
Under review as a conference paper at ICLR 2020

STABILIZING DARTS WITH AMENDED GRADIENT ES-
TIMATION ON ARCHITECTURAL PARAMETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable neural architecture search has been a popular methodology of ex-
ploring architectures for deep learning. Despite the great advantage of search
efficiency, it often suffers weak stability, which hinders it from being applied to
a large search space or being flexibly adjusted to different scenarios. This paper
investigates DARTS, the currently most popular differentiable search algorithm,
and points out an important factor of instability, which lies in its approximation on
the gradients of architectural parameters. In the current status, the optimization
algorithm can converge to another point which results in dramatic inaccuracy in
the re-training process. Based on this analysis, we propose an amending term for
computing architectural gradients by making use of a direct property of the opti-
mality of network parameter optimization. Our approach mathematically guaran-
tees that gradient estimation follows a roughly correct direction, which leads the
search stage to converge on reasonable architectures. In practice, our algorithm
is easily implemented and added to DARTS-based approaches efficiently. Exper-
iments on CIFAR and ImageNet demonstrate that our approach enjoys accuracy
gain and, more importantly, enables DARTS-based approaches to explore much
larger search spaces that have not been studied before.

1 INTRODUCTION

Neural architecture search (NAS) has been an important topic in the research area of automated
machine learning (AutoML). The idea is to replace the manual way of designing neural network
architectures with an automatic algorithm, by which deep learning methods become more flexible
in fitting complex data distributions, e.g., large-scale image datasets. Early efforts of NAS involved
using heuristic search methods such as reinforcement learning (Zoph & Le, 2017; Zoph et al., 2018)
and evolutionary algorithms (Real et al., 2017; Xie & Yuille, 2017) to sample networks from a large
search space, and optimizing each sampled network individually to evaluate its quality. Despite no-
table successes obtained by this methodology, it often requires a vast amount of computation, which
obstacles its applications in the scenarios of limited resources. Inspired by the idea of reusing and
sharing parameters among trained networks, DARTS (Liu et al., 2019b) was designed as a ‘one-shot’
solution of NAS. The major difference from the aforementioned methods is a differentiable formu-
lation of architecture search and an end-to-end mechanism which optimizes model weights (such
as convolution) and architectural weights simultaneously. Recently, improvements upon DARTS
were made in various aspects (Chen et al., 2019; Xu et al., 2019; Liang et al., 2019), making it a
reasonable tradeoff between search cost and performance.

Despite its broad applications, the current pipeline of DARTS (or, generally speaking, differentiable
NAS approaches) suffers a critical weakness known as instability. Researchers reported (Liang
et al., 2019) that DARTS-based algorithms can sometimes generate weird architectures that produce
considerably worse accuracy than those generated in other individual runs, or even significantly
worse than randomly generated architectures. There indeed exist tricks designed by human exper-
tise (Chen et al., 2019; Nayman et al., 2019; Liang et al., 2019) to alleviate this issue, but we point
out that these approaches violated the ideology of NAS, which is to maximally prevent human
interventions. Moreover, even with such add-ons, a dramatic property of DARTS persists and has
not been studied carefully in prior work. When DARTS, as well as its variants, gets trained for a
longer time, e.g., from the default number of 50 epochs to 200 epochs, we surprisingly observe that
all these approaches converge to very similar architectures, in which almost all edges are occupied
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by skip-connect (a.k.a., identity). These architectures, with fewer trainable parameters, are often
far from producing high accuracy in particular on large datasets like ImageNet, but they somehow
produce sufficiently high validation accuracy in the search stage. In other words, convergence in
search often leads to bad performance in re-training. This is why some previous DARTS-based
approaches advocated for early termination (Liang et al., 2019), a practical but non-essential solu-
tion. Also, we conjecture that early termination also contributes to the lack of stability and, more
importantly, trustfulness, of DARTS-based approaches.

This paper delves deep into the inconsistency between convergence and performance. We show that
the devil lies in optimizing the loss function of the super-network, Lval(ω

?(α) ,α) (ω andα denote
network and architectural parameters, respectively, and ω?(α) is the global optimum of ω givenα),
in which ω and α get updated alternately. Following the chain rule, ∇αLval(ω

?(α) ,α)|α=αt

equals to ∇αLval(ω,α)|ω=ω?(αt),α=αt
+ ∇αω?(α)|α=αt

· ∇ωLval(ω,α)|ω=ω?(αt),α=αt
, in

which the first term is easy to compute while the second term is not, mainly because ω?(α) is
difficult to estimate, and so is the term of ∇αω?(α)|α=αt

. DARTS-based approaches performed
inaccurate approximation for this purpose, in which the first-order version of DARTS directly dis-
carded the second term – but this term is often numerically significant, and the second-order ver-
sion of DARTS applied an approximation to this term which is not mathematically guaranteed (see
Section 3.4). Consequently, the accuracy of ∇αLval(ω

?(α) ,α)|α=αt
cannot be guaranteed, and

hence the update of α can be problematic. To the best of our knowledge, this issue is not studied by
existing DARTS-based approaches.

To deal with this problem, we propose an alternative way of computing ∇αω?(α)|α=αt
. We make

use of an important property, i.e., ∇ωLtrain(ω,α)|ω=ω?(α†),α=α† ≡ 0 holds for any α†, which
directly comes from the optimality of ω?(α). Differentiating both sides with respect to α†, we ob-
tain a new equality which enables computing derives ∇αω?(α)|α=αt

with the inverse of the Hesse
matrix, ∇2

ωLtrain(ω,α)
∣∣
ω=ω?(α),α=αt

. This idea enables us to achieve a more accurate approxi-
mation on ∇αLval(ω

?(α) ,α)|α=αt
when ω?(α) is not available. Mathematically, we prove that

when we have ωest ≈ ω?(αt), the inner angle between the second term and our approximate term
is smaller than 90 degrees. Note that this property does not hold in existing DARTS-based algo-
rithms. Our final solution involves using the amended second term of ∇αLval(ω

?(α) ,α)|α=αt

meanwhile keeping the first term unchanged, which goes one step further in optimizing the super-
network, which reflects in a higher validation accuracy in the search stage.

Our approach is very easily implemented. The overall computational overhead is comparable to the
second-order version of DARTS. Experiments are performed on image classification, with popular
datasets including CIFAR and ImageNet being used. In all experiments, we allow the search stage
to come to a complete convergence and report competitive accuracy among current state-of-the-
arts. The stability of our approach also enables us to close the gap between hyper-parameters of
search and evaluation, as well as explore more complex search spaces, which are believed to be
correct directions of NAS but existing DARTS-based approaches would mostly fail. Therefore,
we believe our algorithm can expand the application scenario of differentiable NAS methods in
particular DARTS-based approaches.

The remainder of this paper is organized as follows. We briefly review related work in Section 2,
and illustrate our approach of amending architectural gradients in Section 3. After experiments are
shown in Section 4, we conclude this work in Section 5.

2 RELATED WORK

With the era of big data and powerful computational resources, deep learning (LeCun et al., 2015), in
particular, deep neural networks (Krizhevsky et al., 2012), have rapidly grown up to be the standard
tool for learning representations in a complicated feature space. Recent years have witnessed the
trend of using deeper (He et al., 2016) and denser (Huang et al., 2017) networks to boost recognition
performance, while there is no justification that whether these manually designed architectures are
best for each specific task, e.g., image classification. To advance, researchers started considering the
possibility of learning network architectures automatically from data, which led to the appearance
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of neural architecture search (NAS) (Zoph & Le, 2017), which is now popular and known as a sub
research field in automated machine learning (AutoML).

The common pipeline of NAS starts with a pre-defined space of network operators. Since the search
space is often large (e.g., containing 1010 or even more possible architectures), it is unlikely that
exhaustive search is tractable, and thus heuristic search methods are widely applied for speedup.
Typical examples include reinforcement learning (Zoph & Le, 2017; Zoph et al., 2018; Liu et al.,
2018a) and evolutionary algorithms (Real et al., 2017; Xie & Yuille, 2017; Real et al., 2019). These
approaches followed a general pipeline that samples a set of architectures from a learnable distri-
bution, evaluates them and learns from rewards by updating the distribution. In an early age, each
sampled architecture underwent an individual training process from scratch and thus the overall
computational overhead is large, e.g., hundreds of even thousands of GPU-days. To alleviate the
burden, researchers started to share computation among training sampled architectures, with the key
lying in reusing network weights trained previously (Cai et al., 2018) or starting from a well-trained
super-network (Pham et al., 2018). These efforts shed light on the so-called one-shot architecture
search methods, which required training the super-network only once and thus ran more efficiently,
e.g., two or three orders of magnitude faster than conventional approaches.

Within the scope of one-shot architecture search, an elegant solution lies in jointly formulating
architecture search and approximation, so that it is possible to apply end-to-end optimization for
training network and architectural parameters simultaneously. This methodology is known today
as differentiable NAS, and a typical example is DARTS (Liu et al., 2019b), which constructed a
super-network with all possible operators contained and decoupled, and the goal is to determine the
weights of these architectural parameters, followed by pruning and re-training stages. This kind of
approach allowed more flexible search space to be constructed, unlike conventional approaches with
either reinforcement or evolutionary learning, which suffer from the computational burden and thus
must constrain search within a relatively small search space (Tan & Le, 2019).

Despite the inspirations brought by differentiable NAS, these approaches still suffer a few critical
issues that narrow down their applications in practice. One significant drawback lies in the lack
of stability, which reflects in the way that results of differentiable search can be impacted by very
small perturbations, e.g., initialization of architectural weights, training hyper-parameters, and even
randomness in the training process. Existing solutions include running search for several individual
times and choosing the best one in validation (Liu et al., 2019b), or using other kinds of techniques
such as decoupling modules (Cai et al., 2019; Guo et al., 2019), adjusting search space during
optimization (Noy et al., 2019; Chen et al., 2019; Nayman et al., 2019), regularization (Xu et al.,
2019), early termination (Liang et al., 2019), etc., however, these approaches seemed to develop
heuristic remedies rather than analyze it from the mathematical fundamentals, e.g., how instability
happens in mathematics.

In this paper, we investigate the stability issue in mathematics and show that the results produced
by the current approaches are much less reliable than people used to think. Then, we fix this issue
by amending optimization of the architectural parameters, so that each step of the update gets closer
to the correct direction. We show great improvement on stability in a fundamental task, image
classification, while we believe our approach can be applied to a wide range of tasks including
object detection (Ghiasi et al., 2019), semantic segmentation (Liu et al., 2019a), hyper-parameter
learning (Cubuk et al., 2019), etc.

3 STABILIZING DARTS WITH AMENDED GRADIENTS

In this section, we first show that DARTS can fail dramatically when it gets trained till convergence,
and then we mathematically analyze how this problem is related to inaccurate approximation in
optimization, following which we present our solution to amend this error and thus stabilize DARTS.

3.1 PRELIMINARIES: DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

Differentiable NAS approaches start with defining a super-network, which is constrained in a search
space with a pre-defined number of layers and a limited set of neural operators. The core idea is
to introduce a ‘soft’ way operator selection (i.e., using a weighted sum over the outputs of a few
operators instead of taking the output of only one), so that optimization can be done in an end-to-
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Figure 1: Left: a typical search process of the first-order DARTS, in which 200 search epochs are
used. Red, green and blue lines indicate the average weight of none, the ratio of dominant skip-
connect operators (over 14 normal edges) and the re-training accuracy, with respect to the number
of search epochs, respectively. Right: the normal cell obtained after 200 search epochs, in which all
preserved operators are skip-connect. We executed both first-order and second-order DARTS for
several times, and such failure consistently happens in each individual run.

end manner. Mathematically, the super-network is a function f(x;ω,α), with x being input, and
parameterized by network parameters ω (e.g., convolutional kernels) and architectural parameters
α (e.g., indicating the importance of each operator between each pair of layers). f(x;ω,α) is
differentiable to both ω and α, so that gradient-based approaches can be applied for optimization.

In the example of DARTS, f(x;ω,α) is composed of a few cells, each of which contains N nodes,
and there is a pre-defined set, E , denoting which pairs of nodes are connected. For each connected
node pair (i, j), i < j, node j takes the output of node i, xi, as a part of its input, and propagate it
through a pre-defined operator set, O, with all outputs summed up:

y(i,j) (xi) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o )

· o(xi). (1)

Here, a softmax term is computed by architectural weights to normalize outputs. Within each unit of
the search process, ω andα get optimized alternately. After search, the operator o with the maximal
value of α(i,j)

o is preserved for each edge (i, j). All network parameters ω are discarded and the
obtained architecture is re-trained from scratch1.

3.2 DARTS FAILS: THE CONTRADICTORY BETWEEN CONVERGENCE AND PERFORMANCE

Our research is motivated by an observation that DARTS, at the end of a regular training process
with, say, 50 epochs (Liu et al., 2019b), has not yet arrived at or even got close to convergence, yet the
weight of the none (a.k.a., zero) operator is consistently the largest on each edge of the normal cell.
To verify this, we increase the length of each training stage by 4 times, i.e., from 50 to 200 epochs.
Two weird phenomena are observed, both of which are shown in the left part of Figure 1. First, the
weight of the none operator monotonically goes up – at 200 epochs, the weight has achieved 0.97
on each edge of the normal cells, however, this operator is not considered in the final architecture.
Second, almost all preserved operators are skip-connect (a.k.a., identity), a parameter-free operator
that contributes little to feature learning – and surprisingly, it occupies 30% to 70% of the weight
remained by none. Such a network has much fewer parameters than a well-designed one, and thus it
usually reports unsatisfying performance at the re-training stage. This indicates that, in the context
of DARTS, there exists a contradictory between search convergence and re-training accuracy.

We point out that this is a critical issue, which suggests that when using DARTS-based approaches,
one does not hope the search process to achieve convergence as it implies bad performance. In other
words, each ‘successful’ architecture comes from an early-terminated search process. Consequently,
the initialization of parameters (α andω), the hyper-parameters of search (e.g., learning rate) and the
time of terminating search become important and thus need to be determined by experience (Liang
et al., 2019). This weakens the stability as well as explainability of search and, more importantly,

1For simplicity, we ignore a lot of technical details, which we simply follow the original implementation.
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violates the fundamental ideology of AutoML, i.e., maximally reducing human interference and
determining the best architecture by training data.

3.3 DELVING DEEP INTO MATHEMATICS: PROBLEM AND SOLUTION

We point out that the reason lies in inaccurate estimation of the gradient with respect to α, namely,
∇αLval(ω

?(α) ,α)|α=αt
. Following the chain rule of gradients, this quantity equals to

∇αLval(ω,α)|ω=ω?(αt),α=αt
+ ∇αω?(α)|α=αt

· ∇ωLval(ω,α)|ω=ω?(αt),α=αt
, (2)

in which the first term is relatively easy to compute (as is done by the first-order version of DARTS),
while the second term, in particular ∇αω?(α)|α=αt

, is not. The first-order version of DARTS
directly discarded this term, but it often has significant numerical values which are not negligible.
The second-order version of DARTS indeed proposed an approximation to this term, but, as we
shall see in the next subsection, can incur a large approximation error (the inner-product between the
correct and estimated directions can be smaller than 0). Consequently, there can be a significant gap
between the estimated and true values of ∇αLval(ω

?(α) ,α)|α=αt
. Such inaccuracy accumulates

with every update on α, and gradually causes α to converge to weird solutions that are far from
optimum, e.g., the entire super-network is dominated by none and skip-connect operators. We name
this phenomenon as the gradient trap during optimization.

To estimate ∇αω?(α)|α=αt
, we first make a reasonable assumption that ∇αω?(α)|α=αt

has finite
values. Then, we make use of an important property, i.e., ∇ωLtrain(ω,α)|ω=ω?(α†),α=α† ≡ 0

holds for any α†. This is property directly comes from the optimality of ω?(α), but it has never
been used by existing approaches. Applying differentiation with respect to any α† to both sides of
this equality, we have∇α†

(
∇ωLtrain(ω,α)|ω=ω?(α†),α=α†

)
≡ 0. When α† = αt, it becomes:

∇α†

(
∇ωLtrain(ω,α)|ω=ω?(α†),α=α†

)∣∣∣
α†=αt

= 0. (3)

Again, applying the chain rule to the left-hand side gives:

∇2
α,ωLtrain(ω,α)

∣∣
ω=ω?(αt),α=αt

+ ∇αω?(α)|α=αt
· ∇2

ωLtrain(ω,α)
∣∣
ω=ω?(αt),α=αt

= 0,

(4)
where we use the notation ∇2

α,ω(·) ≡ ∇α(∇ω(·)) throughout the remaining part of this paper.
Here, ∇2

ωLtrain(ω,α)
∣∣
ω=ω?(αt),α=αt

.
= H is the Hesse matrix corresponding to the optimum

ω?(αt), which is symmetric and positive-definite, and thus invertible. This gives us an estimation
that ∇αω?(α)|α=αt

= − ∇2
α,ωLtrain(ω,α)

∣∣
ω=ω?(αt),α=αt

·H−1. Substituting it into Equation 2
gives:

∇αLval(ω
?(α) ,α)|α=αt

= ∇αLval(ω,α)|ω=ω?(αt),α=αt
−

∇2
α,ωLtrain(ω,α)

∣∣
ω=ω?(αt),α=αt

·H−1 · ∇ωLval(ω,α)|ω=ω?(αt),α=αt
. (5)

Note that Equation 5 does not involve any approximation. The only issue comes from the term of
H−1, which is computationally intractable due to the large dimensionality of H (it is related to the
number of network parameters, which often exceeds one million in a typical super-network).

3.4 APPROXIMATIONS IN COMPUTING THE INVERSE HESSE MATRIX

Let us denote Equation 5 in an abbreviated form of g = g1 + g2, in which g1, the first-order term
of DARTS, is easily computed, while g2 is not due to the computation of H−1. Here, we propose
an alternative solution which constructs an approximation term g′2:

g′2 = −η · ∇2
α,ωLtrain(ω,α)

∣∣
ω=ω?(αt),α=αt

·H · ∇ωLval(ω,α)|ω=ω?(αt),α=αt
, (6)

where η > 0 is named the amending coefficient. In what follows, we show that g′2 is indeed a
reasonable approximation of g2. Since

〈g′2,g2〉 = η · ∇ωLval(ω,α)|ω=ω?(αt),α=αt

> ·H−1 · ∇2
ω,αLtrain(ω,α)

∣∣
ω=ω?(αt),α=αt

·

∇2
α,ωLtrain(ω,α)

∣∣
ω=ω?(αt),α=αt

·H · ∇ωLval(ω,α)|ω=ω?(αt),α=αt
, (7)
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the product of the two terms between H−1 and H is a semi-positive-definite matrix, and so is the
matrix after similarity transformation, which directly gives 〈g′2,g2〉 > 0.

In summary, we decompose the gradient of architectural parameters into two terms, g1 and g2,
compute g1 directly and use an approximation to g2 so that the angle between the accurate
and approximated terms is smaller than 90 degrees. In comparison, existing DARTS-based ap-
proaches either discarded g2 entirely or used a mathematically non-explainable approximation
g′′2 = −η · ∇2

α,ωLtrain(ω,α)
∣∣
ω=ω?(αt),α=αt

· I · ∇ωLval(ω,α)|ω=ω?(αt),α=αt
. None of them

are reasonable because g2 can be large, yet there is no guarantee that 〈g′′2 ,g2〉 > 0, i.e., the second-
order DARTS can lead the algorithm to a wrong direction.

The rationality of our approach is also verified by the validation process, i.e., in updating architec-
tural parameters. The first-order DARTS, by directly discarding g2, reported an average validation
accuracy of 90.5% in search space S1 (see Section 4.1.3) on the CIFAR10 dataset. The second-order
DARTS added g′′2 , which has no guarantee that 〈g′′2 ,g2〉 > 0, and thus resulted in a reduced val-
idation accuracy. Our approach, by adding g′2, achieves a validation accuracy of 91.5%, implying
that our optimization works better than DARTS. This eventually results in the advantage of searched
architectures, which will be verified in Section 4.1.2.

The remainder part of computing g′2 simply follows conventions, which we replace ω?(α) with
the current ωest as the most accurate approximation we can get2. Computing g′2 with Equation 6
requires both ∇2

α,ωLtrain(ω,α)
∣∣
ω=ω?(αt),α=αt

and ∇ωLval(ω,α)|ω=ω?(αt),α=αt
, while DARTS

needs the former one withω?(αt) estimated in two steps. Therefore, computing Equation 6 requires
similar computational overhead compared to the second-order version of DARTS. In experiments,
each search epoch requires around 0.02 GPU-days on the standard 8-cell space on CIFAR10.

3.5 DISCUSSIONS AND RELATIONSHIP TO PRIOR WORK

The core benefit brought by our approach is the consistency between search and evaluation. This is
indeed a fundamental idea of NAS, but it was ignored by existing approaches since they have been
perplexed by a more significant error caused by inaccurate optimization. After the error, we point
out a few prior conventions that need to be adjusted accordingly, including using different depths
(e.g., DARTS used 8 cells in search and 20 cells in evaluation) and widths (e.g., DARTS used a
basic channel number of 16 in search and 36 in evaluation) during search and evaluation, as well as
using different training strategies (e.g., during re-training, a few regularization techniques including
Cutout (DeVries & Taylor, 2017), Dropout (Srivastava et al., 2014) and auxiliary loss were used,
but none of them appeared in search). More importantly, the search process was followed by edge
removal (8 out of 14 connections were preserved) which caused a significant difference between the
network architectures of search and evaluation. Our approach provides the opportunity to bridge
the gap between search and evaluation, which we will show in Section 4.1.2 that unifying these
hyper-parameters leads to better performance.

A few prior differentiable search approaches noticed the issue of instability, but they chose to solve
it in different manners. For example, P-DARTS (Chen et al., 2019) fixed the number of preserved
skip-connect operators, PC-DARTS (Xu et al., 2019) used edge normalization to eliminate the none
operator, while XNAS (Nayman et al., 2019) and DARTS+ (Liang et al., 2019) introduced a few
human expertise to stabilize search. However, we point out that (i) either P-DARTS or PC-DARTS,
with carefully designed methods or tricks, can also fail in a sufficiently long search process (more
than 200 epochs); and that (ii) XNAS and DARTS+, by adding human expertise, somewhat violated
the design nature of AutoML, in which one is expected to avoid introducing too many hand-designed
rules.

Another line of NAS, besides differentiable methods, is to use either reinforcement learning or an
evolutionary algorithm as a controller of heuristic search and train each sampled network to get
some kind of rewards, e.g., validation accuracy. In the viewpoint of optimization, this pipeline
mainly differs from the differentiable one in that optimizing α is decoupled from optimizing ω, so

2This raises another benefit of using g′2 to approximate g2. Note that g2 (Equation 5) requires computing
H−1 while g′2 (Equation 6) only requires H. The existence of H−1 is only guaranteed at ω = ω?(α), and
thus the estimation can be quite inaccurate even if ωest gets sufficiently close to ω?(α). Therefore, using H
itself is more friendly in this scenario.
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that it does not require ω to arrive at ω∗, but only need a reasonable approximation of ω∗ to predict
model performance – this is an important reason that such algorithms often produce stable results.
Our approach sheds light on introducing a similar property, i.e., robustness to approximated ω?,
which helps in stabilizing differentiable search approaches.

4 EXPERIMENTS

4.1 RESULTS ON CIFAR10

The CIFAR10 dataset (Krizhevsky & Hinton, 2009) has 50,000 training and 10,000 testing images,
sized 32 × 32, and equally distributed over 10 classes. We mainly use this dataset to evaluate the
stability of our approach, as well as analyze the impacts of different search options and parameters.

4.1.1 IMPACT OF THE AMENDING COEFFICIENT

We first investigate how the amending coefficient, η, defined in Equation 6, impacts architecture
search. We search and re-train similarly as DARTS. During the search, all operators are assigned
equal weights on each edge. We use a base channel number of 16, and a batch size of 96. An
Adam optimizer is used to update architectural parameters, with a learning rate of 0.0003, a weight
decay of 0.001 and a momentum of (0.5, 0.999). The number of epochs is to be discussed later.
During re-training, the base channel number is increased to 36. An SGD optimizer is used with an
initial learning rate of 0.025, decaying following the cosine annealing rule and arriving at 0 after
600 epochs. The weight decay is set to be 0.0003, and the momentum is 0.9.

To arrive at convergence, we run the search stage for 500 epochs. We evaluate different η values
from 0 to 1, and the architectures corresponding to η = 0 (equivalent to DARTS), η = 0.1 and
η = 1 are summarized in Figure 2. We can see that η = 0.1 converges, after 500, into a reasonable
architecture that achieves an error rate of 3.08% on CIFAR10. We emphasize that, even with more
search epochs, this architecture is not likely to change, as the preserved operator on each edge has a
weight not smaller than 0.5, and most of these weights are still growing gradually.

When η is very small, e.g., η = 0.001 or η = 0.01, the change brought by this amending term to
architecture search is ignorable, and our approach shows almost the same behavior as the first-order
version of DARTS, i.e., η = 0. In addition, when η grows up, e.g., from 0.001 to 0.01, although
the search process eventually runs into an architecture with all skip-connect operators, the number
of epochs needed for a complete failure is significantly postponed, which verifies that the amending
term indeed pulls architecture search away from the gradient trap.
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Figure 2: Normal (left) and reduction (right) cells (the standard DARTS space) obtained by different
amending coefficients, namely, η = 0 (top), η = 0.1 (middle) and η = 1 (bottom).
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On the other hand, if we use a sufficiently large η value, e.g., η = 1, the amending term, g′2, can
dominate optimization, so that the first term, i.e., the gradient of architectural parameters, has lim-
ited effects in updating α. Note that the amending term is closely related to network regularization,
therefore, in the scenarios of a large η, the network significantly prefers avg-pooling to other opera-
tors, as avg-pooling can smooth feature maps and avoid over-fitting. However, avg-pooling is also a
parameter-free operator, so the performance of such architectures is also below satisfaction.

Following these analyses, we simply use η = 0.1 for all later experiments. We do not tune η very
carefully, though it is possible to determine η automatically using a held-out validation set. Besides,
we find that the best architecture barely changes after 100 search epochs, which we fix the total
length to be 100 epochs in all remaining experiments.

4.1.2 CONSISTENCY BETWEEN SEARCH AND EVALUATION

As discussed in Section 3.5, it is important to alleviate the difference between search and evaluation.
We make the following modifications, listed from most to least important. First, to avoid edge
removal, we fix the edges in each cell, so that each node i is connected to node i − 1 and the
least indexed node (denoted by ck−2 in most conventions), resulting in 8 edges in each cell. Note
that our approach also works well with all 14 edges preserved, but we have used 8 edges to be
computationally fair to DARTS. Second, we unify the width (the number of basic channels) as 36
for both search and evaluation. Third, we add normalization techniques, including Cutout (DeVries
& Taylor, 2017), Dropout (Srivastava et al., 2014) and an auxiliary loss tower, into the search stage.

We use the amending coefficient η = 0.1 learned from previous experiments, i.e., without modifica-
tion, the searched architecture, denoted by Aorig, is shown in the middle column of Figure 2. After
modification, the obtained architecture, denoted by Anew, is shown in Figure 3. We re-train both
networks on CIFAR10, with or without the option that stacking duplicate cells to make the network
deeper (with 20 cells). With a standard re-training process, Aorig reports a 3.67% error with 8 cells,
and a 3.08% error with 20 cells; and the corresponding numbers are 3.20% and 2.81% for Anew.
We find that Anew is consistently better than Aorig, which suggests that alleviating the gap indeed
helps. This also reminds us of the significant depth gap (Chen et al., 2019) between search and
re-training (the network has 8 cells in search, but 20 cells in re-training), and this gap also obstructs
our approach from achieving better performance. We will investigate this issue in the following part.

4.1.3 EXPLORING MORE COMPLEX SEARCH SPACES

We note tremendous efforts made by existing approaches to alleviate the depth gap, while our so-
lution is a direct one, thanks to the stability of our approach which enables us to directly explore
larger search spaces. Here, we denote the original search space used in DARTS as S1, which has six
normal cells and two reduction cells, and all normal cells share the same set of architectural param-
eters and so do the reduction cells. Note that we have fixed the edges in this space, resulting in the
total number of possible architectures to reduce from 1.1 × 1018 to 3.3 × 1013. We also explore a
more complex search space, denoted by S2, in which we relax the constraint that either normal cells
or reduction cells should be the same, and also the number of cells increases from 8 to 20, to be
applied in re-training. Here, limited by GPU memory, we cannot support all seven operators to be
searched, so we only choose two, namely skip-connect and sep-conv-3x3, which have very different
properties. This setting allows a total of 1.5× 1048 architectures to appear, much larger than S1.

Results are listed in Table 1. In S1, our approach achieves a moderate error rate of 2.81%, mainly
because the assumption of consistency between search and re-training does not hold. In S2, with
directly searching in deep architectures, our result is significantly boosted (an error rate of 2.60%,
the architecture is shown in the middle row of Figure 3). Again, we emphasize that we report re-
training results based on an converged architecture, which stands out from existing DARTS-based
approaches which required early termination.

In S2, we compare our approach against both DARTS (no amending term) and random search. We
observe that DARTS produces weird architectures (the bottom row of Figure 3), that high-layer
cells are mostly occupied by skip-connect, which is not likely to fully utilize the ability of the super-
network. Regarding random search, we follow DARTS by randomly sampling 20 valid architectures
from each of S1 and S2, and using a small validation dataset to choose the best two architectures
for re-training. Given a fixed number of probes, it becomes more and more difficult to sufficiently
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Figure 3: Top: normal and reduction cells found in S1. Middle & Bottom: the overall architecture
found in S2 by DARTS, with and without the amended term, in which red and blue edges indicate
skip-connect and sep-conv-3x3 operators, respectively.

explore a large space. The deficits of DARTS and random search on CIFAR10 are 0.25% and
0.29%, respectively, which do not seem to be very large arguably because CIFAR10 is relatively
easy and our edge-fixed search space guarantees sufficient depth. However, when we transfer these
architectures to ImageNet, the deficits become much larger, i.e., with 1.7% and 0.8% top-1 accuracy
drops, respectively (DARTS produces inferior performance to random search). These results remind
us of prior work (Xie et al., 2019) which claimed that random search works sufficiently well in large
search spaces. Here, we leave a comment on this debate, demonstrating that a large space indeed
raises challenges to architecture search, but a stabilized search algorithm still has the ability of to
find more powerful architectures.

4.1.4 COMPARISON TO THE STATE-OF-THE-ARTS

Finally, we compare our approach with recent approaches, in particular, differentiable ones. Result
are shown in Table 1. Our approach produces competitive results among state-of-the-arts, although
it does not seem to beat others. We note that existing approaches often used additional tricks, e.g., P-
DARTS assumed a fixed number of skip-connect operators, which shrinks the search space (so as to
guarantee stability). More importantly, all these differentiable search approaches must be terminated
in an early stage, which makes them less convincing as search has not arrived at convergence. These

Architecture Test Err. Params Search Cost Search Method
(%) (M) (GPU-days)

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual
ENAS (Pham et al., 2018) w/ Cutout 2.89 4.6 0.5 RL
NASNet-A (Zoph et al., 2018) w/ Cutout 2.65 3.3 1800 RL
NAONet-WS (Luo et al., 2018) 3.53 3.1 0.4 NAO
Hireachical Evolution (Liu et al., 2018b) 3.75±0.12 15.7 300 evolution
AmoebaNet-B (Real et al., 2019) w/ Cutout 2.55±0.05 2.8 3150 evolution
PNAS (Liu et al., 2018a) 3.41±0.09 3.2 225 SMBO
DARTS (first-order) (Liu et al., 2019b) w/ Cutout 3.00±0.14 3.3 0.4 gradient-based
DARTS (second-order) (Liu et al., 2019b) w/ Cutout 2.76±0.09 3.3 1.0 gradient-based
SNAS (moderate) (Xie et al., 2018) w/ Cutout 2.85±0.02 2.8 1.5 gradient-based
ProxylessNAS (Cai et al., 2019) w/ Cutout 2.08 - 4.0 gradient-based
P-DARTS (Chen et al., 2019) w/ Cutout 2.50 3.4 0.3 gradient-based
BayesNAS (Zhou et al., 2019) w/ Cutout 2.81±0.04 3.4 0.2 gradient-based
PC-DARTS (Xu et al., 2019) w/ Cutout 2.57±0.07 3.6 0.1 gradient-based
Amended-DARTS, S1, w/ Cutout 2.81±0.21 3.5 1.0 gradient-based
Amended-DARTS, S2, w/ Cutout 2.60±0.15 3.6 1.1 gradient-based

Table 1: Comparison with state-of-the-art network architectures on CIFAR10.
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Architecture Test Err. (%) Params ×+ Search Cost Search Method
top-1 top-5 (M) (M) (GPU-days)

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 - manual
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 - manual
ShuffleNet 2× (v1) (Zhang et al., 2018) 26.4 10.2 ∼5 524 - manual
ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 - ∼5 591 - manual
NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 1800 RL
MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 388 - RL
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 588 225 SMBO
AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 570 3150 evolution
DARTS (second-order) (Liu et al., 2019b) 26.7 8.7 4.7 574 4.0 gradient-based
SNAS (mild) (Xie et al., 2018) 27.3 9.2 4.3 522 1.5 gradient-based
BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 - 0.2 gradient-based
P-DARTS (CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9 557 0.3 gradient-based
ProxylessNAS (GPU)‡ (Cai et al., 2019) 24.9 7.5 7.1 465 8.3 gradient-based
PC-DARTS (Xu et al., 2019)‡ 24.2 7.3 5.3 597 3.8 gradient-based
DARTS+ (Liang et al., 2019)‡ 23.9 7.4 5.1 582 6.8 gradient-based
Amended-DARTS, S2 24.3 7.4 5.5 590 1.1 gradient-based

Table 2: Comparison with state-of-the-art architectures on ILSVRC2012. All searched architectures
are fit into the mobile setting. ‡ indicates architectures searched on ImageNet.

tricks somewhat violate the ideology of neural architecture search; in comparison, our research,
though not producing the best performance, seems going along a correct and promising direction.

4.2 RESULTS ON ILSVRC2012

ILSVRC2012 (Russakovsky et al., 2015) is the most commonly used subset of ImageNet (Deng
et al., 2009). It contains 1.3M training images and 50K testing images, which are almost evenly
distributed over all 1,000 categories. We directly use the S2 architecture obtained from CIFAR10
experiments and enlarge it with a basic number of channels of 42, so that the FLOPs of our model is
590M, i.e., fitting the mobile setting. During re-training, there are a total of 250 epochs. We use an
SGD optimizer with an initial learning rate of 0.5 (decaying linearly after each epoch), a momentum
of 0.9 and a weight decay of 3×10−5. On NVIDIA Tesla V100 GPUs, the entire re-training process
takes around 24 GPU-days.

The comparison of our approach to existing approaches is shown in Table 2. Our approach achieves
a top-1 error rate of 24.3% without any common optimization tricks such as AutoAugment (Cubuk
et al., 2019) and Squeeze-and-Excitation modules (Hu et al., 2018). This result is competitive among
state-of-the-arts, and it is obtained after convergence is achieved in the search stage. On the other
hand, without the amending term, DARTS converges to a solution that skip-connected and sep-conv-
3x3 are largely separated, on which the re-training performance is even inferior to random search.

5 CONCLUSIONS

In this paper, we present an effective approach for stabilizing differentiable neural architecture
search. Our motivation comes from that DARTS-based approaches mostly generate all-skip-connect
architectures when they are executed for a sufficient number of epochs. We analyze this weird phe-
nomenon mathematically and find the reason to lie in the dramatic inaccuracy in estimating gradients
of architectural parameters. With an alternative approximation based on the optimality of network
parameters, we guarantee the update of architectural parameters to be in a correct direction. In
DARTS-based search spaces on CIFAR10 and ImageNet, our approach shows improved stability, in
particular in large search spaces, as well as improved performance in the re-training stage.

Our research sheds light on future research on NAS in several aspects. First, we reveal that previous
differentiable approaches were mostly built upon a dangerous pipeline, and mostly introduced heavy
human expertise to avoid failure. By fixing the ‘system error’ of this pipeline, we provide a platform
that NAS approaches can compete in the ability of NAS. Second, our approach enables researchers
to explore even bigger search spaces that have not been studied before (due to search instability).
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A APPENDIX

A.1 A TOY EXAMPLE TO SHOW THE IMPORTANCE OF g2

Let the loss function be L (ω,α;x) = (ωx−α)2. Then, the only difference between
Ltrain (ω,α) = L (ω,α;xtrain) and Lvalid (ω,α) = L (ω,α;xvalid) lies in the input, x. As-
sume the input of training data is xtrain = 1 and the input validation data is xvalid = 2. It is
easy to derive that the local optimum of Ltrain (ω,α) is ω∗ (α) = α. Substituting xvalid = 2

into Lvalid (ω,α) yields Lvalid (ω,α) = (2ω −α)2. When α = αt, ω arrives at ω∗ (αt), so
g1 = 2 (αt − 2αt) = −2αt and g2 = 4αt. When ω arrives at ω∗ (α), Lvalid (ω

∗ (α) ,α) = α2,
g (αt) = 2αt = g1 + g2. In summary, both g1 and g2 are important, but DARTS chose to ignore
g2 which can cause a dramatic error in approximation.

A.2 THE COMPLEXITY OF g
′

2 CAN BE SUBSTANTIALLY REDUCED USING THE FINITE
DIFFERENCE APPROXIMATION

We use the finite difference approximation just like DARTS. Let ε be a small scalar,
ω1 = ω + ε∇ωLval(ω,α), ω2 = ω − ε∇ωLval(ω,α). Then: H · ∇ωLval(ω,α) =
∇ωLtrain(ω1,α)−∇ωLtrain(ω2,α)

2ε . ω3 = ω + ∇ωLtrain(ω1,α)−∇ωLtrain(ω2,α)
2 , ω4 = ω −

∇ωLtrain(ω1,α)−∇ωLtrain(ω2,α)
2 . Then: g

′

2 = −η × ∇ωLval(ω3,α)−∇ωLval(ω4,α)
2ε

A.3 A TOY EXAMPLE TO SHOW THE IMPORTANCE OF THE “GRADIENT TRAP”

We have a small toy case to show the influence of the “gradient trap”. We searched for a small
super-network in the DARTS’s search space, which only has two cells(we searched for 600 epochs).

When we train the super-network in the “training sets in search phase” and validate in the “validation
sets in search phase”, the test error using g

′

2 is 10.5% while the test error without g
′

2 is 12.8%.

When we train the super-network in the training sets and validate in the validation sets, the test error
using g

′

2 is 5.4% while the test error without g
′

2 is 7.4%.

When we generalize and train the network in the training sets and validate in the validation sets, the
test error using g

′

2 is 6.2% while the test error without g
′

2 is 7.4%.

In this case the “gradient trap” will cause a dramatic accuracy drop of the super-network.

A.4 SEARCH WITH DIFFERENT SEEDS

We ran our search algorithms with different seeds for 5 times in S2 and evaluated each discovered
architecture for 3 times. The lowest test error is 2.57±0.11% and the highest is 2.63±0.13%. We did
the same thing on S1 and the lowest and the highest test errors are 2.71± 0.15% and 2.92± 0.09%,
respectively.

As we expected, the results in S1 are less robust than those in S2. The main reason is the difference
between search and evaluation, including the different depths of search and evaluation networks and
the the discretization stage of the standard DARTS method.

More importantly, our approach survives after 500 (and even more) epochs, while DARTS degener-
ates to an all-skip-connect architecture in all (10+) individual runs.

A.5 THEORETICAL ANALYSIS OF SEMI-POSITIVE-DEFINITE MATRIX AFTER SIMILARITY
TRANSFORMATION

A = CT ·C, A is a semi-positive-definite matrix. In this case, the number of different eigenvalues
is far less than the dimension of A(hundreds compared to millions). H is a real symmetric positive-
definite matrix.
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Let {αi} be a set of eigenvectors w.r.t A(αT
i · αi = 1), then {H · αi} is a set of eigenvectors w.r.t

H ·A ·H−1, {H−1 ·αi} is a set of eigenvectors w.r.t H−1 ·A ·H, and {λi} is a set of eigenvectors
shared by them.

Letβ be an eigenvector of H·A·H−1+H−1·A·H, β =
∑n

i=1 ai ×H ·αi =
∑n

i=1 bi ×H−1 ·αi.(
H ·A ·H−1 +H−1 ·A ·H

)
· β = λβ,

∑n
i=1 aiλi ×H ·αi +

∑n
i=1 biλi ×H−1 ·αi =∑n

i=1 aiλ×H ·αi =
∑n

i=1 biλ×H−1 ·αi.∑n
i=1 (λi − λ)aibi = −

∑n
i=1 (λi − λ) biαT

i ·H−1 ·
∑n

i=1 (λi − λ) biH−1 ·αi ≤ 0

A is a real symmetric matrix, so we have many sets of {αi} that is orthogonal to each other. βT ·β =∑n
i=1 aibi ≥ 0, For every eigenvalue, the dimension of the subspace will be very high in the case of

neural architecture search, so we assume that we can choose a set of {αi} orthogonal to each other
from the subspace satisfying

∑ni+1−1
j=ni

ajbj ≥ 0 in most cases(ni is the id of the first eigenvector
w.r.t λi).∑n

i=1 (λi − λ)aibi =
∑n

i=1 (λi − λ)
∑ni+1−1

j=ni
ajbj ≤ 0, so λ cannot be smaller than zero.

All of the eigenvalues w.r.t real symmetric matrix H ·A ·H−1 +H−1 ·A ·H is not smaller than
zero, so it is semi-positive-definite. Then we get that H−1 ·A ·H is semi-positive-definite.
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