear, as shown in the third
row of Fig. 4, and the resulting superpixels are more uniform in
size and shape. In the sense of the whole rock, the superpixels
depict the boundaries with good accuracy.

Recall that the edge weighted CVT clustering energy consists of
two terms: the classic CVT clustering energy and the edge energy.
Therefore, we need to choose � to balance these two energies [27],
[29]. We can calculate the edge energy and classic CVT clustering
energy as long as we have a partition. After the initial segmenta-
tion is computed, we choose � such that

ELðPÞ
ECVT ðG;PÞ ¼M; ð4Þ

where M is a predetermined positive number between 1 and 10.
We then fix � and continue the iterations till convergence.
Intuitively, M should be small for short initial boundaries since
the boundaries may expand to fit the “true” boundaries and vice
versa (notice that � is proportional to M by (4)). As we computed
in Section 2.4, the total boundary pixels are roughly Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc �N
p

Þ
and thus the normalized boundary length is of

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc �N
p

Þ
N

¼ O
ffiffiffiffiffi
nc
N

r� �
:
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Fig. 4. First row: Original image and initial configuration by CfCVDT. Second and
third rows: VCell results with � ¼ 100; 300, respectively, and the corresponding
zoomed portions.

Fig. 5. Superpixel results obtained by VCells with Square Box as initializer.



For simplicity, we can set M ¼ maxðminð25
ffiffiffiffi
nc
N

p
; 10Þ; 1Þ. Because of

this formula, M is predetermined and is always between 1 and 10.

Unless stated otherwise, � is calculated automatically by using the

above process in all of our examples and experiments.
As we discussed in [27], the effect of ! is in fact very similar to

�. The computational cost, however, increases in a square manner
with !. Therefore, we can choose a relatively small value of ! and
then hold it constant for all experiments. We set ! ¼ 3 for all
examples and experiments in this paper.

3.3 Undersegmentation Error and Boundary Recall

The undersegmentation error is calculated by using the formula

defined in [15], i.e.,P
fsj jsj

T
gi 6¼�g AreaðsjÞ

h i
�AreaðgiÞ

AreaðgiÞ
; ð5Þ

in which fgigKi¼1 represents the segmentation of the ground truth

image and fsjgLj¼1 denotes the superpixels produced by the

algorithms. Equation (5) refers to a single ground truth image

segment. The undersegmentation error of an image is calculated by

averaging this quantity over all ground truth segments.
The boundary recall is calculated by using the standard

measure, i.e., the fraction of the ground truth boundaries which

fall within a small disk shaped neighborhood of the superpixels’

boundaries in which the radius is set to 2 pixels.
Fig. 6 represents the undersegmentation error and boundary

recall of VCells, Turbopixels, N-cuts, FH, Meanshift, and Wa-

tershed, all of which are obtained by averaging the 300 images

from the Berkeley data set.
The plot of the undersegmentation error shows the overall

performance of the algorithms that incorporate compact con-

straints is clearly much better than those that do not. The reason is

simply because lack of compact constraints makes it impossible to

prevent FH, Mean Shift, and Watershed from growing highly

irregular boundaries. Accordingly, superpixels generated by FH,

Mean Shift, and Watershed vary greatly in size and shape.
However, lack of a compact constraint would enable FH and

Mean Shift to better capture the boundaries of the irregular regions
at lower superpixel densities [15]. As shown by the plot of
boundary recall, FH and Mean Shift offer the best overall recall of
the algorithms for low superpixel densities. Although Watershed
does not encode a compact constraint, it is very sensitive to
variations in local intensities. To extract useful features, intense
prior image enhancement is needed. Therefore, for a broad range of
images from real scenes, Watershed varies too much and, on
average, causes poor behavior. As seen in Fig. 6 (right), the
performance of VCells is better than TurboPixels for low superpixel
density among the compact constraint encoded algorithms. For
high superpixel density, VCells offers the highest boundary recall.

3.4 Timing Evaluation

In this section, we compare the runtime of VCells, Turbopixels, FH,
Meanshift, and Watershed. We disregard N-cuts since it is
computationally expensive and memory consuming compared to
the other five algorithms.

The left image of Fig. 7 shows the plot of the running time as a
function of image size. We roughly set the expected size of
superpixels as 10� 10. Compared to the other four algorithms,
VCells is even faster than those which do not encode compact
constraint. Despite the low computational complexity of VCells, as
discussed in Section 2.4, extensive numerical experiments indicate
that only a small portion of superpixels near the boundaries
deform to fit the local image structure during each iteration. A
larger amount of superpixels which are far away from the local
image boundaries will remain roughly the same. Therefore, it will
save us a lot of time to reevaluate the color centroids of the
deformed segments.

The right image of Fig. 7 shows the plot runtime versus

superpixel density. The image size is kept at 240� 160. Since the

runtime of FH, Meanshift, and Watershed mainly depend upon the

image size, the plots for these three algorithms are roughly

constant. Similarly, since the image size is fixed, the running time

of VCells increases roughly as Oð ffiffiffiffiffincp Þ, as shown in Fig. 7b.

3.5 More Experimental Results of VCells

We provide more examples in Fig. 8 to give a qualitative feel for

superpixels by VCells. The images in the Berkeley data set are from

a broad range of real scenes, which is very useful in evaluating

VCells thoroughly. In all of the examples shown in Fig. 8, the

expected size of the superpixels is kept as 10� 10. Therefore, for

the images from Berkeley benchmark, the number of superpixels is

roughly 48� 32. Clearly most of the superpixels are almost

uniform hexagon cells. As we explained in Section 3.4, severe

shape deformation only happens among the superpixels near the

boundaries. For most of the superpixels which are far away from
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Fig. 6. Left: Undersegmentation error. Right: Boundary recall.

Fig. 7. Comparison of running time of VCells, TurboPixels, FH, Mean shift, and
Watershed.

Fig. 8. Superpixel results obtained by applying the VCells algorithm on various real
scene images.



the boundaries, they roughly remain the same. However, unlike

Turbopixels (Fig. 7 in [15]), when we apply VCells to texture

images, the superpixels inside the texture region deform to fit the

textures. Fig. 9 provides two examples by applying VCells to

images with texture. In the first example, superpixels inside the

cougar coincide with the spots, instead of hexagons as shown in

Fig. 8. In the second example, superpixels covering the zebra

deform into quadrilaterals and thus nicely depict the striped

pattern. We expect self-adaptivity of superpixels to texture would

be helpful for postprocessing images, like merging, etc.
Fig. 10 shows the superpixels by VCells of image with noise.

The first picture of the second row is obtained by adding Gaussian

noise with 0 mean and 0.1 variance to the original picture. The two

pictures in the right column are the superpixels by VCells of the

corresponding left pictures. Clearly, the superpixels results are

very close to each other, which implies that VCells is very robust

with noise.

4 CONCLUDING REMARKS

In conclusion, we offer the following comments regarding the

superpixels by VCells according to the five basic principles

proposed in [15]:

1. Uniform size and coverage. With hexagons by CfCVDT as
initializer, only the superpixels near objects’ boundaries
deform sharply while the others remain roughly the same
during each iteration. In the homogenous region, most
resulting superpixels remain roughly like hexagons.

2. Connectivity. LNN encourages connectedness while DSB
ensures the safety of VCells.

3. Compactness. The compactness constraint is encoded by
introducing the edge energy in VCells.

4. Smooth, edge-preserving flow. Our algorithm is not a
geometric-flow based formulation, so difficulties that occur
in the edge evolution process (such as boundary crossing
and collision) are nonexistent.

5. No superpixel overlap. This is automatically ensured in
VCells algorithm.

In the VCells algorithm, EWCVT-LNN inherits the simplicity of
the k-means algorithm and encodes the compact constraint in a
controllable manner by introducing edge energy. We expect VCells
to be a standard tool for preprocessing the images. We believe
superpixels, together with some “merging” schemes, could be a
powerful tool to analyze inhomogeneous images which appear so
frequently in the real world [16]. One of our future research
projects is to apply VCells to the field of medical image processing.
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