
HAARPOOLING: GRAPH POOLING WITH COMPRES-
SIVE HAAR BASIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Graph Neural Networks (GNNs) are instrumental in graph classification and
graph-based regression tasks. In these tasks, graph pooling is a critical ingredient
by which GNNs adapt to input graphs of varying size and structure. We propose a
new graph pooling operation based on compressive Haar transforms, called Haar-
Pooling. HaarPooling is computed by following a chain of sequential clusterings
of the input graph. The input of each pooling layer is transformed by the com-
pressive Haar basis of the corresponding clustering. HaarPooling operates in the
frequency domain by the synthesis of nodes in the same cluster and filters out fine
detail information by compressive Haar transforms. Such transforms provide an
effective characterization of the data and preserve the structure information of the
input graph. By the sparsity of the Haar basis, the computation of HaarPooling
is of linear complexity. The GNN with HaarPooling and existing graph convo-
lution layers achieves state-of-the-art performance on diverse graph classification
problems.

1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated excellent performance in node classification
tasks and are very promising in graph classification and regression (Bronstein et al., 2017; Battaglia
et al., 2018; Zhang et al., 2018b; Zhou et al., 2018; Wu et al., 2019). In node classification, the input
is a single graph with missing node labels that are to be predicted from the known node labels. In
this problem, GNNs with appropriate graph convolutions can be trained based on the single graph
that is provided, and achieve state-of-the-art performance (Defferrard et al., 2016; Kipf & Welling,
2017; Ma et al., 2019b). Different from node classification, graph classification is a task where
the label of any given graph-structured sample is to be predicted based on a training set of labeled
graph-structured samples. This is similar to the image classification task tackled by traditional deep
convolutional neural networks. The major difference is that here each input sample may have an
arbitrary adjacency structure, instead of the fixed regular grids that are used in images. An example
of graph-structured data are the molecules of different sizes shown in Figure 1. This raises two
important challenges: 1) How can GNNs exploit the graph structure information of the input data?
2) How can GNNs handle input graphs with varying number of nodes and connectivity structures?

Figure 1: Graph-structured data: two molecules
with atoms as nodes and bonds as edges. Each
molecule has a different number of nodes and
molecular structure. In graph classification (and
regression), each input datum is an individual
graph with features defined on the graph nodes
(e.g., indicating the chemical element).

These problems have motivated the design of proper graph convolution and graph pooling to allow
GNNs to capture the geometric information of each data sample (Zhang et al., 2018a; Ying et al.,
2018; Cangea et al., 2018; Gao & Ji, 2019; Knyazev et al., 2019; Ma et al., 2019a; Lee et al., 2019).
Graph convolution plays an important role especially in question 1).

1



Figure 2: Computational flow of a Graph Neural Network consisting of three blocks of GCN graph
convolutional and HaarPooling layers, followed by an MLP. In this example, the output feature of
the last pooling layer has dimension 4, which is the number of input units of the MLP.

The following graph convolution, as proposed by Kipf & Welling (2017), is a widely accepted
example:

Xout = ÂX inW. (1)

Here Â = D̃−1/2(A+ I)D̃−1/2 ∈ RN×N is a normalized version of the adjacency matrix A of the
input graph, where I is the identity matrix and D̃ is the degree diagonal matrix for A + I . Further,
X in ∈ RN×d is the array of d-dimensional features on the N nodes of the graph, and W ∈ Rd×m is
the filter parameter matrix. The graph convolution in equation 1 captures the structural information
of the input in terms of A (or Â), and W transforms the feature dimension from d to m. The
filter size d × m does not depend on the graph size, which allows a fixed network architecture
to process input graphs of varying size. However, the GCN convolution preserves the number of
nodes and hence the output dimension of the network is not unique. Graph pooling provides an
effective way to overcome this obstacle. Among several approaches that have been proposed, only
EigenPooling (Ma et al., 2019a) incorporates both features and graph structure. However, this is
based on eigenpairs of graph Laplacian and suffers from a high computational cost. We provide an
overview of this and other graph pooling methods in Section 2.

In this paper, we propose a new graph pooling strategy based on a sparse Haar representation of
the data, which we call HaarPooling. This is based on the Haar basis (Li et al., 2019), which
incorporates graph structure and features, and is computationally efficient. Suppose we have an
input X in ∈ RN×d. HaarPooling is then defined as

Xout = ΦTX in, (2)

where Φ ∈ RN×N1 , N1 < N . Each column of Φ is a compressive Haar basis vector. By applying
HaarPooling in equation 2, the number of nodes is compressed from N to N1. The Haar basis
provides a sparse representation which distills graph structural information. Cascading pooling
layers we can obtain an output of a fixed dimension, regardless of the size of the inputs. The sparsity
of the Haar basis matrix ensures that the computation of HaarPooling is efficient. Generating the
Haar basis and computing the Haar transform has a computational costO(N) (up to a log term ofN )
for input graphs with N nodes. Experiments in Section 5 demonstrate that GNNs with HaarPooling
achieve state-of-the-art performance on various graph classification tasks.

This paper is organized as follows. Section 2 gives an overview of existing work on graph pool-
ing. Section 3 details the components and computational flow for HaarPooling. Section 4 provides
the mathematical details on HaarPooling, including the compressive Haar basis, compressive Haar
transforms, and efficient implementations. Section 5 reports our experimental results on benchmark
graph classification tasks compared with existing graph pooling methods. Section 6 concludes the
paper. Proofs and implementation details are deferred to the appendix.

2



2 RELATED WORK

Graph pooling is a necessary step when building a GNN model for graph classification, as one
needs a unified graph-level rather than node-level representation for graph inputs for which size
and topology are changing. The most direct pooling method takes the global mean and sum of
node representations obtained by the graph convolutional layer (Duvenaud et al., 2015) as a simple
graph-level representation. However, this pooling operation treats all the nodes equally and ignores
the global geometry of the graph. ChebNet (Defferrard et al., 2016) uses a graph coarsening proce-
dure to build the pooling module, which requires graph clustering algorithms to obtain subgraphs.
One drawback of this topology-based strategy is that it does not incorporate the node features in the
pooling. Global pooling methods consider the information of node embeddings to obtain the entire
graph representation. As a general framework for graph classification problems, MPNN (Gilmer
et al., 2017) uses the Set2Set method (Vinyals et al., 2015) to obtain graph-level representations.
Zhang et al. (2018a) proposed a SortPool method that sorts feature representation of nodes before
feeding them into traditional 1-D convolutional and dense layers. But these global pooling tech-
niques cannot guarantee hierarchical graph representations that may contain useful information in
the graph structure. A prominent recent idea is to build a differentiable and data-dependent pooling
layer with learnable operations/parameters, which has brought substantial improvements on graph
classification tasks. Ying et al. (2018) proposed a differentiable pooling layer (DiffPool) that learns
a cluster assignment matrix over the nodes using the output of a GNN model. One common problem
with DiffPool is its huge storage complexity, which results from the computation of the soft cluster-
ing assignments. Cangea et al. (2018); Gao & Ji (2019); Knyazev et al. (2019) used a Top-K pooling
method that samples a subset of important nodes by employing a trainable projection vector. Lee
et al. (2019) introduced Self-Attention Graph Pooling (SAGPool) by replacing the way node scores
are computed in Top-K pooling by a GCN module. These hierarchical pooling methods technically
still employ mean/max pooling procedures to aggregate the feature representation of super-nodes,
which would lead to information loss. Diehl et al. (2019) proposed EdgePool which is a scheme
which considers edge contraction and thus takes into account of graph structure in pooling.

There are also spectral-based pooling methods that take account of both the graph structure and its
node features. Noutahi et al. (2019) proposed the Laplacian Pooling (LaPool) method that dynami-
cally selects centroid nodes and their corresponding follower nodes by an attention mechanism that
uses the graph Laplacian. Ma et al. (2019a) introduced EigenPool which uses local graph Fourier
transform to extract subgraph information utilizing both node features and structure of the subgraph.
Its potential drawback lies in the inherent bottleneck of computing Laplacian-based graph Fourier
transform, given the huge cost in the eigendecomposition of the graph Laplacian. This shortcoming
partially motivates our present work.

3 HAARPOOLING

In this section we give an overview of the proposed HaarPooling framework. First we define the
pooling architecture in terms of a chain, i.e., a sequence of graphs (G0,G1, . . . ,GK), where the
nodes of each Gj+1 correspond to clusters of nodes of Gj+1, j = 0, . . . ,K − 1. Each layer in the
chain determines which sets of nodes are pooled together. Then we construct the compressive Haar
transform, which compresses the dimension of the features.

Chain of coarse-grained graphs for pooling Graph pooling amounts to defining a sequence of
coarse-grained graphs. In our chain, each graph is an induced graph that arises from grouping (clus-
tering) certain subsets of nodes from the previous graph. We use clustering algorithms to generate
the groupings of nodes. There are many good candidates, such as spectral clustering (Shi & Malik,
2000), k-means clustering (Pakhira, 2014), DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al.,
1999) and METIS (Karypis & Kumar, 1998). Any of these will work with HaarPooling.

Figure 3 shows an example of a chain with 3 levels, for an input graph G0.

Compressive Haar transforms on chain For each layer of the chain, we will have a feature repre-
sentation. We define these in terms of the Haar basis. Haar basis represents graph-structured data by
low and high frequency Haar coefficients in frequency domain. The low frequency coefficients con-

3



a b c d e f g h G0

a b c d e f g h G1

a b c d e f g h G2

Figure 3: A coarse-grained chain of
graphs, where the input has 8 nodes,
the second level has 3 nodes, and the
top level has single node.

tain the coarse information of the original data while the high frequency coefficients contain the fine
details. In the HaarPooing, the data is pooled (or compressed) by discarding fine detail information.

The Haar basis can be compressed in each layer. Consider a chain where at level j the two subse-
quent graphs have Nj+1 and Nj nodes, Nj+1 < Nj . For each of these graphs, we can create a Haar
basis with Nj+1 and Nj elements, respectively. The elements of the smaller layer are obtained by
compressing a subset of the elements from the other layer. These new vectors form the matrix Φj of
size Nj+1 ×Nj . We call Φj compressive Haar basis matrix for this particular jth layer. This then
defines the compressive Haar transform ΦT

j X
in for feature X in with size Nj × d.

Computational strategy of HaarPooling The HaarPooling is then defined as follows.
Definition 1 (HaarPooling). The HaarPooling for a graph neural network with K pooling layers is
defined as

Xout
j = ΦT

j X
in
j , j = 0, 1, . . . ,K − 1,

where Nj > Nj+1 and NK = 1, Φj or Φ
(j)
Nj×Nj+1

is the Nj ×Nj+1 compressive Haar basis matrix
for the jth layer, X in

j ∈ RNj×dj is the input feature array, and Xout
j ∈ RNj+1×dj is the output

feature array. The corresponding layer is called HaarPooling layer.

HaarPooling has following key properties.

• The HaarPooling reduces layer by layer the first dimension of input feature. In the last pooling
layer, the output feature is compressed as a vector with length dK−1 and each original input
sample would generate such a vector with the same length. This then makes it possible to deal
with input graph-structured data with different size and structure.

• The HaarPooling uses the sparse Haar representation on chain structure. In each HaarPooling
layer, the representation then combines the features of input X in

j with the geometric information
of the graphs of the jth and (j + 1)th layers of the chain.

• By the property of Haar basis, the HaarPooling only drops the high frequency (or detailed) in-
formation of the input data. The Xout

j has good approximation to X in
j . Thus, the major data

information (i.e. the low frequency coefficients) is preserved in the pooling, and the loss of the
information is small.

• Since the Haar basis matrix is very sparse, HaarPooling can be computed very fast, with near
linear computational complexity.

Example Figure 4 shows the computational details of the HaarPooling associated with the chain
from Figure 3. There are two HaarPooling layers. In the first layer, the input X in

1 with size 8 × d1
is transformed by the compressive Haar basis matrix Φ

(0)
8×3 which consists of the first three column

vectors of the full Haar basis Φ
(0)
8×8 in (a), and output is a 3 × d1 matrix Xout

1 . In the second
layer, the input X in

2 with size 3× d2 (usually Xout
1 followed by convolution) is transformed by the

compressive Haar matrix Φ
(1)
3×1 which is the first column vector of the full Haar basis matrix Φ

(1)
3×3

in (b). By the construction of the Haar basis in relation to the chain (details in Appendix B), each of
the first three column vectors φ(0)1 , φ

(0)
2 and φ(0)3 of Φ

(0)
8×3 has only up to three different values. This

bound is exactly the number of nodes of G1. For each column φ(0)` , all nodes with the same parent
take the same value. Similarly, the 3 × 1 vector φ(1)1 is constant. This means that the HaarPooling

4



(a) First HaarPooling Layer for G0 → G1

(b) Second HaarPooling Layer for G1 → G2

Figure 4: Computational strategy of HaarPooling. We use the chain in Figure 3 and then there
are two HaarPooling layers in the network from G0 → G1 and G1 → G2 respectively. The input
of each layer is pooled by the compressive Haar transform for each layer: in the first layer input
X in

1 = (xi,j) ∈ R8×d1 is transformed by the compressive Haar basis matrix Φ
(0)
8×3 with size 8 × 3

formed by the first three column vectors, and the output is a feature array with size 3 × d1; in the
second layer X in

2 = (yi,j) ∈ R3×d2 is transformed by the first column vector Φ
(1)
3×1 and the output

is a feature vector with size 1× d2. In the plots of Haar basis matrix, the colors indicate the value of
the entries of the Haar basis matrix.

synthesizes the node feature by adding the same weight to the nodes that are in the same cluster of
the coarser layer, and in this way, pools the feature using the graph clustering information.

4 MATHEMATICS AND COMPUTATION FOR HAARPOOLING

Chain of graphs by clustering For a graph G = (V,E,w), where V,E,w are the vertices, edges,
and weights on edges, a graph Gcg := (V cg, Ecg, wcg) is a coarse-grained graph of G if |V cg| ≤ |V |
and each node of G has only one parent node in Gcg associated with it. Each node of Gcg is called
a cluster of G. For integers J > 0, a coarse-grained chain for G is a sequence of graphs G0→J :=
(G0,G1, . . . ,GJ) with G0 = G and such that Gj+1 is a coarse-grained graph of Gj = (Vj , Ej , wj)
for each j = 0, 1, . . . , J − 1, and GJ has only one node. Here, we call the graph GJ the top level or
the coarsest level and G0 the bottom level or the finest level. The chain G0→J hierarchically coarsens
graph G. We use the notation J + 1 for the number of layers of the chain to distinguish the number
K of layers for pooling. The chain for graph G can be created by any clustering method. For details
about graphs and chains, we refer the reader to the examples by Chung & Graham (1997); Hammond
et al. (2011); Chui et al. (2015; 2018); Wang & Zhuang (2018; 2019).

4.1 COMPRESSIVE HAAR TRANSFORMS

Haar basis The construction of Haar basis is rooted in the theory of Haar wavelet basis which was
first introduced by Haar (1910). It is a special example of the more general Daubechies wavelets
(Daubechies, 1992). Haar basis is later constructed on graph by Belkin et al. (2006), and also Chui
et al. (2015); Wang & Zhuang (2018; 2019). The construction of the Haar basis is based on a
chain of the graph. If the topology of the graph is well reflected by the clustering of the chain,
then the Haar basis contains the crucial geometric information of the graph. For a chain G0→J ,
on the jth-layer graph Gj , j = 0, . . . , J , there is a Haar orthogonal basis {φ(j)` }

Nj

`=0 defined on
Gj , where Nj is the size of Gj and Nj+1 < Nj for j = 0, . . . , J − 1. Suppose two consecutive

5



layers j, j + 1. The first Nj+1 members of φ(j)` , ` = 1, . . . , Nj+1, are defined on the finer layer
j + 1, and can be reduced into the φ(j+1)

` , ` = 1, . . . , Nj+1, as follows. For first ` = 1, . . . , Nj+1,
φ
(j)
` (v) = φ

(j+1)
` (PaG(v))/

√
|PaG(v)|, i.e. the value of the φ(j)` (v) is equal to the scaled φ(j+1)

`
at the parent PaG(v) of v and the scaled factor is one on square root of the number of nodes in the
cluster which v lies in. It means that φ(j)` (v) for v sharing the parent have the same value. This
property is critical to pooling as φ(j)` (v) can then be treated as weights for the graph Gj on which
the input feature defined, and the nodes gain the same weight if they are in the same cluster. On the
other hand, the remaining Haar basis vectors φ(j)` for ` = Nj+1+1, . . . , Nj are constructed to reflect
the high-frequency information in the Haar wavelet decomposition. This property is exploited by
the compressive Haar basis which then pools the input feature into a lower (first) dimension output
feature. The construction and its pseudo-codes for algorithmic implementation of the full Haar basis
is detailed in Li et al. (2019); Wang & Zhuang (2019), which we also attach in the appendix. Let
{φ(j)` }

Nj

`=1, j = 0, . . . , J , be the sequence of Haar bases associated with the layers of chain G0→J of
a graph G. For j = 0, . . . , J , we let the matrix Φ̃j = (φ

(j)
1 , . . . , φ

(j)
Nj

) ∈ RNj×Nj and call the matrix

Φ̃j Haar transform matrix for layer j.

Orthogonality For each level j = 0, . . . , J , the sequence {φ(j)` }
Nj

`=1, with Nj := |Vj |, is an
orthonormal basis for the space l2(Gj) of square-summable sequences on the graph Gj , so that
(φ

(j)
` )Tφ

(j)
`′ = δ`,`′ . For each j, {φ(j)` }

Nj

`=1 is the Haar basis system for the chain Gj→J .

Locality Let G0→J be a coarse-grained chain for G. If each parent of level Gj , j = 1, . . . , J ,
contains at least two children, the number of different scalar values of the components of a Haar
basis vector φ(j)` , ` = 1, . . . , Nj , is bounded by a constant independent of j.

In Figure 4, the Haar basis is created based on the coarse-grained chain G0→2 := (G0,G1,G2),
where G0,G1,G2 are graphs with 8, 3, 1 nodes. The two colorful matrices show two Haar bases for
the layers 0 and 1 in the chain G0→2. There are in total 8 vectors of the Haar basis for G0 each with
length 8, and 3 vectors of the Haar basis for G1 each with length 3. Haar basis matrix for each level
of the chain has up to 3 different values in each column as indicated by colors in each matrix. For
j = 0, 1, each node of Gj is a cluster of nodes in Gj+1. Each column of the matrix is a member
of the Haar basis on the individual layer of the chain. The first three column vectors of Φ̃1 can be
reduced as an orthonormal basis of G1 and the first column vector of G1 can be compressed to the
constant basis for G2. This connection ensures that the compressive Haar transform for HaarPooling
is feasible and would allow fast algorithms of HaarPooling (see Section 4.2 below).

Adjoint and forward Haar transforms We use adjoint Haar transforms for HaarPooling, which
as the sparsity of the Haar basis matrix, the transform is fast implementable. The adjoint Haar
transform for the signal f on Gj is defined as

(Φ̃j)
T f =

(∑
v∈V

φ
(j)
1 (v)f(v), . . . ,

∑
v∈V

φ
(j)
Nj

(v)f(v)

)
∈ RNj , (3)

and the forward Haar transform for (coefficients) vector c := (c1, . . . , cNj ) ∈ RNj .

(Φ̃jc)(v) =

Nj∑
`=1

φ
(j)
` (v)c`, v ∈ Vj . (4)

We call the components of (Φ̃j)
T f the Haar (wavelet) coefficients for f . The adjoint Haar transform

represents the signal in Haar wavelet domain by computing the Haar coefficients for graph signal.
Here the adjoint and forward Haar transforms can be extended to a feature data with size Nj × dj
by replacing the column vector f by the feature array.

Proposition 2. The adjoint and forward Haar Transforms are invertible in that for j = 0, . . . , J
and vector f on graph Gj ,

f = Φ̃j(Φ̃j)
T f.

6



Proposition 2 shows that the forward Haar transform can recover the graph signal f from the adjoint
Haar transform (Φ̃j)

T f . This means that adjoint and forward Haar transforms have zero-loss in
graph signal transmission.

Compressive Haar transforms Now for a graph neural network, suppose we want to use K
pooling layers. We associate the chain G0→K of an input graph with the pooling by linking the jth
layer of pooling with the jth layer of the chain. Then, we can use the Haar basis system on the chain
to define the pooling operation. By the property of Haar basis, in the Haar transforms for layer j, 0 ≤
j ≤ K − 1, of the Nj Haar coefficients, the first Nj+1 coefficients are low-frequency coefficients,
which reflect the approximation to the original data, and the other (Nj − Nj+1) coefficients are in
high frequency, which contain fine details of the Haar wavelet decomposition. To define pooling, we
remove the high-frequency coefficients in Haar wavelet representation and obtain the compressive
Haar transforms for the feature X in

j at layers j = 0, . . . ,K − 1, which then gives the HaarPooling
in Definition 1.

As shown in the following formula, the compressive Haar transform synthesizes the neighbourhood
information of the signal f as compared to the full Haar transform. Thus, HaarPooling takes the
average information of the data f over nodes in the same cluster.∥∥ΦT

j X
in
j

∥∥2 =
∑

p∈Gj+1

1

|Pa(v)|
∣∣∣ ∑
p=Pa(v)

X in
j (v)

∣∣∣2, ∥∥∥Φ̃T
j X

in
j

∥∥∥2 =
∑

p∈Gj+1

∑
p=Pa(v)

∣∣∣X in
j (v)

∣∣∣2, (5)

where Φ̃j is the full Haar basis matrix at the jth layer and |PaG(v)| means the number of nodes in
the cluster which v lies in. Here, in the first equation, 1/

√
|PaG(v)| can be taken out of summation

as Pa(v) is in fact a set of nodes. We show the derivation of formula in equation 5 in Appendix D.

In HaarPooling, the compression or pooling occurs in the Haar wavelet domain. HaarPooling trans-
forms the features on the nodes to the Haar wavelet domain and discards the high-frequency coeffi-
cients in the sparse Haar wavelet representation. Figure 4 shows a two-layer HaarPooling strategy.
The first layer pools the input X in

0 by the compressive Haar basis matrix Φ
(0)
8×3 to the output Xout

0

with lower first dimension. The second layer pools the input X in
1 by the Φ

(1)
3×1 to the output Xout

1
which first dimension drops to one.

4.2 FAST COMPUTATION OF HAARPOOLING

For the HaarPooling introduced in Definition 1, we can develop a fast computational strategy by
virtue of fast adjoint Haar transforms. Let G0→K be a coarse-grained chain of the graph G0. For
convenience, we label the vertices of the level-j graph Gj by Vj :=

{
v
(j)
1 , . . . , v

(j)
Nj

}
.

Fast algorithm for HaarPooling The HaarPooling in equation 3 can be computed fast by using
the hierarchical structure of the chain, as we introduce as follows. For j = 1, . . . ,K, let c(j)k be the
number of children of v(j)k , i.e. the number of vertices of Gj−1 which belongs to the cluster v(j)k ,
for k = 1, . . . , Nj . For j = 0, we let c(0)k ≡ 1 for k = 1, . . . , N0. Now, for j = 0, . . . ,K and
k = 1, . . . , Nj , define the weight for the node v(j)k of layer j by

w
(j)
k :=

1√
c
(j)
k

. (6)

Let W0→K := {w(j)
k | j = 0, . . . ,K, k = 1, . . . , Nj}. Then, for j = 0, . . . ,K, the weighted chain

(Gj→K ,Wj→K) becomes a filtration if each parent of the chain Gj→K has at least two children. See
e.g. (Chui et al., 2015, Definition 2.3).

Let j = 0, . . . ,K. For the jth HaarPooling layer, let {φ(j)` }
Nj

`=1 be the Haar basis for the jth layer,
which we also call the Haar basis for the filtration (Gj→K ,Wj→K) of a graph G. For k = 1, . . . , Nj ,
we let X(v

(j)
k ) = X(v

(j)
k , ·) ∈ Rdj the feature vector at node v(j)k . We define the weighted sum for

feature X ∈ RNj×dj for dj ≥ 1 by

S(j)
(
X, v

(j)
k

)
:= X(v

(j)
k ), v

(j)
k ∈ Gj , (7)

7



Algorithm 1: Fast HaarPooling for One Layer

Input: Input feature X in
j for the jth pooling layer given j = 0, . . . ,K − 1 in a GNN with total

K HaarPooling layers; the chain Gj→K associated with the HaarPooling; numbers Ni of nodes
for layers i = j, . . . ,K.

Output: ΦT
j X

in
j from Definition 1.

Step 1: Evaluate the sums for i = j, . . . ,K recursively, using equation 7 and equation 8:
S(i)

(
X in

j , v
(i)
k

)
∀v(i)k ∈ Vi .

Step 2:
for ` = 1 to Nj+1 do

Set NK = 0.
Compute i such that Ni+1 + 1 ≤ ` ≤ Ni.
Evaluate

∑Ni

k=1 S(i)(X in
j , v

(i)
k )w

(i)
k φ

(i)
` (v

(i)
k ) in equation 9 by the two steps:

(a) Compute the product for all v(i)k ∈ Vi:
T`(X

in
j , v

(i)
k ) = S(i)(X in

j , v
(i)
k )w

(i)
k φ

(i)
` (v

(i)
k ).

(b) Evaluate sum
∑Ni

k=1 T`(X
in
j , v

(i)
k ).

end for

and recursively, for i = j + 1, . . . ,K and v(i)k ∈ Gi,

S(i)
(
X, v

(i)
k

)
:=

∑
v
(i−1)

k′ ∈v(i)
k

w
(i−1)
k′ S(i−1)

(
X, v

(i−1)
k′

)
. (8)

For each vertex v(i)k of Gi, the S(i)
(
X, v

(i)
k

)
is the weighted sum of the S(i−1)

(
X, v

(i−1)
k′

)
at the

level i− 1 for those vertices v(i−1)k′ of Gi−1 whose parent is v(i)k .

Theorem 3. For 0 ≤ j ≤ K − 1, let {φ(i)` }Ni

`=1 for i = j + 1, . . . ,K be the Haar bases for the
filtration (Gj→K ,Wj→K) at layer i. Then, the compressive Haar transform for the jth HaarPooling
layer can be computed by, for the feature X ∈ RNj×dj and ` = 1, . . . , Nj ,

(
ΦT

j X
)
`

=

Ni∑
k=1

S(i)
(
X, v

(i)
k

)
w

(i)
k φ

(i)
` (v

(i)
k ), (9)

where i is the largest possible number in {j + 1, . . . ,K} such that φ(i)` is the `th member of the
orthonormal basis {φ(i)` }Ni

`=1 for l2(Gi), v(i)k are the vertices of Gi and the weights w(i)
k are given by

equation 12.

We give the algorithmic implementation of Theorem 3 in Algorithm 1, which provides a fast algo-
rithm for HaarPooling at each layer.

Computational complexity With increasing graph size, the sparsity of the Haar basis matrix Φ̃j

becomes more pronounced (Li et al., 2019). This sparsity implies fast computation for HaarPooling.
The computational complexity of HaarPooling is determined by the adjoint Haar transforms. In the
first step of Algorithm 1, the total number of summations for all elements of Step 1 is no more than∑j−1

i=0 Ni+1; In the second step, by the locality of the Haar basis, the total number of multiplication
and summation operations is at most 2

∑Nj

`=1 C = O(Nj). Here C is the constant which bounds the
number of different values of the Haar basis vector. Thus, the computational cost of Algorithm 1 is
O(Nj).

We run an experiment to evaluate the CPU computational time of HaarPooling by Algorithm 1
against the direct matrix product. We use randomly generated graphs and features with size ranging
from 2 to 5000. As shown in Figure 5, the fast HaarPooling has computational cost nearly pro-
portional to the number of nodes N , while the ordinary matrix product incurs a cost close to order
O(N2). These results are consistent with the computational complexity analysis given above.

8



102 103
10-5

10-4

10-3

10-2

10-1

100

Figure 5: Comparison for fast com-
putation and direct matrix product
for HaarPooling for input feature ar-
ray with up to 5000 nodes. The
cost of HaarPooling has near lin-
ear computational complexity. The
cost of direct matrix product grows
at O(N2.1).

5 EXPERIMENTS

Data sets To verify whether the proposed framework can hierarchically learn good graph repre-
sentations for classification, we evaluate HaarPooling on five widely used benchmark data sets for
graph classification (Kersting et al., 2016), including one protein graph data set PROTEINS (Borg-
wardt et al., 2005; Dobson & Doig, 2003); two mutagen data sets MUTAG (Debnath et al., 1991;
Kriege & Mutzel, 2012) and MUTAGEN (Riesen & Bunke, 2008; Kazius et al., 2005) (full name
Mutagenicity); and two data sets that consist of chemical compounds screened for activity against
non-small cell lung cancer and ovarian cancer cell lines, NCI1 and NCI109 (Wale et al., 2008). We
include data sets from different domains, sample and graph sizes to give a comprehensive under-
standing of how HaarPooling performs with data sets in various scenarios. A summary information
of the data sets is given in Table 1, which shows the data sets containing graphs with different sizes
and structures: the number of data samples ranges from 188 to 4,337, the average number of nodes
is from 17.93 to 39.06 and the average number of edges is from 19.79 to 72.82.

Table 1: Summary statistics of the data sets used in our experiments

Data Set MUTAG PROTEINS NCI1 NCI109 MUTAGEN

max #nodes 28 620 111 111 417
min #nodes 10 4 3 4 4
avg #nodes 17.93 39.06 29.87 29.68 30.32
avg #edges 19.79 72.82 32.30 32.13 30.77
#graphs 188 1,113 4,110 4,127 4,337
#classes 2 2 2 2 2

Baselines and running environment We compare HaarPool with SortPool (Zhang et al., 2018a),
DiffPool (Ying et al., 2018), gPool (Gao & Ji, 2019), SAGPool (Lee et al., 2019), EigenPool (Ma
et al., 2019a), CSM (Kriege & Mutzel, 2012) and GIN (Xu et al., 2019) on the above data sets. The
experiments use PyTorch Geometric1 (Fey & Lenssen, 2019) and were run in Google Cloud using 4
Nvidia Telsa T4 with 2560 CUDA cores, compute 7.5, 16GB GDDR6 VRAM.

Training procedures In experiments, we use a GNN with at most 3 GCN (Kipf & Welling, 2017)
convolutional layers plus one HaarPooling layer, followed by three fully connected layers. The
hyperparameters of the network are adjusted case by case. We use spectral clustering, which exploits
the eigenvalues of the graph Laplacian, to generate a chain with the number of layers given. Spectral
clustering has shown good performance in coarsening a variety of data patterns and can handle
isolated nodes.

1https://pytorch-geometric.readthedocs.io/en/latest.

9

https://pytorch-geometric.readthedocs.io/en/latest


We use random shuffling of the data set, which we split into training, validation, and test sets with
proportions 80%, 10% and 10% respectively. We use the Adam optimizer (Kingma & Ba, 2015),
early stopping criterion, patience. The specific values are provided in the appendix. The early
stopping criterion was that the validation loss does not improve for 50 epochs, with a maximum of
150 epochs, as suggested by Shchur et al. (2018).

Results The classification test accuracy is reported in Table 6. GNNs with HaarPooling have
excellent performance on all data sets. In 4 out of 5 datasets, it achieved top accuracy. This shows
that HaarPooling with appropriate graph convolution, can achieve top performance on a variety of
graph classification tasks, and in some cases improve state of the art by a few percent points.

Table 2: Performance comparison for graph classification tasks (test accuracy in percent, showing
the standard deviation over 10 repetitions of the experiment).

Method MUTAG PROTEINS NCI1 NCI109 MUTAGEN

CSM 85.4 – – – –
GIN 89.4 76.2 82.7 – –
SortPool 85.8 75.5 74.4 72.3* 78.8*
DiffPool – 76.3 76.0* 74.1* 80.6*
gPool – 77.7 – – –
SAGPool – 72.1 74.2 74.1 –
EigenPool – 76.6 77.0 74.9 79.5

HaarPool 90.0±3.6 80.4±1.8 78.6±0.5 75.6±1.2 80.9±1.5
‘*’ means that the records are retrieved from EigenPool (Ma et al., 2019a), ‘–’ means that there is no
public records for the corresponding method on the data set, and the bold number indicates the best
performance in the list.

6 CONCLUSION

We introduced a new graph pooling method called HaarPooling. HaarPooling has a mathemati-
cal formalism derived from compressive Haar transforms. Unlike existing graph pooling methods,
HaarPooling takes into account both the graph structure and also the features over the nodes of the
graph-structured input data, to compute a coarsened representation. As an individual unit, Haar-
Pooling can be applied in conjunction with any type of graph convolution in GNNs. We show in
experiments that HaarPooling reaches state of the art in several benchmark graph classification tasks.
Moreover, having only linear computational complexity in the size of the inputs, HaarPooling is a
very fast pooling method.

REFERENCES

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: ordering points
to identify the clustering structure. In ACM Sigmod Record, volume 28, pp. 49–60. ACM, 1999.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of Machine Learning Research,
7(Nov):2399–2434, 2006.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

10



Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse
hierarchical graph classifiers. In Workshop on Relational Representation Learning, NeurIPS,
2018.

C. K. Chui, H.N. Mhaskar, and X. Zhuang. Representation of functions on big data associated with
directed graphs. Applied and Computational Harmonic Analysis, 44(1):165 – 188, 2018. ISSN
1063-5203. doi: https://doi.org/10.1016/j.acha.2016.12.005.

C.K. Chui, F. Filbir, and H.N. Mhaskar. Representation of functions on big data: graphs and trees.
Applied and Computational Harmonic Analysis, 38(3):489 – 509, 2015.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. American Mathematical Society,
1997.

Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal
Chemistry, 34(2):786–797, 1991. doi: 10.1021/jm00106a046.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, pp. 3844–3852, 2016.

Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. Towards graph pooling by
edge contraction. In ICML 2019 Workshop on Learning and Reasoning with Graph-Structured
Data, 2019.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In NIPS, pp. 2224–2232, 2015.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, volume 96, pp. 226–231,
1996.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
Workshop on Representation Learning on Graphs and Manifolds, ICLR, 2019.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. ICML, pp. 2083–2092, 2019.

Matan Gavish, Boaz Nadler, and Ronald R Coifman. Multiscale wavelets on trees, graphs and high
dimensional data: theory and applications to semi supervised learning. In ICML, pp. 367–374,
2010.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pp. 1263–1272, 2017.

Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69(3):
331–371, 1910.

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

11



Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of Medicinal Chemistry, 48(1):312–320, 2005.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention and general-
ization in graph neural networks. In NeurIPS, 2019.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In ICML, pp.
291–298, 2012.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In ICML, pp. 3734–3743,
2019.

Ming Li, Zheng Ma, Yu Guang Wang, and Xiaosheng Zhuang. Fast Haar transforms for graph neural
networks. arXiv preprint arXiv:1907.04786, 2019.

Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. Graph convolutional networks with
EigenPooling. In KDD, pp. 723–731, 2019a.

Zheng Ma, Ming Li, and Yu Guang Wang. PAN: Path integral based convolution for deep graph
neural networks. In Workshop on Learning and Reasoning with Graph-Structured Representation.
ICML, 2019b.

Emmanuel Noutahi, Dominique Beani, Julien Horwood, and Prudencio Tossou. Towards in-
terpretable sparse graph representation learning with Laplacian pooling. arXiv preprint
arXiv:1905.11577, 2019.

M. K. Pakhira. A linear time-complexity k-means algorithm using cluster shifting. In 2014 Interna-
tional Conference on Computational Intelligence and Communication Networks, pp. 1047–1051,
2014. doi: 10.1109/CICN.2014.220.

Kaspar Riesen and Horst Bunke. IAM graph database repository for graph based pattern recognition
and machine learning. In Joint IAPR International Workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 287–297.
Springer, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pit-
falls of graph neural network evaluation. In Workshop on Relational Representation Learning,
NeurIPS, 2018.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Departmental Papers
(CIS), pp. 107, 2000.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
In ICLR, 2015.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

Yu Guang Wang and Xiaosheng Zhuang. Tight framelets and fast framelet filter bank transforms on
manifolds. Applied and Computational Harmonic Analysis, 2018. doi: 10.1016/j.acha.2018.02.
001.

Yu Guang Wang and Xiaosheng Zhuang. Tight framelets on graphs for multiscale analysis. In
Wavelets and Sparsity XVIII, SPIE Proc., pp. 11138–11, 2019.

12

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de


Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In NeurIPS, pp. 4800–4810,
2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018a.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. arXiv preprint
arXiv:1812.04202, 2018b.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

A GRAPH CLASSIFICATION

Graph classification This task is to categorize graph-structured data into several classes. The
training set consists of M pairs of samples

(
(xi,Gi), yi

)
, i = 1, . . . ,M . For the ith sample, Gi =

(Vi, Ei,Wi) is a graph with vertex set Vi of size |Vi| = Ni (also called nodes), and edge set Ei with
weights Wi. The feature xi ∈ RNi×d is an array of d features per vertex, i.e., an Rd-valued function
over Vi. The label yi is an integer from a finite set indicating which class the input sample (xi,Gi)
lies in. The number of nodes Ni and the graph structure Ei,Wi usually vary over the different input
samples.

Graph neural networks Deep graph neural networks (GNNs) are designed to work with graph-
structured inputs of the form (xi,Gi) described above. A GNN is typically composed of multiple
graph convolution layers, graph pooling layers, and fully connected layers. A (graph) convolutional
layer extracts an array of features from the previous array. It changes the dimension d of the fea-
ture array but does not change the number of nodes Ni. Since the number of nodes of different
inputs is variable, the number of nodes of the corresponding outputs is also variable. This raises
new challenges in comparison with traditional image classification tasks, where the local structure
connecting pixels is always fixed (even if the number of pixels might be variable).

Graph pooling In GNNs, one uses graph pooling to reduce the first dimension N of the feature
arrays, and more importantly, to obtain outputs of uniform dimension (commonly followed by fully
connected layers). A general architecture uses a cascade of convolutional and pooling layers. Fig-
ure 2 illustrates such an architecture with three blocks of graph convolutional and pooling layers,
followed by a multi-layer perceptron (MLP) with three fully connected layers. In practice, each
block can include several convolutional layers but use only one pooling layer at most. The exact
architecture of GNNs with combined convolutional and pooling layers is mainly dependent upon
the particular problem and the data set and is designed case by case.

B CONSTRUCTION OF HAAR BASIS

Construction of Haar basis. With a chain of the graph, one can generate a Haar basis for l2(G)
following Chui et al. (2015), see also Gavish et al. (2010). We show the construction of Haar basis
on G, as follows.

Step 1. Let Gcg = (V cg, Ecg, wcg) be a coarse-grained graph of G = (V,E,w) with N cg := |V cg|.
Each vertex vcg ∈ V cg is a cluster vcg = {v ∈ V | v has parent vcg} of G. Order V cg, e.g., by
degrees of vertices or weights of vertices, as V cg = {vcg1 , . . . , vcgNcg}. We define N cg vectors φcg` on
Gcg by

φcg1 (vcg) :=
1√
N cg

, vcg ∈ V cg, (10)

13



and for ` = 2, . . . , N cg,

φcg` :=

√
N cg − `+ 1

N cg − `+ 2

(
χcg
`−1 −

∑Ncg

j=` χ
cg
j

N cg − `+ 1

)
, (11)

where χcg
j is the indicator function for the jth vertex vcgj ∈ V cg on G given by

χcg
j (vcg) :=

{
1, vcg = vcgj ,

0, vcg ∈ V cg\{vcgj }.

Then, one can show that {φcg` }N
cg

`=1 forms an orthonormal basis for l2(Gcg).

Note that each v ∈ V belongs to exactly one cluster vcg ∈ V cg. In view of this, for each ` =
1, . . . , N cg, we can extend the vector φcg` on Gcg to a vector φ`,1 on G by

φ`,1(v) :=
φcg` (vcg)√
|vcg|

, v ∈ vcg,

here |vcg| := k` is the size of the cluster vcg, i.e., the number of vertices in G whose common parent
is vcg. We order the cluster vcg` , e.g., by degrees of vertices, as

vcg` = {v`,1, . . . , v`,k`
} ⊆ V.

For k = 2, . . . , k`, similar to equation 11, define

φ`,k =

√
k` − k + 1

k` − k + 2

(
χ`,k−1 −

∑k`

j=k χ`,j

k` − k + 1

)
.

where for j = 1, . . . , k`, χ`,j is given by

χ`,j(v) :=

{
1, v = v`,j ,

0, v ∈ V \{v`,j}.

One can show that the resulting {φ`,k : ` = 1, . . . , N cg, k = 1, . . . , k`} is an orthonormal basis for
l2(G).

Step 2. Let G0→J be a coarse-grained chain for the graph G. An orthonormal basis {φ(J)` }NJ

`=1
for l2(GJ) is generated using equation 10 and equation 11. We then repeatedly use Step 1: for
j = 0, . . . , J − 1, we generate an orthonormal basis {φ(j)` }

Nj

`=1 for l2(Gj) from the orthonormal
basis {φ(j+1)

` }Nj+1

`=1 for the coarse-grained graph Gj+1 that was derived in the previous steps. We
call the sequence {φ` := φ

(0)
` }N0

`=1 of vectors at the finest level, the Haar global orthonormal basis
or simply the Haar basis for G associated with the chain G0→J . The orthonormal basis {φ(j)` }

Nj

`=1

for l2(Gj), j = 1, . . . , J is called the associated (orthonormal) basis for the Haar basis {φ`}N`=1.

Besides the orthogonality, the Haar basis has the locality which is critical to the fast computation of
HaarPooling.

Compressive Haar basis Suppose we have constructed the (full) Haar basis {φ(j)` }
Nj

`=0 for each
layer Gj of the chain G0→K . The compressive Haar basis for layer j is {φ(j)` }

Nj+1

`=0 .

C FAST COMPUTATION FOR HAARPOOLING

Let G0→K be a coarse-grained chain of the graph G0. For convenience, we label the vertices of the
level-j graph Gj by Vj :=

{
v
(j)
1 , . . . , v

(j)
Nj

}
.

14



Fast algorithm for HaarPooling The HaarPooling in equation 3 can be computed fast by using
the hierarchical structure of the chain, as we introduce as follows. For j = 1, . . . ,K, let c(j)k be the
number of children of v(j)k , i.e. the number of vertices of Gj−1 which belongs to the cluster v(j)k ,
for k = 1, . . . , Nj . For j = 0, we let c(0)k ≡ 1 for k = 1, . . . , N0. Now, for j = 0, . . . ,K and
k = 1, . . . , Nj , define the weight for the node v(j)k of layer j by

w
(j)
k :=

1√
c
(j)
k

. (12)

Let W0→K := {w(j)
k | j = 0, . . . ,K, k = 1, . . . , Nj}. Then, for j = 0, . . . ,K, the weighted chain

(Gj→K ,Wj→K) becomes a filtration if each parent of the chain Gj→K has at least two children. See
e.g. (Chui et al., 2015, Definition 2.3).

D PROOFS

Proof for equation 5. We only need to prove the first formula. The second is obtained by definition.
To simplify notation, we let f = X in

j . By construction of Haar basis, for some layer j, the first
Nj+1 basis vectors

φ
(j)
` (v) = φ

(j+1)
` (p)/

√
|PaG(v)|, for p = PaG(v).

Then, the Fourier coefficient of f for the `th basis vector is the inner product〈
f, φ

(j)
`

〉
=
∑
v∈Gj

f(v)φ
(j)
` (v)

=
∑

p∈Gj+1

∑
p=PaG(v)

f(v)φ
(j+1)
` (p)/

√
|PaG(v)|

=
∑

p∈Gj+1

f̃(p)φ
(j+1)
` (p)

=
〈
f̃ , φ

(j+1)
`

〉
where we have let

f̃(p) :=
1√

|PaG(v)|
∑

p=PaG(v)

f(v).

This then gives
Nj+1∑
`=1

∣∣∣〈f, φ(j)`

〉∣∣∣2 =

Nj+1∑
`=1

∣∣∣〈f̃ , φ(j+1)
`

〉∣∣∣2 . (13)

Since {φ`}Nj+1

`=1 forms an orthonormal basis on `2(Gj+1),

∥∥ΦT
j f
∥∥2 =

Nj+1∑
`=1

∣∣∣〈f̃ , φ(j+1)
`

〉∣∣∣2 =
∥∥f̃∥∥2 =

∑
p∈Gj+1

∣∣f̃(p)
∣∣2

=
∑

p∈Gj+1

∣∣∣∣∣∣ 1√
|PaG(v)|

∑
p=PaG(v)

f(v)

∣∣∣∣∣∣
2

.

This proves the left formula in equation 5.

15



Proof of Theorem 3. By the relation between φ
(i)
` and φ

(j)
` , for i = j + 1, . . . ,K and ` =

1, . . . , Nj+1,

(
ΦT

j X
)
`

=

Nj∑
k=1

X(v
(j)
k )φ

(j)
` (v

(j)
k )

=

Nj+1∑
k′=1

 ∑
PaG(v

(j)
k )=v

(j+1)

k′

X(v
(j)
k )

w
(j+1)
k′ φ

(j+1)
` (v

(j+1)
k′ )

=

Nj+1∑
k′=1

S(j+1)(X, v
(j+1)
k′ )w

(j+1)
k′ φ

(j+1)
` (v

(j+1)
k′ )

=

Nj+2∑
k′′=1

 ∑
PaG(v

(j+1)

k′ )=v
(j+2)

k′′

S(j+1)(X, v
(j+1)
k′ )w

(j+1)
k′

w
(j+2)
k′′ φ

(j+2)
` (v

(j+2)
k′′ )

=

Nj+2∑
k′′=1

S(j+2)(X, v
(j+2)
k′′ )w

(j+2)
k′′ φ

(j+2)
` (v

(j+2)
k′′ )

· · · · · ·

=

Ni∑
k=1

S(i)(X, v(i)k )w
(i)
k φ

(i)
` (v

(i)
k ),

where v(j+1)
k′ is the parent of v(j)k and v(j+2)

k′′ is the parent of v(j+1)
k , and we recursively compute the

summation to obtain the last equality, thus completing the proof.

E EXPERIMENTAL SETTING

The architecture of GNN is identified by the layer type and the number of hidden nodes at each
layer. For example, we denote 3GC256-HP-2FC256-FC128 to represent a GNN architecture with
3 GCNConv layers each with 256 hidden nodes plus one HaarPooling layer followed by 2 fully
connected layers each with 256 hidden nodes and 1 fully connected layer with 128 hidden nodes.
The architecture for each data set is shown by Table 3.

The hyperparameters include batch size; learning rate, weight decay rate (these two for optimiza-
tion); maximum number of epochs; patience for early stopping. The choice of hyperparameters in
each data set is shown in Table 4.

Table 3: Network architecture

Data Set Layers and #Hidden Nodes

MUTAG GC60-HP-FC60-FC180-FC60
PROTEINS 2GC128-HP-2GC128-HP-2GC128-HP-GC128-2FC128-FC64
NCI1 2GC256-HP-FC256-FC1024-FC2048
NCI109 3GC256-HP-2FC256-FC128
MUTAGEN 3GC256-HP-2FC256-FC128

F GNN WITH HAARPOOLING ON TRIANGLES

We test GNN with HaarPooling on graph data set Triangles (Knyazev et al., 2019). Triangles is a
10 classification problem with 45000 graphs. The average numbers of nodes and edges of graphs are

16



Table 4: Hyperparameter setting

Data Set MUTAG PROTEINS NCI1 NCI109 MUTAGEN

batch size 60 50 100 100 100
max #epochs 30 20 150 150 50
early stopping 15 20 50 50 50
learning rate 0.01 0.001 0.001 0.01 0.01
weight decay 0.0005 0.0005 0.0005 0.0001 0.0005

20.85 and 32.74 respectively. In the experiments, the network uses GIN convolution (Xu et al., 2019)
as graph convolution and with HaarPooling or SAGPooling (Lee et al., 2019). With SAGPooling,
the network architecture uses two combined layers of GIN convolution and SAGPooling followed by
combined layers of GIN convolution and global max pooling, denoted by GIN-SP-GIN-SP-GIN-MP,
where SP means the SAGPooling and MP means global max pooling. With HaarPooling, we test
with two architectures: GIN-HP-GIN-HP-GIN-MP and GIN-HP-GIN-GIN-MP, where HP means
HaarPooling. The data for training, validation and test are 35000, 5000 and 10000 respectively. The
hidden nodes in convoluational layers is 64, batch size is 60 and learning rate is 0.001.

Table 5 shows the test accuracy of the three networks. It illustrates that both networks with Haar-
Pooling outperform that with the SAGPooling.

Table 5: Training, validation and test accuracies on Triangles

Architecture Accuracy (%)
Training Validation Test

GIN-SP-GIN-SP-GIN-MP 45.6 45.3 44.0
GIN-HP-GIN-HP-GIN-MP 47.5 46.3 46.1
GIN-HP-GIN-GIN-MP 47.3 45.8 45.5

G PROPERTY COMPARISON OF POOLING METHODS

Here we provide a comparison of the properties of HaarPooling with existing pooling methods. The
properties in comparison includes time complexity and space complexity, and whether involving the
clustering, hierarchical pooling (which is then not a global pooling), spectral-based, node feature or
graph structure and sparse representation. We compare HaarPooling (denoted by HaarPool in the ta-
ble) to other methods (SortPool, DiffPool, gPool, SAGPool and EigenPool). The SortPool (i.e. Sort-
Pooling) is a global pooling which uses node signature (i.e. Weisfeiler-Lehman color of vertex) sorts
all vertices by the values of the channels of the input data. Thus, the time complexity (worst case)
of SortPool is O(|V |2) and space complexity is O(|V |). Other pooling methods are all hierarchical
pooling. DiffPool and gPool both use the node feature and have time complexityO(|V |2) The Diff-
Pool learns the assignment matrices in end-to-end manner and has space complexity O(k|V |2) for
pooling ratio k. The gPool projects all nodes to a learnable vector to generate scores for nodes, and
then sorts the nodes by the projection scores; the space complexity is O(|V |+ |E|). SAGPool uses
the graph convolution to calculate the attention scores of nodes and then selects top ranked nodes for
pooling. The time complexity of SAGPool is O(|E|) and the space complexity is O(|V |+ |E|) due
to the sparsity of the pooling matrix. EigenPool, which considers both the node feature and graph
structure, uses the eigedecomposition of subgraphs (from clustering) of the input graph, and pools
the input data by Fourier transforms of the assembled basis matrix. Due to eigendecomposition, the
time complexity of EigenPool is O(|V |2) and space complexity is O(|V |2). HaarPool which uses
the sparse representation of data by compressive Haar basis has linear time complexity O(|V |) (up
to a log |V | term), and the space complexity is O(|V |2ε), where ε is the sparsity of the compressive
Haar transform matrix and is usually very small. From the table, we can observe the HaarPool is the

17



Table 6: Property comparison for pooling methods.

Method Time
Complexity

Space
Complexity

Clustering-
based

Spectral-
based

Hierarchical
Pooling

Use Node
Feature

Use
Graph

Structure

Sparse
Repre-

sentation

SortPool O(|V |2) O(|V |) X
DiffPool O(|V |2) O(k|V |2) X X
gPool O(|V |2) O(|V |+ |E|) X X
SAGPool O(|E|) O(|V |+ |E|) X X X
EigenPool O(|V |2) O(|V |2) X X X X X

HaarPool O(|V |) O(|V |2ε) X X X X X X

‘|V |’ is the number of vertices of the input graph; ‘|E|’ is the number of edges of the input graph; ‘ε’ in
HaarPooling is the sparsity of the compressive Haar transform matrix; ‘k’ in the DiffPool is the pooling
ratio.

only pooling method which has time complexity proportional to the number of nodes, and thus has
faster implementation.

18


	Introduction
	Related Work
	HaarPooling
	Mathematics and Computation for HaarPooling
	Compressive Haar transforms
	Fast Computation of HaarPooling

	Experiments
	Conclusion
	Graph Classification
	Construction of Haar basis
	Fast Computation for HaarPooling
	Proofs
	Experimental Setting
	GNN with HaarPooling on Triangles
	Property comparison of pooling methods

