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Abstract

Knowledge bases (KB) are often represented as a collection of facts in the form (head,
predicate, tail), where head and tail are entities while predicate is a binary relation-
ship that links the two. It is a well-known fact that knowledge bases are far from complete,
and hence the plethora of research on KB completion methods, specifically on link predic-
tion. However, though frequently ignored, these repositories also contain numerical facts.
Numerical facts link entities to numerical values via numerical predicates; e.g., (Paris, lat-
itude, 48.8). Likewise, numerical facts also suffer from the incompleteness problem. To
address this issue, we introduce the numerical attribute prediction problem. This problem
involves a new type of query where the relationship is a numerical predicate. Consequently,
and contrary to link prediction, the answer to this query is a numerical value. We argue
that the numerical values associated with entities explain, to some extent, the relational
structure of the knowledge base. Therefore, we leverage knowledge base embedding meth-
ods to learn representations that are useful predictors for the numerical attributes. An
extensive set of experiments on benchmark versions of Freebase and Yago show that our
approaches largely outperform sensible baselines. We make the datasets available under a
permissive BSD-3 license.

1. Introduction

Knowledge Bases (KBs) are playing an increasingly important role in a number of AI appli-
cations. KBs can be seen as a collection of facts or triples of the form (head, predicate,
tail), denoted as (h, p, t), where head and tail correspond to entities and predicate
corresponds to a relationship that holds between these two entities. This structured infor-
mation is easily accessible by AI systems to enhance their performance. A variety of AI
applications such as recommender systems, natural language chatbots or question answering
models, have benefited from the rich structural information archived in these repositories.
This is because much of human knowledge can be expressed with one or more conjunctions
of knowledge facts.

However, KBs’ capabilities are limited due to their incompleteness1. Consequently there
has been a flurry of research on knowledge base completion methods in recent years. Re-
lationship extraction [Riedel et al., 2013] (i.e., classification of semantic relationship men-
tions), knowledge graph matching [Suchanek et al., 2011, Lacoste-Julien et al., 2013] (i.e.,
alignment and integration of entities and predicates across KBs), or search-based question-

1. Freebase, which is likely the most popular knowledge base, illustrates this problem. For example, the
relation type /person/nationality is not present in around 78% of the entities representing peo-
ple [Min et al., 2013]. Similarly, it contains only around 40% of the completions to the query (USA,
/location/contains, ?) [Garcia-Duran and Niepert, 2018].
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answering [West et al., 2014] (i.e., queries issued to a web search engine) are a few different
ways to address the incompleteness problem. However, the literature on the so-called link
prediction methods [Nickel et al., 2016] has received more attention in the last few years
in comparison to the aforementioned approaches. Contrary to other solutions, link predic-
tion methods aim to find missing links between entities exclusively based on the existing
information contained in the KB. This is achieved by ranking entities that are answer can-
didates for the query. The queries these methods typically address are of the form (USA,
/location/contains, ?), or (Madrid, /location/capitalOf, ?), whereas the missing
element –represented by a question mark– is an entity contained in the KB.

Many link prediction methods only harness feature types learned from the rich relational
information contained in the KB to infer new links, and only very recently [Garcia-Duran
and Niepert, 2018, Pezeshkpour et al., 2018] numerical attributes have been integrated
along with other feature types to improve link prediction performance. Similarly, numerical
information is also represented as facts such as (Berlin, /location/latitude, 52.31) or
(Albert Einstein, /person/birth year, 1879). However, as shown in [Garcia-Duran
and Niepert, 2018] the application of numerical attributes is limited because of the same
incompleteness problem: Many entities are missing numerical attribute values they are ex-
pected to possess. For example, entities that represent locations should have numerical
information regarding latitude, longitude or area, among others; whereas for entities rep-
resenting people, numerical predicates such as the birth year, weight or height would be
more appropriate. Figure 1 illustrates an example of a KB where some entities have missing
numerical attributes.

California

USA

Steve Jobs

Apple Inc.

Samsung

Latitude: 36
Longitude: 120 
Avg. salary: ? 

Latitude: ?
Longitude: 97
Avg. salary: 52,000 containedIn

headquartersIn

hasM
arketIn

competitorOf

bornIn

Revenue: 229B

Revenue: ?

Birth Year: ?
Height: ?
Weight: 70 

Figure 1: A small part of a knowledge base. Some entities have missing numerical predicates.
For the sake of visualization numerical predicates are represented as entities’ attributes,
instead of as links.

In this work we focus on the problem of completing queries where the relationship is
a numerical predicate. Consequently, the answer to this new type of query is a numerical
value. This is contrary to the link prediction problem, wherein the answer to a query is
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always an element of a closed vocabulary. Examples of queries addressed in this paper
are (Apple Inc., revenue, ?) or (California, average salary, ?). While one can
interpret link prediction as a classification/ranking problem, this is rather a regression
problem.

The main contributions of this paper are:

• We introduce the problem of predicting the value of entities’ numerical attributes
in KBs. For the sake of simplicity we term this as ‘numerical attribute prediction
problem’. To our knowledge, this is the first time this problem is addressed in the
literature.

• We create benchmark datasets for this problem. We use well-known subsets of Free-
base and Yago as the blueprints for creating these benchmarks. We also create
versions of these datasets for different percentages of sparsity by artificially removing
facts that involve numerical predicates. All these benchmark datasets will be made
publicly available.

• We propose two meaningful baselines for this problem. These baselines are inspired
by previous work done in the node classification and the imputation literature.

• We propose supervised and semi-supervised approaches to this problem. The semi-
supervised approaches significantly outperform the baselines in all datasets and con-
ditions.

The paper is organized as follows: We discuss the related work in Section 2. Afterwards
we formalize the problem of predicting numerical values for entities’ numerical attributes in
KBs in Section 3. We describe our approaches to this problem, as well as the two baselines.
Section 4 reports the experimental setting followed by an extensive set of experiments on
different datasets with different degrees of sparsity in Section 5. Finally, we summarize the
conclusions of our study in Section 6.

2. Related Work

There is an extensive body of work on link prediction [Bordes et al., 2013, Yang et al., 2014,
Nickel et al., 2016, Trouillon et al., 2017]. Logical approaches [Russell and Norvig, 2016]
operate on a set of logical rules that are usually handcrafted and/or mined. These logical
formulas are evaluated between entity pairs to generate feature representations which are
then used for a downstream machine learning model. On the other hand, KB embedding
methods [Nickel et al., 2016] learn feature representations –embeddings– for all elements
in a KG by optimizing a designed scoring function. Given a fact, these scoring functions
output a score that relates to the likelihood of that fact being true. A popular and successful
instance of KB embedding method is TransE [Bordes et al., 2013], where predicates are
modeled as translations in the entity embedding space.

Much less work has been done on entity-type classification [Moon et al., 2017, Yogatama
et al., 2015]. This problem is inherently related to link prediction, since it amounts to
complete queries of the form (head, typeOf, ?), where the question mark corresponds to
a certain entity type (e.g. location, artist, ...). Therefore, link prediction and entity-type
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classification share certain similarities with the numerical attribute prediction problem.
Most importantly, they all make use of the relational information for KB completion, one
way or another. However, there is a crucial difference between link prediction and numerical
attribute prediction. In the former, a query can be completed with one or several elements
contained in a relatively small vocabulary, whereas in the later the answer may (potentially)
take an infinite number of real values.

There is another line of research related to our work, namely value imputation [Rubin,
1976]. In statistics, imputation is the process of replacing missing data with substituted
values. In the simplest case, one can replace the missing values of a variable by the mean of
all existing values of that variable. This technique is called mean imputation. It preserves
the mean of the variable, but alters the underlying variable distribution to be more peaked
at the mean [Allison, 1999]. However, it is the most commonly practiced approach for value
imputation [Rubin et al., 2007], and it has been shown to be competitive for a number of
downstream tasks [Beaulieu-Jones and Moore, 2017, Malone et al., 2018]. Another popular
approach is called regression imputation, where the missing values of a variable are estimated
by a regression model from the observed values of other variables.

There is some work on using text for predicting numerical attributes of entities such as
[Davidov and Rappoport, 2010, Gupta et al., 2015]. [Gupta et al., 2015] uses Word2Vec
embeddings of named entities as inputs to a number of regression models. Similar to us,
they aim to predict numerical attributes of knowledge base entities. Different to us, they
leverage text information to do so. This difference is important, because we do not assume
the existence of information other than the graph structure. Our problem is general enough
to address knowledge bases where entities names are unknown or anonymized (e.g. medical
knowledge bases).

To our knowledge there is no existing work in the value imputation literature that
attempts to fill missing values in KBs while taking advantage of the structural information
provided by the KB.

3. Prediction of Numerical Attributes

A knowledge base, KB, is denoted as G = (E , P), where E is a set of entities and, P is a set
of relation types or predicates. This standard definition can be found in many papers in the
link prediction literature [Nickel et al., 2016, Garcia-Duran and Niepert, 2018]. A KB is a
collection of facts (or standard facts) (h, p, t) where p ∈ P and h, t ∈ E . We now define
a knowledge base enriched with numerical attributes as GNA = (G, A, N ). Entities in G
are associated with numerical values N via numerical predicates A. This information can
be expressed as a collection of numerical facts (h, a, t) where a ∈ A, h ∈ E and t ∈ N . In
the paper we interchangeably use the term ‘numerical predicate’ with ‘numerical attribute’.
The numerical attribute prediction problem seeks the most probable completion of a fact
(h, a, ?), where h ∈ E , a ∈ A and ? ∈ N .

We refer to the set of entities for which the value of the numerical attribute a is known as
Ea ⊆ E . Let e be an entity with numerical attribute a, then we denote the known numerical
value for attribute a as nae . The goal is to learn a function f : E → <, < denotes the set of
reals.
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One can omit the relational information given by the graph G and apply a value im-
putation method to fill missing values. However, it is intuitive to assume the existence of
an underlying generative model that (partially) determines the relational structure of the
KB based on the values of the entities’ numerical attributes. For instance, two entities are
likely linked via the relationship /location/contains if they have similar latitude and
longitude; or two highly connected entities that correspond to people are likely to have sim-
ilar birth years. If this assumption is true, then a model that exploits the graph structure
information is likely to outperform simple value imputation methods. Nevertheless, while
this may be true for a number of numerical attributes, for others the graph structure may
introduce noise or, in the best case, be irrelevant.

3.1 Baselines

Inspired by previous work in the value imputation and the node classification literature, we
propose the following baselines.

3.1.1 Global

A simple and natural baseline is simply using the sample mean of the attribute specific
training data as a predictor for missing values. This is known as mean imputation [Rubin
et al., 2007]. At test time, given an entity e for which we aim to predict the value of
numerical predicate a, denoted as n̂ae , this baseline simply assigns the sample mean of all
known entities possessing the same numerical attribute (Ea). This is formally described
below.

n̂ae = f({nae′ | e′ ∈ Ea}), (1)

where f is the sample mean.

We term this model as Global because it harnesses global information from the entire
attribute specific training set.

In this work we use the root mean square error (RMSE) and the mean absolute error
(MAE) as evaluation metrics. While the sample mean is the best estimator for the for-
mer, the sample median is the optimum for the latter [Murphy, 2012]. Consequently, in
the experimental section we use median imputation when reporting the MAE and mean
imputation when reporting on RMSE metrics. Median imputation is obtained by simply
replacing the sample average by the median in Eq. (1).

3.1.2 Local

Our second baseline takes into account that entities are interconnected through a relational
graph structure. Thus it is natural to define a baseline that exploits the neighborhood or
local graph structure.

The weighted-vote relational neighbor [Macskassy and Provost, 2003] is a relational
classifier often used as a benchmark in the node classification literature. It estimates the
class label of a node as a weighted average of its neighbors’ class labels. Despite its simplicity,
it is shown to be competitive [Perozzi et al., 2014a] and is advocated as a sensible relational
classification baseline [Macskassy and Provost, 2007].
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Inspired by such work, we propose an adaptation for our setting and problem. For a
numerical attribute a, this baseline estimates a value for the entity e as the average of its
neighbors’ attribute values for that numerical attribute. Here, the neighborhood of a node
e, denoted Ne, is defined as the set of nodes that are connected to e through any relation
type. The baseline is formalized as follows

n̂ae = f({nae′ | e′ ∈ Ea ∩Ne) (2)

where, as before, f is either the sample mean or the sample median depending on the evalu-
ation metric reported. We term this model as Local because it uses the local neighborhood
information for prediction.

In the case where Ea ∩Ne = ∅, we make use of the so-called Global baseline to make
a prediction.

3.2 Our Approaches

We leverage KB embedding methods to learn feature representations –embeddings– of en-
tities that (ideally) are predictive for the different numerical attributes. As we argued
before, this is only true if the entities’ numerical attributes determine, to a certain extent,
the existence of a certain relation type between two entities. We first learn knowledge
base embeddings, and in a second step we use these embeddings, along with the numerical
facts, to train downstream machine learning models for predicting numerical attributes.
This pipeline is reminiscent of recent work [Perozzi et al., 2014b] in the node classification
literature.

While there is an extent literature on KG embedding methods [Nickel et al., 2011, Bordes
et al., 2013, Nickel et al., 2016], recent work [Kadlec et al., 2017] shows that well-tuned
“simple” scoring functions [Yang et al., 2014] are very hard to beat. Likewise [Garćıa-
Durán et al., 2016] shows that TransE [Bordes et al., 2013] performs similarly or even
better than many of its variants, such as TransH [Wang et al., 2014] or TransR [Lin
et al., 2015].

Due to its simplicity and good performance in related problems, we choose TransE to
illustrate the generic principles behind our models. Note, however, that the methodology
described is agnostic to the chosen KG embedding method.

The probability for a fact d = (h, p, t) being true is p(d | θ) = g(d|θ)∑
c g(c|θ))

, where c indexes

all possible triples, and θ all learnable parameters of TransE, whose scoring function g
is g(d | θ) = ||h + p − t||2. We use bold letters h,p, t ∈ <d to denote the corresponding
d-dimensional feature representations of h, p, t, respectively. Note that this formulation is
impractical because the cost of computing all possible triples is unfeasible. Instead, for each
triple d = (h, p, t) ∈ G we generate a set of N triples (h, p, t′) by sampling N entities t′

uniformly at random from the set of all entities. This process, which is termed as negative
sampling, is repeated for the head of the triple.

For a given set of facts D that are part of the KB G, the logarithmic loss is defined as

LG = −
∑
d∈D

log p(d | θ). (3)

All parameters θ are learned for minimizing LG with stochastic gradient descent.
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Once the representation learning phase is finished we evaluate two different approaches
that utilize these embeddings for addressing the numerical attribute prediction problem.

3.2.1 Regression Model

In the simplest case, for each numerical attribute we use the learned feature representations
as input to a regression model to predict the corresponding numerical attribute.

For numerical attribute a the loss function is given by

LaR =
∑
e∈Ea

(fϑa(e)− nae)
2 + λa||ϑa||22, (4)

where fϑa refers to the regression function for numerical attribute a, ϑa refers to the learn-
able parameters of fϑa , and λa is the regularization hyper-parameter. In this work we use
a linear regression model: fϑa(e) = eTwa + ba, where wa ∈ <d is the weight vector and ba

is the corresponding bias term. At test time, given a query related to a certain numerical
attribute a and a certain entity e, the prediction is computed by applying the corresponding
linear regression model: n̂ae = fϑa(e). We refer to this approach as Lr.

3.2.2 Numerical Attribute Propagation

Previously we defined Ea as the set of entities with known numerical attribute a. Similarly,
we define Qa as the set of entities with missing values for numerical attribute a.

We consider numerical attribute values as labels, and, consequently, we can think of Ea
and Qa as the set of labeled and unlabeled nodes, respectively. Therefore, semi-supervised
learning is a natural choice because it also uses unlabeled data to infer values of numerical
attributes.

Label propagation (LP) [Zhu and Ghahramani, 2002, Fujiwara and Irie, 2014] has been
proven to be an effective semi-supervised learning algorithm for classification problems.
The key assumption of label propagation, and in general most semi-supervised learning
algorithms, is similar to ours: Data points close to each other are likely to have the same
label –numerical attribute values in our case.

We aim to propagate numerical attribute information across the graph using LP. For
numerical attribute a, we use the learned representations {e}e∈Ea∪Qa to induce a k-nearest
neighbor graph (kNN) using euclidean distance. This graph is characterized by an adjacency
matrix A ∈ <N×N , where N = |Ea| + |Qa|. The edge weights of the adjacency matrix
represent similarities between the connected entities, which are computed according to a
similarity metric ρ –in this work we use a radial basis function kernel2.

We then compute the transition matrix T by row-wise normalizing the matrix A. With-
out loss of generality, we arrange labeled and unlabeled data so that T can be decomposed
as

T =

[
TEaEa TEaQa

TQaQa TQaEa

]
. (5)

2. ρ(x,y) = exp(−
||x− y||2

σ
)



Kotnis, & Garćıa-Durán

California

Madrid

San Diego

Moscow

San Francisco

Spain

Unlabeled Nodes Labeled Nodes

Figure 2: Illustration of transition matrix for a certain numerical attribute. Only links
from unlabeled to both unlabeled and labeled entities are shown. The wider the arrow,
the more likely the transition. In this example Ea = {San Francisco, Moscow, Spain} and
Qa = {California, Madrid, San Diego}.

The transition matrix T (illustrated in Figure 2) can be iteratively used to propagate
numerical information across the graph until a stopping criterion is reached. Alternatively,
this problem can be solved in a closed form:

n̂aQa = (I + TQaQa)−1TQaEa︸ ︷︷ ︸
Ma

naEa , (6)

where naEa ∈ <|E
a| is a vector that contains all values of numerical attribute a for labeled

nodes. Similarly, n̂aQa ∈ <|Q
a| is a vector that contains all predicted values of numerical

attribute a for unlabeled nodes. We refer to the matrix Ma in Section 5.1. We term this
as Numerical Attribute Propagation (or Nap).

Related work [Minervini et al., 2017] uses label propagation to perform link prediction
in web ontologies by casting it as a binary classification problem, where the similarity graph
is built based on homophilic relationships.

3.2.3 Injecting Numerical Information into the Embeddings

In the two aforementioned solutions, we fully rely on the feature representations learned
by, in this case, TransE to be meaningful with respect to the numerical attributes we aim
to predict. This relates to our initial assumption that the relational structure of a KB can
be explained, to some extent, by the numerical attributes of the entities. However, there
might be cases where the values taken by entities for a certain numerical attribute do not
fully relate to the relational structure of the KB.

Motivated by this consideration, we set out to answer the question: Can these mod-
els benefit from learning feature representations incorporating, beside the graph structure,
numerical attribute information?

To answer this question we incorporate the learning objective of Eq. (4) into the learning
objective of TransE (Eq. (3)):

L = LG + α
∑
a∈A
LaR, (7)
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where α weights the importance of the linear regression objectives. All parameters are
learned using stochastic gradient descent. We term these embeddings as TransE++,
which, contrary to TransE, are also learned with numerical facts. While Nap and Lr use
TransE feature representations, their counterparts Nap++ and Lr++ leverage TransE++
embeddings.

Different numerical attributes exhibit different scales of attribute values. For example
‘person.height’ ranges from 1 to 2 meters while ‘location.area’ scales from several hundred
to even millions of kilometers. Bigger scales lead to larger prediction errors during training
which in turn affect the back-propagation gradients used for learning the TransE++ em-
beddings. To alleviate this problem, we normalize each numerical attribute to zero-mean
and unit-variance. We also experimented with min-max scaling, however it gave worse
performance compared to standard scaling. Scaling numerical attribute values remains an
interesting challenge.

For Lr++ we do not directly use the regression models learned during opimizing the
TransE++’s learning objective (Eq. (7)). Instead we use the learned TransE++ em-
beddings to train a new regression model LaR for each numerical attribute a ∈ A. This is
because of the computational difficulty in tuning hyper parameter λa for each numerical
attribute while learning TransE++, which we found important to obtain good performance.
Note that the hyper parameter space grows exponentially with the number of attributes
|A|. For this reason, we set λa = λ = 0 in the regression objectives in Eq. (7) for learning
TransE++ embeddings (first step). For the final regression models (second step) we do
tune λas (independently), which, though suboptimal, facilitates their tuning.

4. Experimental Settings

The proposed methods are evaluated by their ability to answer completion queries of the
form (h, a, ?), where h ∈ E , a ∈ A and ? ∈ N . We evaluate the baselines and our models on
two benchmark datasets: FB15K-237 [Toutanova et al., 2015] and YAGO15K [Garćıa-Durán
et al., 2018]. While for the former, numerical attributes were introduced in [Garcia-Duran
and Niepert, 2018], for the later we obtained this information from dumps found online on
YAGO’s website3.

The FB15K-237 dataset contains a total of 29,395 numerical facts divided in 116 different
numerical predicates. We evaluate our models on the top 10 numerical attributes ranked
by the number of data samples. This reduces the dataset to 22,929 samples. We split
these numerical facts into training, validation and test in the proportion of 80/10/10%,
respectively. All other facts from FB15K-237 whose predicate belongs to P are used as
training data, which amounts to 310,116 facts. Thus we only evaluate our approaches on
their ability to answer queries whose answer is a numerical value.

The YAGO15K dataset contains 23,520 numerical facts divided in 7 different attributes.
Similarly, we split these numerical facts into training, validation and test in the same pro-
portion. We use all other 122,886 facts from this dataset for learning knowledge base
embeddings. A summary of the datasets can be found in Table 1. All the splits of both
datasets used in this work will be made publicly available to facilitate future comparisons.

3. https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/downloads/
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Dataset Numerical Facts Facts |E| |P| |A|

train dev test train

FB15K-237 18,423 2,263 2,243 310,116 14,541 237 10

YAGO15K 18,872 2,330 2,318 122,886 15,404 32 7

Table 1: Dataset statistics.

We compare performance across methods using two evaluation metrics —MAE and
RMSE. These are standard metrics used in regression problems and were also used in a
related study of predicting numerics for language models [Spithourakis and Riedel, 2018].

err(e, a) = nae − n̂ae

MAE(a) =
1

|Qa|
∑
e∈Qa

|err(e, a)| RMSE(a) =

√
1

|Qa|
∑
e∈Qa

err(e, a)2

For TransE and TransE++ we fix the embedding dimension d to 100. After some pre-
liminary experiments, the weight α of TransE++ was fixed to 1. We used Adam [Kingma
and Ba, 2014] to learn the parameters in a mini-batch setting with a learning rate of 0.001.
We fixed the number of epochs to 100 and the mini-batch size to 256. The parameter N
of the negative sampling was set to 50. Within a batch, the number of data points for
each of the TransE++’s regression objectives is proportional to the frequency of each of
the numerical predicates in the training set. In all cases, the parameters were initialized
following [Glorot and Bengio, 2010].

We used the Scikit-learn [Pedregosa et al., 2011] implementation of ridge regression
for the approaches Lr and Lr++. The regularization term λa is tuned using the values
[0, 0.1, 1, 10, 100].

For Nap and Nap++ the number of neighbors (k) of the kNN graph is validated among
[3, 5, 10, 20]; and the σ of the RBF kernel is validated among [0.25, 0.5, 1, 10].

All of the above is validated for each numerical predicate and evaluation metric.

5. Results

The objectives of this section is twofold: First we investigate the performance of our ap-
proaches (Lp and Nap, and their variants) with respect to the baselines. And second we
experimentally check how robust these methods are for different degrees of sparsity in the
training data.

Tables 2 and 3 detail the performance of the baselines and our approaches on FB15K-237.
For each numerical attribute we always indicate in bold font the best performing method,
which happens to be either Nap++ or Nap most of the time. Interestingly enough, from
Table 2 we observe that for the numerical attributes ‘location.area’ and ‘population.number’
Global largely outperforms Local. This seems to indicate that the relational structure of
this data set does not relate to these two numerical predicates. Overall, predictions for all
other numerical attributes tend to benefit from the local information given by the entities’
neighborhood. In comparing Tables 2 and 3, we note that Local is very competitive in
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Global Local

Num. Attribute MAE RMSE MAE RMSE

location.area ∼ 3.1e4 ∼ 5.4e5 ∼ 3.7e6 ∼ 6.9e6

latitude 9.99 16.67 3.38 10.30

date of birth 31.40 124.07 19.76 54.20

population number ∼ 3.9e6 ∼ 1.7e6 ∼ 1.1e7 ∼ 3.9e7

person.height mt 0.085 0.104 0.091 0.113

film release date 12.29 16.71 10.75 15.54

longitude 52.10 68.28 5.32 16.32

org.date founded 72.18 121.013 79.4 133.24

date of death 33.69 71.51 27.64 68.37

location.date founded 120.66 259.84 136.23 552.84

Table 2: Performance of Global and Local on FB15K-237.

LR Nap LR++ Nap++

Num. Attribute MAE RMSE MAE RMSE MAE RMSE MAE RMSE

location.area ∼ 7.7e5 ∼ 1.0e6 ∼ 5.1e5 ∼ 1.5e6 ∼ 8.9e5 ∼ 1.2e6 ∼ 2.9e5 ∼ 8.5e5

latitude 8.47 12.44 2.5 5.83 6.52 10.85 2.20 5.02

date of birth 26.60 116.58 16.42 78.18 25.73 109.66 12.16 23.71

population number ∼ 7.9e6 ∼ 1.7e7 ∼ 7.4e6 ∼ 2.3e7 ∼ 1.0e7 ∼ 1.9e7 ∼ 8.0e6 ∼3.3e7

person.height mt 0.065 0.083 0.074 0.092 0.073 0.091 0.074 0.092

film release date 5.59 7.68 4.13 6.35 5.78 7.68 3.90 5.81

longitude 25.56 34.69 6.22 16.04 24.77 33.29 6.26 21.26

org.date founded 53.85 90.11 51.28 84.99 56.04 100.58 53.47 92.75

date of death 35.89 56.84 24.77 62.62 37.27 48.71 19.535 33.324

location.date founded 145.46 227.09 79.65 161.02 139.29 240.26 88.04 201.88

Table 3: Performance of Lr- and Nap-based models on FB15K-237.

regard to the numerical attributes ‘latitude’ and ‘longitude’. This can be explained by the
presence of predicates such as ‘location.adjoins’ or ‘location.contains’ in the relational struc-
ture of the graph. Similarly, entities’ neighborhoods are useful for predicting ‘date of birth’
or ‘date of death’ because (some of the) surrounding entities correspond to people who have
similar birth or death dates. Interestingly, all our approaches beat both baselines in the nu-
merical attribute ‘person.height mt’, for which a priori one would not expect performance
gains in learning from the graph structure.

Overall, Lr++ and Nap++ outperform their counterparts Lr and Nap, respectively,
for most numerical predicates. As we argued in Section 3.2.3 it is not feasible to validate
the regularization term λa for every numerical attribute while learning TransE++. We
speculate that setting λa = 0 while training TransE++ may explain why Lr++ and
Nap++ do not always beat their counterparts.
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Pr 100 80 50 20

Num. Attribute Local Nap++ Local Nap++ Local Nap++ Local Nap++

location.area ∼ 3.7e6 ∼ 2.9e5 ∼ 3.5e6 ∼ 5.0e5 ∼ 1.2e6 ∼ 4.0e5 ∼ 2.2e6 ∼ 2.3e5

latitude 3.38 2.20 3.85 2.19 5.08 3.28 7.206 4.40

date of birth 19.76 12.16 23.63 15.444 22.96 12.93 27.2 19.20

population number ∼ 1.1e7 ∼ 8.0e6 ∼ 1.2e7 ∼ 6.0e6 ∼ 9.09e6 ∼ 4.7e6 ∼ 5.2e7 ∼ 1.6e7

person.height mt 0.091 0.074 0.094 0.073 0.092 0.076 0.096 0.008

film release date 10.75 3.90 10.88 4.36 10.83 4.33 11.303 4.69

longitude 5.32 6.26 8.53 6.2 18.29 9.7 31.857 10.57

org.date founded 79.4 53.47 74.68 50.3 81.77 52.59 73.35 61.44

date of death 27.64 19.54 27.46 21.74 25.33 23.42 35.06 29.42

location.date founded 136.2 88.04 136.6 117.07 88.79 87.87 109.7 101.9

Table 4: Performance of Local and Nap++ on FB15K-237 for different degrees of sparsity,
Pr, on the numerical facts. Results are reported in terms of Mean Absolute Error (MAE).

Another observation from Table 3 is that, in general, Nap-based models perform much
better compared to Lr-based models. One can find a number of explanations to this.
The obvious explanation is that the numerical attribute propagation approaches learn from
labeled and unlabeled data, whereas the regression models only learn from labeled data. A
second explanation is that whereas Nap’s predictions are computed as a weighted average
of observed numerical values, Lr’s predictions are not bounded. This prevents Nap-based
approaches from making large mistakes. On the other hand, for example, we observed
non-plausible values (e.g. > 2020) predicted by the Lr-based models for the numerical
attribute ‘date of birth’. We also experimented with non-linear regression models, but did
not observe any performance improvement.

Knowledge graphs are known to suffer from data sparsity due to missing facts. The
same incompleteness is also true for numerical facts. Therefore it is crucial to study model
performance under a sparse data regime. We generate data sparsity by artificially removing
numerical facts from the training set while keeping the validation and test sets unchanged.
We keep the underlying knowledge graph G unchanged because we aim to isolate the effect of
numerical fact sparsity. In other words, only a number of numerical facts are removed from
the training set. We retained a percentage Pr of training numerical facts and ran Local and
Nap++ with the same experimental set-up. We experimented with the following values of
Pr: [1004, 80, 50, 20]%. We detail the results of these experiments in Table 4. Note that
the performance of Local degrades more rapidly compared to Nap++ as the sparsity
increases. Even in high regimes of sparsity, Nap++’s performance is remarkably robust.

Table 5 lists results for Global and Local in YAGO15K. As for FB15K-237, Local
outperforms Global for most of the numerical attributes. This reinforces our assumption
that the numerical attributes explain, to some extent, relation structure between entities.
Table 6 depicts the performance of Local, Nap and Nap++ under different degrees of
sparsity in YAGO15K. In the light of these numbers, we can conclude that the Nap-based

4. This corresponds to the case of no artificial sparsity in numerical facts.
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Global Local

Num. Attribute MAE RMSE MAE RMSE

date of death 37.99 89.47 39.70 92.38

happenedOnDate 38.55 67.33 38.55 67.33

latitude 12.51 21.50 3.04 9.04

longitude 53.07 63.195 11.38 24.08

date of birth 25.24 66.10 23.94 65.78

createdOnDate 89.32 155.83 132.20 197.18

destroyedOnDate 31.54 60.08 30.97 59.42

Table 5: Performance of Global and Local on YAGO15K.

Pr 100 80 50 20

Num. Attribute Local Nap Nap++ Local Nap Nap++ Local Nap Nap++ Local Nap Nap++

date of death 39.70 39.64 35.1 40.76 40.51 37.38 39.34 40.14 38.20 41.59 39.8 39.25

happenedOnDate 38.55 48.77 34.4 38.41 51.08 31.23 37.75 49.99 32.76 37.57 54.17 32.14

latitude 3.04 2.16 1.77 4.00 2.48 2.54 6.32 3.21 2.90 9.69 3.71 4.2

longitude 11.38 3.45 3.62 16.74 5.54 4.62 24.07 6.29 6.06 40.09 10.26 10.1

date of birth 23.94 18.32 16.91 24.16 18.69 17.49 24.39 18.79 18.07 25.70 20.12 18.82

createdOnDate 132.2 67.68 65.25 104.1 69.54 65.74 109.5 71.44 72.22 138.2 72.25 71.63

destroyedOnDate 30.97 25.61 21.63 31.45 28.58 25.98 30.67 24.42 21.17 31.4 27.80 26.5

Table 6: Performance of Local, Nap and Nap++ on YAGO15K for different degrees of
sparsity, Pr, on the numerical facts. Results are reported in terms of Mean Absolute Error.

models are more robust than Local to data sparsity. Nap++ achieves the best perfor-
mance for most of the numerical attributes and degrees of sparsity. It performs remarkably
well for the numerical attribute ‘happenedOnDate’ in comparison to Nap. Across all values
of Pr, on average, NAP++ improves Nap’s performance by 20 points (in mean absolute
value) for ‘happenedOnDate’.

We recognize that reporting model performance in absolute values complicates compar-
ison since numerical attributes lie on different ranges of values. To have a better picture
of performance gains we report percentage error reduction between Nap++ and the best
performing baseline. For numerical attribute a, the percentage error reduction in MAE is
computed as follows

4MAE =
min(MAELocal(a),MAEGlobal(a))−MAENap++(a)

min(MAELocal(a),MAEGlobal(a))
× 100.

One can compute the percentage error reduction in terms of RMSE in a similar manner.

This is shown in Table 7 for Pr = 100. We do not include ‘location.area’ and ‘pop-
ulation.number’, as previous experiments indicate that they do not relate to the graph
structure of FB15K-237. Overall, Nap++ significantly outperforms baselines for almost all
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numerical attributes in both FB15K-237 and YAGO15K data sets. These results demon-
strate that the embeddings learned from the graph structure are useful predictors of entity
numerical attributes.

FB15K-237 YAGO15K

Num. Attribute 4MAE 4RMSE 4MAE 4RMSE

happenedOnDate — — 18.53 31.89

createdOnDate — — 29.95 15.80

DestroyedOnDate — — 30.11 43.80

date of birth 38.43 56.26 29.37 10.65

latitude 35.05 51.28 41.86 45.45

longitude -17.61 -30.29 12.43 48.4

date of death 29.33 51.26 7.61 14.0

person.height mt 12.94 11.54 — —

film release date 63.71 62.60 — —

org.date founded 25.93 23.36 — —

location.date founded 27.03 22.31 — —

Table 7: Percentage error reduction between NAP++ and the best performing baseline for
each numerical attribute in FB15K-237 and YAGO15K. The higher the value, the better
the performance of NAP++ relative to the baselines.

Entity e nae n̂ae Nearest Neighbors

Nap Nap++ Nap Nap++

Alexander the Great -355 669 -108 Aristotle (-384) Kant (1724) Julius Caesar (-100) Aristotle (-384)

Galileo Galilei 1564 816 1442 Aristotle (-384) Avicenna (980) Avicenna (980) Aquinas (1225)

John Locke 1632 1450 1677 Rousseau (1712) Aristotle (-384) Spinoza (1632) Hume (1711)

Christoph. Columbus 1506 1920 1506 Lou Costello (1959) Carravagio (1610) Da Vinci (1519) Michelangelo (1564)

Frederick the Great 1786 1938 1915 Hitler (1945) Josip Tito (1980) Brahms (1833) Kant (1904)

Table 8: Qualitative comparison between Nap and Nap++. The three first rows correspond
to queries where the numerical attribute is ‘date of birth’, whereas for the two last queries
it is ‘date of death’. The actual value of labeled entities for the corresponding numerical
attribute is shown in parenthesis.

5.1 Qualitative Analysis

This last experimental section aims to provide some insights on the benefit of adding nu-
merical information during the representation learning stage.

Table 3 shows a noteworthy behavior of these methods with respect to the numerical
attributes ‘date of birth’ and ‘date of death’. While the performance of both approaches is
comparable in terms of MAE, their RMSE largely differ. It is known that the mean absolute
error is an evaluation metric more robust to outliers than the root mean squared error. We
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set out to inspect these outliers to shed light on the usefulness of incorporating numerical
information in the embeddings.

Nap-based models leverage these embeddings to build a similarity graph on which nu-
merical information is propagated via Eq. (6). The resulting predictions are the result of
multiplying the matrix Ma by the observed numerical values. This matrix5 determines
which observed entities’ numerical values to pay attention to. These attention values are
different for Nap and Nap++ as the graph similarity is constructed with different embed-
dings.

We qualitatively compare Nap and Nap++ based on a number of predictions computed
in the test set. For each method we compare the two labeled entities they pay the most at-
tention to. For the sake of simplicity we refer to these two entities as nearest neighbors. This
is shown in Table 8. An interesting observation is that for NAP the two nearest neighbors
are always entities topically similar to the entity in the query. On the other hand the nearest
entities retrieved by NAP++ are more meaningful with respect to the queried numerical
attribute. This is seen in the first query: (Alexander the Great6, date of birth,
?). While Nap pays the most attention to topically similar entities, Nap++ puts a high
attention on Julius Caesar,7 which is more meaningful in regard to the date of birth.

Nap++ uses Euclidean distance between vectors to build the k-nearest neighbor graph.
Table 8 that subsets of entities latent factors could be encoding different relational and
numerical information. For instance, a few dimensions of the entity embeddings encode
location information, while others encode population information and so on. To exploit this
we learned Mahalanobis metrics for capturing different entity similarities. We did this while
learning knowledge base embeddings by using an additional nearest neighbor loss. It did
slightly improve the performance for few attributes, but overall it did not make significant
distance. We suggest that future work should address this research direction in greater
depth.

6. Conclusions

We introduce a novel problem, namely numerical attribute prediction in knowledge bases.
Contrary to link prediction, the answer to this new query type is a numerical value, and
not an element from a (small) closed vocabulary. Our premise to this problem is that
the relational structure of a KB can be partially explained by the numerical attribute val-
ues associated with entities. This allows for leveraging KB embedding methods to learn
representations that are useful predictors of numerical attributes. An extensive set of exper-
iments validates our premise. Furthermore, we also show that learning KB representations
enriched with numerical attribute information are helpful for addressing this task. Finally,
we believe that this new problem introduced in the paper will spur interest and deeper
investigation from the research community.

5. Note that it is non-negative and is row normalized.
6. For all practical purposes he is deemed a philosopher in FB15K-237.
7. Julius Caesar belongs to profession Politician in FB15K-237
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