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Abstract

With substantial amount of time, resources and human (team) efforts invested to
explore and develop successful deep neural networks (DNN), there emerges an
urgent need to protect these inventions from being illegally copied, redistributed, or
abused without respecting the intellectual properties of legitimate owners. Follow-
ing recent progresses along this line, we investigate a number of watermark-based
DNN ownership verification methods in the face of ambiguity attacks, which aim
to cast doubts on the ownership verification by forging counterfeit watermarks. It
is shown that ambiguity attacks pose serious threats to existing DNN watermarking
methods. As remedies to the above-mentioned loophole, this paper proposes novel
passport-based DNN ownership verification schemes which are both robust to
network modifications and resilient to ambiguity attacks. The gist of embedding
digital passports is to design and train DNN models in a way such that, the DNN
inference performance of an original task will be significantly deteriorated due to
forged passports. In other words, genuine passports are not only verified by looking
for the predefined signatures, but also reasserted by the unyielding DNN model
inference performances. Extensive experimental results justify the effectiveness
of the proposed passport-based DNN ownership verification schemes. Code and
models are available at https://github.com/kamwoh/DeepIPR

1 Introduction

With the rapid development of deep neural networks (DNN), Machine Learning as a Service (MLaaS)
has emerged as a viable and lucrative business model. However, building a successful DNN is
not a trivial task, which usually requires substantial investments on expertise, time and resources.
As a result of this, there is an urgent need to protect invented DNN models from being illegally
copied, redistributed or abused (i.e. intellectual property infringement). Recently, for instance, digital
watermarking techniques have been adopted to provide such a protection, by embedding watermarks
into DNN models during the training stage. Subsequently, ownerships of these inventions are verified
by the detection of the embedded watermarks, which are supposed to be robust to multiple types of
modifications such as model fine-tuning, model pruning and watermark overwriting [1–4].

In terms of deep learning methods to embed watermarks, existing approaches can be broadly cat-
egorized into two schools: a) the feature-based methods that embed designated watermarks into
the DNN weights by imposing additional regularization terms [1, 3, 5]; and b) the trigger-set based
methods that rely on adversarial training samples with specific labels (i.e. backdoor trigger sets)
[2, 4]. Watermarks embedded with either of these methods have successfully demonstrated robustness
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(a) Application Scenario. (b) Present Solution. (c) Proposed Solution.

Figure 1: DNN model ownership verification in the face of ambiguity attacks. (a): Owner Alice
uses an embedding process E to train a DNN model with watermarks (T, s) and releases the model
publicly available; Attacker Bob forges counterfeit watermarks (T′, s′) with an invert process I;
(b): The ownership is in doubt since both the original and forged watermarks are detected by the
verification process V (Sect. 2.2); (c): The ambiguity is resolved when our proposed passports are
embedded and the network performances are evaluated in favour of the original passport by the
fidelity evaluation process F (See Definition 1 and Sect. 3.3).

against removal attacks which involve modifications of the DNN weights such as fine-tuning or
pruning. However, our studies disclose the existence and effectiveness of ambiguity attacks which
aim to cast doubt on the ownership verification by forging additional watermarks for DNN models in
question (see Fig. 1). We also show that it is always possible to reverse-engineer forged watermarks
at minor computational cost where the original training dataset is also not needed (Sect. 2).

As remedies to the above-mentioned loophole, this paper proposes a novel passport-based approach.
There is a unique advantage of the proposed passports over traditional watermarks - i.e. the inference
performance of a pre-trained DNN model will either remain intact given the presence of valid
passports, or be significantly deteriorated due to either the modified or forged passports. In other
words, we propose to modulate the inference performances of the DNN model depending on the
presented passports, and by doing so, one can develop ownership verification schemes that are both
robust to removal attacks and resilient to ambiguity attacks at once (Sect. 3).

The contributions of our work are threefold: i) we put forth a general formulation of DNN own-
ership verification schemes and, empirically, we show that existing DNN watermarking methods
are vulnerable to ambiguity attacks; ii) we propose novel passport-based verification schemes and
demonstrate with extensive experiment results that these schemes successfully defeat ambiguity
attacks; iii) methodology-wise, the proposed modulation of DNN inference performance based on
the presented passports (Eq. 4) plays an indispensable role in bringing the DNN model behaviours
under control against adversarial attacks.

1.1 Related work

Uchida et. al [1] was probably the first work that proposed to embed watermarks into DNN models
by imposing an additional regularization term on the weights parameters. [2, 6] proposed to embed
watermarks in the classification labels of adversarial examples in a trigger set, so that the watermarks
can be extracted remotely through a service API without the need to access the network weights
(i.e. black-box setting). Also in both black-box and white box settings, [3, 5, 7] demonstrated how
to embed watermarks (or fingerprints) that are robust to various types of attacks. In particular, it
was shown that embedded watermarks are in general robust to removal attacks that modify network
weights via fine-tuning or pruning. Watermark overwriting, on the other hand, is more problematic
since it aims to simultaneously embed a new watermark and destroy the existing one. Although [5]
demonstrated robustness against overwriting attack, it did not resolve the ambiguity resulted from the
counterfeit watermark. Adi et al. [2] also discussed how to deal with an adversary who fine-tuned an
already watermarked networks with new trigger set images. Nevertheless, [2] required the new set
of images to be distinguishable from the true trigger set images. This requirement is however often
unfulfilled in practice, and our experiment results show that none of existing watermarking methods
are able to deal with ambiguity attacks explored in this paper (see Sect. 2).

In the context of digital image watermarking, [8, 9] have studied ambiguity attacks that aim to create
an ambiguous situation in which a watermark is reverse-engineered from an already watermarked
image, by taking advantage of the invertibility of forged watermarks [10]. It was argued that
robust watermarks do not necessarily imply the ability to establish ownership, unless non-invertible
watermarking schemes are employed (see Proposition 2 for our proposed solution).
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2 Rethinking Deep Neural Network Ownership Verification

This section analyses and generalizes existing DNN watermarking methods in the face of ambiguity
attacks. We must emphasize that the analysis mainly focuses on three aspects i.e. fidelity, robustness
and invertibility of the ownership verification schemes, and we refer readers to representative previous
work [1–4] for formulations and other desired features of the entire watermark-based intellectual
property (IP) protection schemes, which are out of the scope of this paper.

2.1 Reformulation of DNN ownership verification schemes

Figure 1 summarizes the application scenarios of DNN model ownership verifications provided by
the watermark based schemes. Inspired by [10], we also illustrate an ambiguous situation in which
rightful ownerships cannot be uniquely resolved by the current watermarking schemes alone. This
loophole is largely due to an intrinsic weakness of the watermark-based methods i.e. invertibility.
Formally, the definition of DNN model ownership verification schemes is generalized as follows.

Definition 1. A DNN model ownership verification scheme is a tuple V = (E,F, V, I) of processes:

I) An embedding process E
(
Dr,T, s,N[·], L

)
= N[W,T, s], is a DNN learning process that

takes training data Dr = {Xr,yr} as inputs, and optionally, either trigger set data T =
{XT ,yT } or signature s, and outputs the model N[W,T, s] by minimizing a given loss L.

Remark: the DNN architectures are pre-determined by N[·] and, after the DNN weights W are
learned, either the trigger set T or signatures s will be embedded and can be verified by the
verification process defined next1.

II) A fidelity evaluation process F
(
N[W, ·, ·],Dt,Mt, εf

)
= {True, False} is to evaluate whether

or not the discrepancy is less than a predefined threshold i.e. |M(N[W, ·, ·],Dt)−Mt| ≤ εf ,
in whichM(N[W, ·, ·],Dt) is the DNN inference performance tested against a set of test data
Dt whereMt is the target inference performance.

Remark: it is often expected that a well-behaved embedding process will not introduce a signifi-
cant inference performance change that is greater than a predefined threshold εf . Nevertheless,
this fidelity condition remains to be verified for DNN models under either removal attacks or
ambiguity attacks.

III) A verification process V (N[W, ·, ·],T, s, εs) = {True, False} checks whether or not the ex-
pected signature s or trigger set T is successfully verified for a given DNN model N[W, ·, ·].
Remark: for feature-based schemes, V involves the detection of embedded signatures s =
{P,B} with a false detection rate that is lesser than a predefined threshold εs. Specifically, the
detection boils down to measure the distances Df (fe(W,P),B) between target feature B and
features extracted by a transformation function fe(W,P) parameterized by P.

Remark: for trigger-set based schemes, V first invokes a DNN inference process that takes
trigger set samples Tx as inputs, and then it checks whether the prediction f(W,XT ) produces
the designated labels Ty with a false detection rate that is lesser than a threshold εs.

IV) An invert process I(N[W,T, s]) = N[W,T′, s′] exists and constitutes a successful ambiguity
attack, if

(a) a set of new trigger set T′ and/or signature s′ can be reverse-engineered for a given DNN
model;

(b) the forged T′, s′ can be successfully verified with respect to the given DNN weights W
i.e. V (I(N[W,T, s]),T′, s′, εs) = True;

(c) the fidelity evaluation outcome F
(
N[W, ·, ·],Dt,Mt, εf

)
defined in Definition 1.II re-

mains True.
Remark: this condition plays an indispensable role in designing the non-invertible verifica-
tion schemes to defeat ambiguity attacks (see Sect. 3.3).

1Learning hyper-parameters such as learning rate and the type of optimization methods are considered
irrelevant to ownership verifications, and thus they are not included in the formulation.
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Feature based method [1] Trigger-set based method [2]
CIFAR10 Real WM Det. Fake WM Det. CIFAR10 Real WM Det. Fake WM Det.

CIFAR100 64.25 (90.97) 100 (100) 100 (100) 65.20 (91.03) 25.00 (100) 27.80 (100)
Caltech-101 74.08 (90.97) 100 (100) 100 (100) 75.06 (91.03) 43.60 (100) 46.80 (100)

Table 1: Detection of embedded watermark (in %) with two representative watermark-based DNN
methods [1, 2], before and after DNN weights fine-tuning for transfer learning tasks. Top row denotes
a DNN model trained with CIFAR10 and weights fine-tuned for CIFAR100; while bottom row
denotes weight fine-tuned for Caltech-101. Accuracy outside bracket is the transferred task, while
in-bracket is the original task. WM Det. denotes the detection accuracies of real and fake watermarks.

V) If at least one invert process exists for a DNN verification scheme V , then the scheme is called
an invertible scheme and denoted by VI = (E,F, V, I 6= ∅); otherwise, the scheme is called
non-invertible and denoted by V∅ = (E,F, V, ∅).

The definition as such is abstract and can be instantiated by concrete implementations of processes
and functions. For instance, the following combined loss function (Eq. 1) generalizes loss functions
adopted by both the feature-based and trigger-set based watermarking methods:

L = Lc
(
f(W,Xr),yr

)
+ λtLc

(
f(W,XT ),yT

)
+ λrR(W, s), (1)

in which λt, λr are the relative weight hyper-parameters, f(W,X−) are the network predictions
with inputs Xr or XT . Lc is the loss function like cross-entropy that penalizes discrepancies between
the predictions and the target labels yr or yT . Signature s = {P,B} consists of passports P and
signature string B. The regularization terms could be either R = Lc(σ(W,P),B) as in [1] or
R =MSE(B−PW) as in [3].

It must be noted that, for those DNN models that will be used for classification tasks, their inference
performanceM(N[W, ·, ·],Dt) = Lc

(
f(W,Xt),yt

)
tested against a dataset Dt = {Xt,yt} is

independent of either the embedded signature s or trigger set T. It is this independence that induces
an invertible process for existing watermark-based methods as described next.
Proposition 1 (Invertible process). For a DNN ownership verification scheme V as in Definition 1,
if the fidelity process F () is independent of either the signature s or trigger set T, then there always
exists an invertible process I() i.e. the scheme is invertible VI = (E,F, V, I 6= ∅)).

2.2 Watermarking in the face of ambiguity attacks

As proved by Proposition 1, one is able to construct forged watermarks for any already watermarked
networks. We tested the performances of two representative DNN watermarking methods [1, 2],
and Table 1 shows that counterfeit watermarks can be forged for the given DNN models with 100%
detection rate, and 100% fake trigger set images can be reconstructed as well in the original task.
Given that the detection accuracies for the forged trigger set is slightly better than the original trigger
set after fine-tuning, the claim of the ownership is ambiguous and cannot be resolved by neither
feature-based nor trigger-set based watermarking methods. Shockingly, the computational cost to
forge counterfeit watermarks is quite minor where the forging required no more than 100 epochs to
optimize, and worst still this is achieved without the need of original training data.

In summary, the ambiguity attacks against DNN watermarking methods are effective with minor
computational and without the need of original training datasets. We ascribe this loophole to the crux
that the loss of the original task, i.e. Lc

(
f(Ŵ,Xr),yr

)
is independent of the forged watermarks.

We refer readers to our extended version [11] for an elaboration on the ambiguity attack method we
adopted and more detailed experiment results. In the next section, we shall illustrate a solution to
defeat the ambiguity attacks.

3 Embedding passports for DNN ownership verification

The main motivation of embedding digital passports is to design and train DNN models in a way such
that, their inference performances of the original task (i.e. classification accuracy) will be significantly
deteriorated due to the forged signatures. We shall illustrate next first how to implement the desired
property by incorporating the so called passport layers, followed by different ownership protection
schemes that exploit the embedded passports to effectively defeat ambiguity attacks.
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(a) An example in the ResNet layer that consists of
the proposed passporting layers. pl = {plγ , plβ} is the
proposed digital passports where F = Avg(Wl

p ∗
Pl
γ,β) is a passport function to compute the hidden

parameters (i.e. γ and β) given in Eq. (2).

(b) A comparison of CIFAR10 classification accuracies
given the original DNN, proposed DNN with valid
passports, proposed DNN with randomly generated
passports (fake1), and proposed DNN with reverse-
engineered passports (fake2).

Figure 2: (a) Passport layers in ResNet architecture and (b) Classification accuracies modulated by
different passports in CIFAR10, e.g. given counterfeit passports, the DNN models performance will
be deteriorated instantaneously to fend off illegal usage.

3.1 Passport layers

In order to control the DNN model functionalities by the embedded digital signatures i.e. passports,
we proposed to append after a convolution layer a passport layer, whose scale factor γ and bias shift
term β are dependent on both the convolution kernels Wp and the designated passport P as follows:

Ol(Xp) = γlXl
p + βl = γl(Wl

p ∗Xl
c) + βl, (2)

γl = Avg(Wl
p ∗Plγ), βl = Avg(Wl

p ∗Plβ), (3)

in which ∗ denotes the convolution operations, l is the layer number, Xp is the input to the passport
layer and Xc is the input to the convolution layer. O() is the corresponding linear transformation of
outputs, while Plγ and Plβ are the passports used to derive scale factor and bias term respectively.
Fig. 2a delineates the architecture of digital passport layers used in a ResNet layer.

Remark: for DNN models trained with passport se = {Plγ ,Plβ}l, their inference performances
M(N[W, se],Dt, st) depend on the running time passports st i.e.

M(N[W, se],Dt, st) =

{
Mse , if st = se,
Mse , otherwise. (4)

If the genuine passport is not presented st 6= se, the running time performanceMse is significantly
deteriorated because the corresponding scale factor γ and bias terms β are calculated based on the
wrong passports. For instance, as shown in Fig. 2b, a proposed DNN model presented with valid
passports (green) will demonstrate almost identical accuracies as to the original DNN model (red). In
contrast, the same proposed DNN model presented with counterfeit passports (blue), the accuracy
will deteriorate to merely about 10% only.

Remark: the gist of the proposed passport layer is to enforce dependence between scale factor, bias
terms and network weights. As shown by the Proposition 2, it is this dependence that validates the
required non-invertibility to defeat ambiguity.
Proposition 2 (Non-invertible process). A DNN ownership verification scheme V as in Definition 1
is non-invertible, if

I) the fidelity process outcome F
(
N[W,T, s],Dt,Mt, εf

)
depends either on the presented sig-

nature s or trigger set T,

II) with forged passport st 6= se, the DNN inference performanceM(N[W, se],Dt, st) in (Eq. 4)
will deteriorate such that the discrepancy is larger than a threshold i.e. |Mse −Mse | > εf .
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3.2 Sign of scale factors as signature

During learning the DNN, to further protect the DNN models ownership from insider threat (e.g. a
former staff who establish a new start-up business with all the resources stolen from originator), one
can enforce the scale factor γ to take either positive or negative signs (+/-) as designated, so that it
will form a unique signature string (like fingerprint). This process is done by adding the following
sign loss regularization term into the combined loss (Eq. 1):

R(γ,P,B) =

C∑
i=1

max(γ0 − γibi, 0) (5)

in which B = {b1, · · · , bC} ∈ {−1, 1}C consists of the designated binary bits for C convolution
kernels, and γ0 is a positive control parameter (0.1 by default unless stated otherwise) to encourage
the scale factors have magnitudes greater than γ0.

It must be highlighted that the inclusion of sign loss (Eq. 5) enforces the scale factors γ to take either
positive or negative values, and the signs enforced in this way remain rather persistent against various
adversarial attacks. This feature explains the superior robustness of embedded passports against
ambiguity attacks by reverse-engineering shown in Sect. 4.2.

3.3 Ownership verification with passports

Taking advantages of the proposed passport-based approach, we design three new ownership verifica-
tion schemes V that are summarized next and refer readers to Sect. 4 for the experiment results.

V1: Passport is distributed with the trained DNN model

Hereby, the learning process aims to minimize the combined loss function (Eq. 1), in which λt = 0
since trigger set images are not used in this scheme and the sign loss (Eq. 5) is added as the
regularization term. The trained DNN model together with the passport are then distributed to
legitimate users, who perform network inferences with the given passport fed to the passport layers
as shown in Fig. 2a. The network ownership is automatically verified by the distributed passports. As
shown in Table 2 and Fig. 3, this ownership verification is robust to DNN model modifications. Also,
as shown in Fig. 4, ambiguity attacks are not able to forge a set of passport and signature that can
maintain the DNN inference performance.

The downside of this scheme is the requirement to use passports during inferencing, which leads
to extra computational cost by about 10% (see Sect. 4.3). Also the distribution of passports to the
end-users is intrusive and imposes additional responsibility of guarding the passports safely.

V2: Private passport is embedded but not distributed

Herein, the learning process aims to simultaneously achieve two goals, of which the first is to
minimize the original task loss (e.g. classification accuracy discrepancy) when no passport layers
included; and the second is to minimize the combined loss function (Eq. 1) with passports regu-
larization included. Algorithm-wise, this multi-task learning is achieved by alternating between
the minimization of these two goals. The successfully trained DNN model is then distributed to
end-users, who may perform network inference without the need of passports. Note that this is
possible since passport layers are not included in the distributed networks. The ownership verification
will be carried out only upon requested by the law enforcement, by adding the passport layers to the
network in question and detecting the embedded sign signatures with unyielding the original network
inference performances.

Compared with scheme V1, this scheme is easy to use for end-users since no passport is needed and
no extra computational cost is incurred. In the meantime, this ownership verification is robust to
removal attacks as well as ambiguity attacks. The downside, however, is the requirement to access the
DNN weights and to append the passport layers for ownership verification, i.e. the disadvantages of
white-box protection mode as discussed in [2]. Therefore, we propose to combine it with trigger-set
based verification that will be described next.

V3: Both the private passport and trigger set are embedded but not distributed

This scheme only differs from scheme V2 in that, a set of trigger images is embedded in addition to
the embedded passports. The advantage of this, as discussed in [2] is to probe and claim ownership
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CIFAR10
AlexNetp CIFAR10 CIFAR100 Caltech-101

Baseline (BN) - (91.12) - (65.53) - (76.33)
Scheme V1 100 (90.91) 100 (64.64) 100 (73.03)
Baseline (GN) - (90.88) - (62.17) - (73.28)
Scheme V2 100 (89.44) 99.91 (59.31) 100 (70.87)
Scheme V3 100 (89.15) 99.96 (59.41) 100 (71.37)
ResNetp-18

Baseline (BN) - (94.85) - (72.62) - (78.98)
Scheme V1 100 (94.62) 100 (69.63) 100 (72.13)
Baseline (GN) - (93.65) - (69.40) - (75.08)
Scheme V2 100 (93.41) 100 (63.84) 100 (71.07)
Scheme V3 100 (93.26) 99.98 (63.61) 99.99 (72.00)

CIFAR100
AlexNetp CIFAR100 CIFAR10 Caltech-101

Baseline (BN) - (68.26) - (89.46) - (79.66)
Scheme V1 100 (68.31) 100 (89.07) 100 (78.83)
Baseline (GN) - (65.09) - (88.30) - (78.08)
Scheme V2 100 (64.09) 100 (87.47) 100 (76.31)
Scheme V3 100 (63.67) 100 (87.46) 100 (75.89)
ResNetp-18

Baseline (BN) - (76.25) - (93.22) - (82.88)
Scheme V1 100 (75.52) 100 (95.28) 99.99 (79.27)
Baseline (GN) - (72.06) - (91.83) - (79.15)
Scheme V2 100 (72.15) 100 (90.94) 100 (77.34)
Scheme V3 100 (72.10) 100 (91.30) 100 (77.46)

Table 2: Removal Attack (Fine-tuning): Detection/Classification accuracy (in %) of different passport
networks where BN = batch normalisation and GN = group normalisation. (Left: trained with
CIFAR10 and fine-tune for CIFAR100/Caltech-101. Right: trained with CIFAR100 and fine-tune for
CIFAR10/Caltech-101.) Accuracy outside bracket is the signature detection rate, while in-bracket is
the classification rate.

of the suspect DNN model through remote calls of service APIs. This capability allows one, first
to claim the ownership in a black-box mode, followed by reassertion of ownership with passport
verification in a white box mode. Algorithm-wise, the embedding of trigger set images is jointly
achieved in the same minimization process that embeds passports in scheme V2. Finally, it must be
noted that the embedding of passports in both V2 and V3 schemes are implemented through multi-task
learning tasks where we adopted group normalisation [12] instead of batch normalisation [13] that is
not applicable due to its dependency on running average of batch-wise training samples.

4 Experiment results

This section illustrates the experiment results of passport-based DNN models whereas the inference
performances of various schemes are compared in terms of robustness to both removal attacks and
ambiguity attacks. The network architectures we investigated include the well-known AlexNet
and ResNet-18, which are tested with typical CIFAR10 and CIFAR100 classification tasks. These
medium-sized public datasets allow us to perform extensive tests of the DNN model performances.
Unless stated otherwise, all experiments are repeated 5 times and tested against 50 fake passports to
get the mean inference performance. Also, to avoid confusion to the original AlexNet and ResNet
models, we denote AlexNetp and ResNetp-18 as our proposed passport-based DNN models.

4.1 Robustness against removal attacks

Fine-tuning

Table 2 shows that the signatures are detected at near to 100% accuracy for all the ownership
verification schemes in the original task. Even after fine-tuning the proposed DNN models for a
new task (e.g. from CIFAR10 to Caltech-101), almost 100% accuracy are still maintained. Note
that a detected signature is claimed only iff all the binary bits are exactly matched. We ascribe
this superior robustness to the unique controlling nature of the scale factors — in case that a scale
factor value is reduced near to zero, the channel output will be virtually zero, thus, its gradient will
vanish and lose momentum to move towards to the opposite value. Empirically we have not observed
counter-examples against this explanation2.

Model pruning

The aim of model pruning is to reduce redundant parameters without compromise the performance.
Here, we adopt the class-blind pruning scheme in [14], and test our proposed DNN models with
different pruning rates. Figure 3 shows that, in general, our proposed DNN models still maintained
near to 100% accuracy even 60% parameters are pruned, while the accuracy of testing data drops
around 5%-25%. Even if we prune 90% parameters, the accuracy of our proposed DNN models are
still much higher than the accuracy of testing data. As said, we ascribe the robustness against model
pruning to the superior persistence of signatures embedded in the scale factor signs (see Sect. 3.2).

2A rigorous proof of this argument is under investigation and will be reported elsewhere.
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Figure 3: Removal Attack (Model Pruning): Classification accuracy of our passport-based DNN
models on both CIFAR10/CIFAR100 and signature detection accuracy against different pruning rates.
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(a) AlexNetp. (Left) CIFAR10, (Right) CIFAR100.
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(b) ResNetp-18. (Left) CIFAR10, (Right) CIFAR100.

Figure 4: Ambiguity Attack: Classification accuracy of our passport networks with valid passport,
random attack (fake1) and reversed-engineering attack (fake2) on CIFAR10 and CIFAR100.

Ambiguity attack
modes

Attackers have
access to

Ambiguous passport
construction methods

Invertibility
(see Def. 1.V)

Verification scheme
V1

Verification scheme
V2

Verification scheme
V3

fake1 W - Random passport Pr - F (Pr) fail, by large margin Large accuracy ↓ Large accuracy ↓ Large accuracy ↓
fake2 W , {Dr;Dt} - Reverse engineer passport Pe - F (Pe) fail, by moderate margin Moderate accuracy ↓ Moderate accuracy ↓ Moderate accuracy ↓

fake3
W , {Dr;Dt},

{P , S}

- Reverse engineer passport {Pe;Se}
by exploiting original passport P
& sign string S

- if Se = S:
F (Pe) pass, with negligible margin
- if Se 6= S:
F (Pe) fail, by moderate to huge margin

refer to Fig. 5 refer to Fig. 5 refer to Fig. 5

Table 3: Summary of overall passport network performances in Scheme V1, V2 and V3, respectively
under three different ambiguity attack modes, fake.

4.2 Resilience against ambiguity attacks

As shown in Fig. 4, the accuracy of our proposed DNN models trained on CIFAR10/100 classification
task is significantly depending on the presence of either valid or counterfeit passports — the proposed
DNN models presented with valid passports demonstrated almost identical accuracies as to the
original DNN model. Contrary, the same proposed DNN model presented with invalid passports (in
this case of fake1 = random attack) achieved only 10% accuracy which is merely equivalent to a
random guessing. In the case of fake2, we assume that the adversaries have access to the original
training dataset, and attempt to reverse-engineer the scale factor and bias term by freezing the trained
DNN weights. It is shown that in Fig. 4, reverse-engineering attacks are only able to achieve, for
CIFAR10, at best 84% accuracy on AlexNetp and 70% accuracy on ResNetp-18. While in CIFAR100,
for fake1 case, attack on both our proposed DNN models achieved only 1% accuracy; for fake2
case, this attack only able to achieve 44% accuracy for AlexNetp and 35% accuracy for ResNetp-18.

Table 3 summarizes the accuracy of the proposed methods under three ambiguity attack modes, fake
depending on attackers’ knowledge of the protection mechanism. It shows that all the corresponding
passport-based DNN models accuracies are deteriorated to various extents. The ambiguous attacks
are therefore defeated according to the fidelity evaluation process, F (). We’d like to highlight that
even under the most adversary condition, i.e. freezing weights, maximizing the distance from the
original passport P , and minimizing the accuracy loss (in layman terms, it means both the original
passports and scale signs are exploited due to insider threat, and we class this as fake3), attackers
are still unable to use new (modified) scale signs without compromising the network accuracies.
As shown in Fig. 5, with 10% and 50% of the original scale signs are modified, the CIFAR100
classification accuracy drops about 5% and 50%, respectively. In case that the original scale sign
remains unchanged, the DNN model ownership can be easily verified by the pre-defined string of
signs. Also, Table 3 shows that attackers are unable to exploit Dt to forge ambiguous passports.

Based on these empirical studies, we decide to set the threshold εf in Definition 1 as 3% for AlexNetp
and 20% for ResNetp-18, respectively. By this fidelity evaluation process, any potential ambiguity
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(a) Verification scheme V1
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(b) Verification scheme V2
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(c) Verification scheme V3

Figure 5: Ambiguity Attack: Classification accuracy on CIFAR100 under insider threat (fake3) on
three verification schemes. It is shown that when a correct signature is used, the classification accuracy
is intact, while for a partial correct signature (sign scales are modified around 10%), the performance
will immediately drop around 5%, and a totally wrong signature will obtain a meaningless accuracy
(1%-10%). Based on the threshold ≤ εf = 3% for AlexNetp and by the fidelity evaluation process F ,
any potential ambiguity attacks (even with partially correct signature) are effectively defeated.

Scheme V1 Scheme V2 Scheme V3

Training
- Passport layers added
- Passports needed
- 15%-30% more training time

- Passport layers added
- Passports needed
- 100%-125% more training time

- Passport layers added
- Passports & Trigger set needed
- 100%-150% more training time

Inferencing - Passport layers & Passports needed
- 10% more inferencing time

- Passport layers & Passport NOT needed
- NO extra time incurred

- Passport layers & Passport NOT needed
- NO extra time incurred

Verification - NO separate verification needed - Passport layers & Passports needed - Trigger set needed (black-box verification)
- Passport layers & Passports needed (white-box verification)

Table 4: Summary of our proposed passport networks complexity for V1, V2 and V3 schemes.

attacks are effectively defeated. In summary, extensive empirical studies have shown that it is
impossible for adversaries to maintain the original DNN model accuracies by using counterfeit
passports, regardless of they are either randomly generated or reverse-engineered with the use of
original training datasets. This passport dependent performances play an indispensable role in
designing secure ownership verification schemes that are illustrated in Sect. 3.3.

4.3 Network Complexity

Table 4 summarizes the complexity of passport networks in various schemes. We believe that it is the
computational cost at the inference stage that is required to be minimized, since network inference is
going to be performed frequently by the end users. While extra costs at the training and verification
stages, on the other hand, are not prohibitive since they are performed by the network owners, with
the motivation to protect the DNN model ownerships. Nonetheless, we tested a larger network (i.e.
ResNetp-50) and its training time increases 10%, 182% and 191% respectively for V1, V2 and V3
schemes. This increase is consistent with those smaller models i.e. AlexNetp and ResNetp-18.

5 Discussions and conclusions

Considering billions of dollars have been invested by giant and start-up companies to explore new
DNN models virtually every second, we believe it is imperative to protect these inventions from
being stolen. While ownership of DNN models might be resolved by registering the models with
a centralized authority, it has been recognized that these regulations are inadequate and technical
solutions are urgently needed to support the law enforcement and juridical protections. It is this
motivation that highlights the unique contribution of the proposed method in unambiguous verification
of DNN models ownerships.

Methodology-wise, our empirical studies re-asserted that over-parameterized DNN models can
successfully learn multiple tasks with arbitrarily assigned labels and/or constraints. While this
assertion has been theoretically proved [15] and empirically investigated from the perspective of
network generalization [16], its implications to network security in general remain to be explored.
We believe the proposed modulation of DNN performance based on the presented passports will play
an indispensable role in bringing DNN behaviours under control against adversarial attacks, as it has
been demonstrated for DNN ownership verifications.
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