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1. Overview

We introduce a more efficient neural architecture for amortized inference (Gershman, 2014;
Ritchie et al., 2016), which combines continuous (Grathwohl et al., 2018) and conditional
(Chen et al., 2019) normalizing flows using a principled choice of structure. Our flow derives
its sparsity pattern from the minimally faithful inverse of its underlying graphical model
(Webb et al., 2018). We find that this factorization reduces the necessary numbers both
of parameters in the neural network and of adaptive integration steps in the ODE solver.
Consequently, the throughput at training time and inference time is increased, without
decreasing performance in comparison to unconstrained flows. By expressing the structural
inversion and the flow construction as compilation passes of a probabilistic programming
language, we demonstrate their applicability to the stochastic inversion of realistic models
such as convolutional neural networks (CNN).

Our automated pipeline consists of three program transformations, as illustrated in
Figure 1: First, a formal specification of a generative process is translated into a graphical
model, and its minimally faithful inverse structure is computed as described in Section 2.
Subsequently, the latter acts as the sparsity pattern for the novel neural network architecture
introduced in Section 3. Finally, the resulting flow is trained with a novel symmetrized KL
loss, as summarized in Section 4.

2. Faithful Model Inversion

Given a static graphical model, we apply the faithful inversion algorithm of Webb et al.
(2018), and obtain a correct dependence structure for the inverse model p(z|x), which maps
from observations x to latents z. In particular, this algorithm computes a structure with
minimal number of moralizing edges, which are required to capture all possible correlations
in the posterior. As an example, Panel (3) in Figure 1 shows the minimally faithful inverse
of the graphical model in Panel (2).
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Figure 1: A generative model (1) is compiled into a graphical model (2) and stochastically
inverted (3). This structure is translated into the sparsity pattern of the neural network (4),
which approximates the posterior p(z0,...,4|x0,1) as a continuous normalizing flow under the
control input x. The flow network’s architecture is depicted using Hinton diagrams (Hinton
and Shallice, 1991) of its layer-wise weight matrices – with color and size denoting sign and
magnitude, and columns and rows corresponding to inputs and outputs of layers. For clarity,
augmenting dimensions are not shown.

3. Structured Normalizing Flows

3.1. Amortized Inference with Continuous Normalizing Flows

Amortized inference techniques (Gershman, 2014; Ritchie et al., 2016) yield efficient posterior
approximations as a result of training function approximators on losses defined using the
generative model and training data, e.g., the variational evidence lower bound (Blei et al.,
2016; Kingma and Welling, 2013). The general framework used here for inference amortization
is a neural ordinary differential equation (ODE) system (Chen et al., 2018), a differentiable
deterministic transformation from a reference distribution q0 to the desired target density
qΦ(· | x). This transformation is parametrized as a on latent particles z,

d

dt
zt = fΦ(zt, t, x). (1)

where conditioning is achieved by providing x as a constant control input to the neural
network fΦ. The numerical computation at inference time is then performed by a standard
ODE solver, integrating independent particle trajectories along the dynamics in Equation (1),
from initial conditions z0 ∼ q0 to approximate posterior samples z1 ∼ qΦ(· | x). In order to
obtain a normalized distribution at the end of the flow, the log-probability of each particle
must also be integrated alongside the particle dynamics as

∂

∂t
ln qΦ(z, t) = −∇z · fΦ(z, t, x) , (2)

where∇z denotes the gradient operator in the latent space. This divergence term is equivalent
to the trace of the Jacobian of fΦ.

There are two main algorithmic advantages of this approach: its intrinsic parallelism
between independent particles, and the trivial reversibility of the flow transformation using
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the same integrator in opposite direction. Recently, such flows have also been applied to
graph neural networks as a form of continuous message passing (Deng et al., 2019; Liu
et al., 2019). Our work differs from such literature chiefly in two ways: we target inference
amortization instead of density estimation, and our flows represent a global continuous
message passing dynamics on the sparse inverse model structure.

3.2. Sparse Neural ODE

In order to constrain the architecture of the flow network fΦ to respect the necessary
statistical independence structure, the weight matrix of each layer hΦl

is masked with the
adjacency H of the minimally faithful inverted graphical model, i.e., the output reads

fΦ(z, t, x) =
(
hΦL

(·, t) ◦ · · · ◦ hΦ1(·, t)
)
(z ⊕ x)

hΦl
(ẑ, t) = σ

{
(Wl �H)ẑ � ηl,1(t)

}
+ bl � ηl,2(t) (3)

Here the column
{

(hΦl
(ẑ, ·))i

}
l

of activations across layers l corresponds to a node i in the
graphical model, σ is the activation function tanh, b is a bias, and ηl,· are time dependent
linear gating functions modelling time dependencies of the flow as in Chen et al. (2018).
While our architecture captures the global statistical structure, we have not yet explored
inversion of individual link functions as in Tavares and Lezama (2016). Optionally, we
introduce local nuisance variables to increase the latent space dimension of each random
variable, following similar reasoning to Dupont et al. (2019). In our experiments, we found
L = 3 hidden layers to provide enough over-parametrization. A simplified version of this
architecture is shown in Panel (4) of Figure 1.

4. Symmetric KL

Our optimization objective is the symmetrized Kullback-Leibler divergence in expectation
over training data,

L [qΦ] (X ) =
1

2
Ex∼X

[
DKL{p(· | x) || qΦ(· | x)}︸ ︷︷ ︸

forward KL

+DKL{qΦ(· | x) || p(· | x)}︸ ︷︷ ︸
reverse KL

]

=
1

2
Ex∼X

[
E z∼ p(·|x)

[
ln

p(z, x)

qΦ(z | x)

]
+ E z∼ qΦ(·|x)

[
ln
qΦ(z | x)

p(z, x)

]]
. (4)

While the forward KL term measures the quality of density estimation on the support of
the true posterior, the reverse KL term incentivizes samples from qΦ to behave similarly
to the latter. Efficient estimation of this objective is possible in this setting, because the
joint model is available and the variational posterior qΦ is reparametrized. Importantly,
in contrast to expected forward or reverse KL alone, L [qΦ] does not contain the unknown
constant factor Ex∼X ln p(x). In the experiments described below, we uniformly find a
significant performance improvement over using only the forward or reverse KL for training.
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5. Experiments

5.1. Arithmetic Circuit
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Figure 2: Effect of flow architec-
ture on the training loss (expected
symmetrized KL) for the experiment
in Figure 1. Depicted are the means
and the 1σ confidence intervals for 10
runs each, smoothed in time.

A quantitative comparison of the minimally faithful
inversion structure against three baselines is shown in
Figure 2, measuring the objective in Equation (4) on
the arithmetic circuit example from Figure 1. Aside
from using the same algorithm and hyperparameters,
the different architectures are made comparable by
choosing similar numbers of dimensions for the la-
tent spaces of the flows: FFJORD (Grathwohl et al.,
2018) transforms the original 6D latent space into the
flow space using a fully connected layer, while for the
other architectures we augment each original latent
dimension by 10 additional dimensions. As a result,
FFJORD (64 dimensions, 17801 parameters) and the
flows with full connectivity (66 dimensions, 18679
parameters) and minimally faithful inverse structure
(66 dimensions, 7725 parameters) achieve competitive
performances. In addition to using significantly fewer
parameters, our sparsity structure trains faster in the beginning, suggesting a more appro-
priate inductive bias. The importance of faithful inversion is corroborated by a control
experiment, which differs only in its randomized sparsity structure (66 dimensions, 7725
parameters), and performs poorly, suffering from early saturation and high variance.

5.2. Objective Function
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Figure 3: Effect of the choice of objective function (expected forward/reverse/symmetrized
KL), measured in terms of the expected reverse KL (ELBO) for the experiment in Figure 1.
By accounting for both divergences, and thereby combining mode-seeking and mass-seeking
behaviour, the symmetrized loss provides a stronger learning signal in general. In this
example, the validation loss improves by more than an order of magnitude. We plot the
median and a band of one standard deviation over 10 runs.

Figure 3 shows a comparison of the different losses described in Section 4. The reverse
KL-based loss was found to be capable of training simpler models, such as small Gaussian
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state space models. However, it had consistently higher variance than the forward KL and
was not at all sufficient for training on the arithmetic circuit we consider, as Figure 3 shows.
The forward KL, the standard loss introduced with CNFs (Grathwohl et al., 2018), provides
a learning signal on the task, but quickly saturates with a reversed KL of about 100 nats.
The symmetrized KL, on the other hand, learns faster from the start and keeps improving to
below 10 nats. This is a crucial improvement, since the forward KL only optimizes q to be a
density estimator for p(z|x), while the reverse KL optimizes the sampling behavior of q as
well. Our experiment shows that such a CNF can only be trained with the symmetrized KL.
For this run we have used an augmentation of 5 dimensions for each latent variable, all the
other parameters were the same as in the previous result. The benefits of the symmetrizeded
loss wereconsistent over all our experiments.

5.3. Deconvolution
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Figure 4: (a) Adjacency matrix of the minimally faithful inverse structure for a 2D convolu-
tion, using the dimension convention of Figure 1 and black/white for 0/1. (b) Examples
of stochastic deconvolution, trained as a flow with the sparsity pattern in (4a). Each row
conditions on an output (4× 4) and a filter (3× 3) to infer corresponding inputs (9× 9).
Posteriors are visualized using 5 samples of the input and the reconstructed outputs.

As an example for a more challenging application, Figure 4 portrays 2D deconvolution,
interpreted as amortized inference for the generative process of image convolution. To obtain
output pixels (4× 4), the generative model samples each of the filter weights (3× 3) from a
standard normal prior and calculates the forward convolution on an image patch (9×9) with
stride 2 and no padding. The minimally faithful inversion structure in Figure 4a indicates
all statistical dependencies: across (inferred) input pixels, of inputs on filter weights, and of
input pixels on their outputs. For example, pixels in the middle of the input patch visibly
depend on all output values. The inference artifact is trained on randomly cropped real
image patches from the MNIST digit classification dataset, and amortizes over all possible
convolutional filters of this shape. It should be noted that in contrast to usual deconvolutional
architectures, this stochastic inverse function is trained without explicit weight sharing.
Finally, we perform a qualitative consistency check in Figure 4b, by reconstructing outputs
from samples of the approximate posterior.
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