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ABSTRACT

The lack of crisp mathematical models that capture the structure of real-world
data sets is a major obstacle to the detailed theoretical understanding of deep
neural networks. Here, we first demonstrate the effect of structured data sets by
experimentally comparing the dynamics and the performance of two-layer networks
trained on two different data sets: (i) an unstructured synthetic data set containing
random i.i.d. inputs, and (ii) a simple canonical data set containing MNIST images.
Our analysis reveals two phenomena related to the dynamics of the networks and
their ability to generalise that only appear when training on structured data sets.
Second, we introduce a generative model for data sets, where high-dimensional
inputs lie on a lower-dimensional manifold and have labels that depend only on
their position within this manifold. We call it the hidden manifold model and we
experimentally demonstrate that training networks on data sets drawn from this
model reproduces both the phenomena seen during training on MNIST.

1 INTRODUCTION AND RELATED WORK

A major impediment for understanding the effectiveness of deep neural networks is our lack of
mathematical models for the data sets on which neural networks are trained. This lack of tractable
models prevents us from analysing the impact of data sets on the training of neural networks and
their ability to generalise from examples, which remains an open problem both in statistical learning
theory (Vapnik, 2013; Mohri et al., 2012), and in analysing the average-case behaviour of algorithms
in synthetic data models (Seung et al., 1992; Engel & Van den Broeck, 2001; Zdeborová & Krzakala,
2016).

Indeed, most theoretical results on neural networks do not model the structure of the training
data, while some works build on a setup where inputs are drawn component-wise i.i.d. from some
probability distribution, and labels are either random or given by some random, but fixed function of
the inputs. Despite providing valuable insights, these approaches are by construction blind to key
structural properties of real-world data sets.

Here, we focus on two types of data structure that can both already be illustrated by considering
the simple canonical problem of classifying the handwritten digits in the MNIST database using
a neural network N (LeCun & Cortes, 1998). The input patterns are images with 28 × 28 pixels,
so a priori we work in the high-dimensional R784. However, the inputs that may be interpreted as
handwritten digits, and hence constitute the “world” of our problem, span but a lower-dimensional
manifold within R784 which is not easily defined. Its dimension can nevertheless be estimated to
be around D ≈ 14 based on the neighbourhoods of inputs in the data set (Grassberger & Procaccia,
1983; Costa & Hero, 2004; Levina & Bickel, 2004; Facco et al., 2017; Spigler et al., 2019). The
intrinsic dimension being lower than the dimension of the input space is a property expected to be
common to many real data sets used in machine leanring. We should not consider presenting N
with an input that is outside of its world (or maybe we should train it to answer that the “input is
outside of my world” in such cases). We will call inputs structured if they are concentrated on a
lower-dimensional manifold and thus have a lower-dimensional latent representation.

The second type of the structure concerns the function of the inputs that is to be learnt, which we will
call the learning task. We will consider two models: the teacher task, where the label is obtained as a
function of the high-dimensional input; and the latent task, where the label is a function of only the
lower-dimensional latent representation of the input.
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structured inputs inputs that are concentrated on a fixed, lower-dimensional man-
ifold in input space

latent representation for a structured input, its coordinates in the lower-dimensional
manifold

task the function of the inputs to be learnt

latent task for structured inputs, labels are given as a function of the latent
representation only

teacher task for all inputs, labels are obtained from a random, but fixed func-
tion of the high-dimensional input without explicit dependence
on the latent representation, if it exists

MNIST task discriminating odd from even digits in the MNIST database

vanilla teacher-student setup Generative model due to Gardner & Derrida (1989), where data
sets consist of component-wise i.i.d. inputs with labels given by
a fixed, but random neural network acting directly on the input

hidden manifold model (HMF) Generative model introduced in Sec. 4 for data sets consisting
of structured inputs (Eq. 6) with latent labels (Eq. 7)

Table 1: Several key concepts used/introduced in this paper.

We begin this paper by comparing neural networks trained on two different problems: the MNIST
task, where one aims to discriminate odd from even digits in the in the MNIST data set; and the
vanilla teacher-student setup, where inputs are drawn as vectors with i.i.d. component from the
Gaussian distribution and labels are given by a random, but fixed, neural network acting on the
high-dimensional inputs. This model is an example of a teacher task on unstructured inputs. It was
introduced by Gardner & Derrida (1989) and has played a major role in theoretical studies of the
generalisation ability of neural networks from an average-case perspective, particularly within the
framework of statistical mechanics (Seung et al., 1992; Watkin et al., 1993; Engel & Van den Broeck,
2001; Zdeborová & Krzakala, 2016; Advani & Saxe, 2017; Aubin et al., 2018; Barbier et al., 2019;
Goldt et al., 2019; Yoshida et al., 2019), and also in recent statistical learning theory works, e.g. (Ge
et al., 2017; Li & Y., 2017; Mei & Montanari, 2019; Arora et al., 2019). We choose the MNIST
data set because it is the simplest widely used example of a structured data set on which neural
networks show significantly different behaviour than when trained on synthetic data of the vanilla
teacher-student setup.

Our reasoning then proceeds in two main steps:

1. We experimentally identify two key differences between networks trained in the vanilla teacher-
student setup and networks trained on the MNIST task (Sec. 3). i) Two identical networks trained on
the same MNIST task, but starting from different initial conditions, will achieve the same test error
on MNIST images, but they learn globally different functions. Their outputs coincide in those regions
of input space where MNIST images tend to lie – the “world” of the problem, but differ significantly
when tested on Gaussian inputs. In contrast, two networks trained on the teacher task learn the same
functions globally to within a small error. ii) In the vanilla teacher-student setup, the test error of a
network is stationary during long periods of training before a sudden drop-off. These plateaus are
well-known features of this setup (Saad & Solla, 1995; Engel & Van den Broeck, 2001), but are
not observed when training on the MNIST task nor on other datasets used commonly in machine
learning.

2. Our main contribution: We introduce the hidden manifold model (HMF), a probabilistic model
that generates data sets containing high-dimensional inputs which lie on a lower-dimensional
manifold and whose labels depend only on their position within that manifold (Sec. 4). In this model,
inputs are thus structured and labels depend on their lower-dimensional latent representation. We
experimentally demonstrate that training networks on data sets drawn from this model reproduces
both behaviours observed when training on MNIST. We also show that the structure of both, input
space and the task to be learnt, play an important role for the dynamics and the performance of neural
networks.
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Other related work Several works have compared neural networks trained from different initial
conditions on the same task by comparing the different features learnt in vision problems (Li et al.,
2015; Raghu et al., 2017; Morcos et al., 2018), but these works did not compare the functions learned
by the network. On the theory side, several works have appreciated the need to model the inputs, and
to go beyond the simple component-wise i.i.d. modelling (Bruna & Mallat, 2013; Patel et al., 2016;
Mézard, 2017; Gabrié et al., 2018; Mossel, 2018; Saxe et al., 2019). While we will focus on the ability
of neural network to generalise from examples, two recent papers studied a network’s ability to store
inputs with lower-dimensional structure and random labels: Chung et al. (2018) studied the linear
separability of general, finite-dimensional manifolds, while Rotondo et al. (2019) extended Cover’s
argument (Cover, 1965) to count the number of learnable dichotomies when inputs are grouped in
tuples of k inputs with the same label.

Accessibility and reproducibility The full code of our experiments can be accessed via https:
//drive.google.com/open?id=1L0UOtOoRTYSHZtTxMxKIQuZLEuVaoJl_. We give
necessary parameter values to reproduce our figures beneath each plot. For ease of reading, we adopt
the notation from the textbook by Goodfellow et al. (2016).

2 SETUP

In order to proceed on the question of what is a suitable model for structured data, we consider the
setup of a feedforward neural network with one hidden layer with a few hidden units, as described
below. We chose this setting because it is the simplest one we found where we were able to identify
key differences between training in the vanilla teacher-student setup and training on the MNIST task.
So throughout this work, we focus on the dynamics and performance of fully-connected two-layer
neural networks with K hidden units and first- and second-layer weightsW ∈ RK×N and v ∈ RK ,
resp. Given an input x ∈ RN , the output of a network with parameters θ = (W ,v) is given by

φ(x;θ) =

K∑
k

vkg
(
wkx/

√
N
)
, (1)

where wk is the kth row of W , and g : R → R is the non-linear activation function of the
network. We will focus on sigmoidal networks with g(x) = erf(x/

√
2), or ReLU networks where

g(x) = max(0, x) (see Appendix E).

We will train the neural networks on data sets with P input-output pairs (xi, y
∗
i ), i = 1, . . . , P , where

we use the starred y∗i to denote the true label of an input xi. We train networks by minimising the
quadratic training error E(θ) = 1/2

∑P
i=1 ∆2

i with ∆i = [φ(xi,θ)− y∗i ] using stochastic gradient
descent (SGD) with constant learning rate η,

θµ+1 = θµ − η∇θE(θ)|θµ,xµ,y∗µ
. (2)

Initial weights for both layers of sigmoidal networks were always taken component-wise i.i.d. from
the normal distribution with mean 0 and variance 1. The initial weights of ReLU networks were also
taken from the normal distribution, but with variance 10−6 to ensure convergence.

The key quantity of interest is the test error or generalisation error of a network, for which we
compare its predictions to the labels given in a test set that is composed of P ∗ input-output pairs
(xi, y

∗
i ), i = 1, . . . , P ∗ that are not used during training,

εmse
g (θ) ≡ 1

2P ∗

P∗∑
i

[φ(xi,θ)− y∗i ]
2
. (3)

The test set might be composed of MNIST test images or generated by the same probabilistic model
that generated the training data. For binary classification tasks with y∗ = ±1, this definition is easily
amended to give the fractional generalisation error εfracg (θ) ∝

∑P∗

i Θ [−φ(xi,θ)y∗i ], where Θ(·) is
the Heaviside step function.

2.1 LEARNING FROM REAL DATA OR FROM GENERATIVE MODELS?

We want to compare the behaviours of two-layer neural networks Eq. (1) trained either on real data
sets or on unstructured tasks. As an example of a real data set, we will use the MNIST image database

3

https://drive.google.com/open?id=1L0UOtOoRTYSHZtTxMxKIQuZLEuVaoJl_
https://drive.google.com/open?id=1L0UOtOoRTYSHZtTxMxKIQuZLEuVaoJl_


Under review as a conference paper at ICLR 2020

2 4 6 8
K

0.0

0.1

0.2

0.3

0.4

0.5

fra
c

g

frac
g
frac
1, 2  (structured)
frac
1, 2   (i.i.d. Gaussian)

1 2 3 4 5 6 7 8
K

0.00

0.02

0.04

0.06

fra
c

g

frac
g
frac
1, 2   (i.i.d. Gaussian)

Figure 1: (Left) Networks trained independently on MNIST achieve similar performance, but
learn different functions. For two networks trained independently on the MNIST odd-even classifi-
cation task, we show the averaged final fractional test error, εfracg (blue dots). We also plot εfrac1,2 (5),
the fraction of Gaussian i.i.d. inputs and MNIST test images the networks classify differently after
training (green diamonds and orange crosses, resp.). (Right) Training independent networks on a
teacher task with i.i.d. inputs does not reproduce this behaviour. We plot the results of the same
experiment, but for Gaussian i.i.d. inputs with teacher labels y∗i (Eq. 4, M = 4). For both plots,
g(x) = erf

(
x/
√

2
)
, η = 0.2, P = 76N,N = 784.

of handwritten digits (LeCun & Cortes, 1998) and focus on the task of discriminating odd from
even digits. Hence the inputs xi will be the MNIST images with labels y∗i = 1,−1 for odd and
even digits, resp. The joint probability distribution of input-output pairs (xi, y

∗
i ) for this task is

inaccessible, which prevents analytical control over the test error and other quantities of interest.
To make theoretical progress, it is therefore promising to study the generalisation ability of neural
networks for data arising from a probabilistic generative model.

A classic model for data sets is the vanilla teacher-student setup (Gardner & Derrida, 1989), where
unstructured i.i.d. inputs are fed through a random neural network called the teacher. We will take
the teacher to have two layers and M hidden nodes. We allow that M 6= K and we will draw
the components of the teacher’s weights θ∗ = (v∗ ∈ RM ,W ∗ ∈ RM×N ) i.i.d. from the normal
distribution with mean zero and unit variance. Drawing the inputs i.i.d. from the standard normal
distribution N (x; 0, IN ), we will take

y∗i = φ(xi,θ
∗) (4)

for regression tasks, or y∗i = sgn(φ(xi,θ
∗)) for binary classification tasks. This is hence an example

of a teacher task. In this setting, the network with K hidden units that is trained using SGD Eq. (2) is
traditionally called the student. Notice that, if K ≥M , there exists a student network that has zero
generalisation error, the one with the same architecture and parameters as the teacher.

3 TWO CHARACTERISTIC BEHAVIOURS OF NEURAL NETWORKS TRAINED ON
STRUCTURED DATA SETS

We now proceed to demonstrate experimentally two significant differences in the dynamics and the
performance of neural networks trained on realistic data sets and networks trained within the vanilla
teacher-student setup.

3.1 INDEPENDENT NETWORKS ACHIEVE SIMILAR PERFORMANCE, BUT LEARN DIFFERENT
FUNCTIONS WHEN TRAINED ON STRUCTURED TASKS

We trained two sigmoidal networks with K hidden units, starting from two independent draws of
initial conditions to discriminate odd from even digits in the MNIST database. We trained both
networks using SGD with constant learning rate η, eq. (2), until the generalisation error had converged
to a stationary value. We plot this asymptotic fractional test error εfracg as blue circles on the left
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Figure 2: (Left) Extended periods with stationary test error during training (“plateaus”)
appear in the vanilla teacher-student setup, not on MNIST. We plot the generalisation error
εmse
g (3) of a network trained on Gaussian i.i.d. inputs with teacher labels (Eq. 4, M = 4, blue)

and when learning to discriminate odd from even digits in MNIST (orange). We trained either
the first layer only (dashed) or both layers (solid). Notice the log scale on the x-axes. (Right)
Both structured inputs and latent labels are required to remove the plateau for synthetic data.
Same experiment, but now the network is trained on structured inputs (Eq. 6) (f(x) = sgn(x)),
with teacher labels y∗i (Eq. 4, blue) and with latent labels ỹ∗i (Eq. 7, orange). In both plots,
g(x) = erf

(
x/
√

2
)
, P = 76N,K = 3, η = 0.2.

in Fig. 1 (the averages are taken over both networks and over several realisations of the initial
conditions). We observed the same qualitative behaviour when we employed the early-stopping error
to evaluate the networks, where we take the minimum of the generalisation error during training (see
Appendix C).

First, we note that increasing the number of hidden units in the network decreases the test error on
this task. We also compared the networks to one another by counting the fraction of inputs which the
two networks classify differently,

εfrac1,2 (θ1,θ2) ≡ 1

2P ∗

P∗∑
i

Θ [−φ(xi,θ1)φ(xi,θ2)] . (5)

This is a measure of the degree to which both networks have learned the same function φ(x,θ).
Independent networks disagree on the classification of MNIST test images at a rate that roughly
corresponds to their test error for K ≥ 3 (orange crosses). However, even though the additional
parameters of bigger networks are helpful in the discrimination task (decreasing εg), both networks
learn increasingly different functions when evaluated over the whole of RN using Gaussian inputs
as the network size K increases (green diamonds). The network learned the right function on the
lower-dimensional manifold on which MNIST inputs concentrate, but not outside of it.

This behaviour is not reproduced if we substitute the MNIST data set with a data set of the same size
drawn from the vanilla teacher-student setup from Sec. 2.1 with M = 4, leaving everything else the
same (right of Fig. 1). The final test error decreases with K, and as soon as the expressive power
of the network is at least equal to that of the teacher, i.e. K ≥M , the asymptotic test error goes to
zero, since the data set is large enough for the network to recover the teacher’s weights to within
a very small error, leading to a small generalisation error. We also computed the εfrac1,2 evaluated
using Gaussian i.i.d. inputs (green diamonds). Networks with fewer parameters than the teacher
find different approximations to that function, yielding finite values of ε1,2. If they have just enough
parameters (K = M ), they learn the same function. Remarkably, they also learn the same function
when they have significantly more parameters than the teacher. The vanilla teacher-student setup is
thus unable to reproduce the behaviour observed when training on MNIST.
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3.2 THE GENERALISATION ERROR EXHIBITS PLATEAUS DURING TRAINING ON I.I.D. INPUTS

We plot the generalisation dynamics, i.e. the test error as a function of training time, for neural
networks of the form (1) in Fig. 2. For a data set drawn from the vanilla teacher-student setup with
M = 4, (blue lines in the left-hand plot of Fig. 2), we observe that there is an extended period
of training during which the test error εg remains constant before a sudden drop. These “plateaus”
are well-known in the literature for both SGD, where they appear as a function of time (Biehl &
Schwarze, 1995; Saad & Solla, 1995; Biehl et al., 1996), and in batch learning, where they appear as a
function of the training set size (Schwarze, 1993; Engel & Van den Broeck, 2001). Their appearance
is related to different stages of learning: After a brief exponential decay of the test error at the start
of training, the network “believes” that data are linearly separable and all her hidden units have
roughly the same overlap with all the teacher nodes. Only after a longer time, the network picks up
the additional structure of the teacher and “specialises”: each of its hidden units ideally becomes
strongly correlated with one and only one hidden unit of the teacher before the generalisation error
decreases exponentially to its final value.

In contrast, the generalisation dynamics of the same network trained on the MNIST task (orange
trajectories on the left of Fig. 2) shows no plateau. In fact, plateaus are rarely seen during the training
of neural networks (note that during training, we do not change any of the hyper-parameters, e.g. the
learning rate η.)

It has been an open question how to eliminate the plateaus from the dynamics of neural networks
trained in the teacher-student setup. The use of second-order gradient descent methods such as
natural gradient descent (Yang & Amari, 1998) can shorten the plateau (Rattray et al., 1998), but we
would like to focus on the more practically relevant case of first-order SGD. Yoshida et al. (2019)
recently showed that length and existence of the plateau depend on the dimensionality of the output
of the network, but we would like a model where the plateau disappears independently of the output
dimension.

4 THE HIDDEN MANIFOLD MODEL

We now introduce a new generative probabilistic model for structured data sets with the aim of
reproducing the behaviour observed during training on MNIST, but with a synthetic data set. The
main motivation for such a model is that a closed-form solution of the learning dynamics is expected
to be accessible. To generate a data set containing P inputs in N dimensions, we first choose D
feature vectors in N dimensions and collect them in a feature matrix F ∈ RD×N . Next we draw P
vectors ci with random i.i.d. components and collect them in the matrix C ∈ RP×D. The vector
ci gives the coordinates of the ith input on the lower-dimensional manifold spanned by the feature
vectors in F. We will call ci the latent representation of the input xi, which is given by the ith row of

X = f
(
CF/

√
D
)
∈ RP×N , (6)

where f is a non-linear function acting component-wise. In this model, the “world” of the data on
which the true label can depend is a D-dimensional manifold, which is obtained from the linear
subspace of RN generated by the D lines of matrix F, through a folding process induced by the
nonlinear function f . As we discuss in Appendix A, the exact form of f does not seem to be important,
as long as it is a nonlinear function.

The latent labels are obtained by applying a two-layer neural network with weights θ̃∗ = (W̃∗ ∈
RM×D, ṽ∗ ∈ RM ) within the unfolded hidden manifold according to

ỹ∗i = φ(ci, θ̃
∗) =

M∑
m

ṽ∗mg
(
w̃∗
mci/

√
D
)
. (7)

We draw the weights in both layers component-wise i.i.d. from the normal distribution with unity
variance, unless we note it otherwise. The key point here is the dependency of labels ỹi on the
coordinates of the lower-dimensional manifold C rather than on the high-dimensional data X. We
believe that the exact form of this dependence is not crucial and we expect several other choices to
yield similar results to the ones we will present in the next section.
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Figure 3: A latent task on structured inputs makes independent networks behave like networks
trained on MNIST. (Left) For two networks trained independently on a binary classification task
with structured inputs (6) and latent labels ỹ∗i (Eq. 7, M = 1), we plot the final fractional test error,
εfracg (blue dots). We also plot εfrac1,2 (5), the fraction of Gaussian i.i.d. inputs and structured inputs
the networks classify differently after training (green diamonds and orange crosses, resp.). (Right)
In the same experiment, structured inputs with teacher labels y∗i (4) (M = 4) fail to reproduce the
behaviour observed on MNIST (cf. Fig. 1). In both plots, f(x) = sgn(x), g(x) = erf

(
x/
√

2
)
, D =

10, η = 0.2.

In the following, we choose the entries of both C and F to be i.i.d. draws from the normal distribution
with mean zero and unit variance. To ensure comparability of the data sets for different data-generating
function f(x), we always center the input matrix X by subtracting the mean value of the entire
matrix from all components and we rescale inputs by dividing all entries by the covariance of all the
entries in the matrix before training.

4.1 THE IMPACT OF THE HIDDEN MANIFOLD MODEL ON NEURAL NETWORKS

We repeated the experiments with two independent networks reported in Sec. 3.1 using data sets
generated from the hidden manifold model with D = 10 latent dimensions (see Appendix D). On the
right of Fig. 3, we plot the asymptotic performance of a network trained on structured inputs which
lie on a manifold (6) with a teacher task: the labels are a function of the high-dimensional inputs
and do not explicitly take the latent representation ci of an input into account, y∗i = φ(xi,θ

∗). The
final results are similar to those of networks trained on data from the vanilla teacher-student setup (cf.
right of Fig. 1): given enough data, the network recovers the teacher function if the network has at
least as many parameters as the teacher. Once the teacher weights are recovered by both networks,
they achieve zero test error (blue circles) and they agree on the classification of random Gaussian
inputs because they do implement the same function.

The left plot of Fig. 3 shows network performance when trained on the same inputs, but this time with
a latent task where the labels are a function of the latent representation of the inputs: ỹi = φ(ci, θ̃

∗).
The asymptotic performance of the networks then resembles that of networks trained on MNIST:
after convergence, the two networks will disagree on structured inputs at a rate that is roughly their
generalisation error, but asK increases, they also learn increasingly different functions, up to the point
where they will agree on their classification of a random Gaussian input in just half the cases. The
hidden manifold model thus reproduces the behaviour of independent networks trained on MNIST.

A look at the right-hand plot Fig. 2 reveals that in this model the plateaus are absent. Again, we
repeat the experiment of Sec. 3.2, but we train networks on structured inputs X = sgn(CF) with
teacher (y∗i ) and latent labels (ỹ∗i ), respectively. It is clear from these plots that the plateaus only
appear for the teacher task. In Appendix B, we demonstrate that the lack of plateaus for latent tasks
in Fig. 2 is not due to the fact that the network in the latent task asymptotes at a higher generalisation
error than the teacher task.
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Figure 4: (Left) Same plot as the right plot of Fig. 1 with Gaussian i.i.d. inputs xi and labels y∗i (4)
provided by a teacher network with M = 4 hidden units that was pre-trained on the MNIST task,
reaching ∼ 5% on the task. Inset: Typical generalisation dynamics of networks where we train the
first or both layers (dashed and solid, resp.). g(x) = erf

(
x/
√

2
)
, η = 0.2, N = 784,M = K =

4, P = 76N . (Right) Four different setups for synthetic data sets in supervised learning problems.

4.2 LATENT TASKS, STRUCTURED INPUTS ARE BOTH NECESSARY TO MODEL REAL DATA SETS

Our quest to reproduce the behaviour of networks trained on MNIST has led us to consider three
different setups so far: the vanilla teacher-student setup, i.e. a teacher task on unstructured inputs;
and teacher and latent tasks on structured inputs. While it is not strictly possible to test the case of
a latent task with unstructured inputs, we can approximate this setup by training a network on the
MNIST task and then using the resulting network as a teacher to generate labels y∗i (4) for inputs
drawn i.i.d. component-wise from the standard normal distribution. To test this idea, we trained both
layers sigmoidal networks with M = 4 hidden units using vanilla SGD on the MNIST task, where
they reach a generalisation error of about 5%. They have thus clearly learnt some of the structure
of the MNIST task. However, as we show on the left of Fig. 4, independent students trained on a
data set with i.i.d. Gaussian inputs xi and true labels y∗i given by the pre-trained teacher network
behave similarly to students trained in the vanilla teacher-student setup of Sec. 3.1. Furthermore,
the learning dynamics of a network trained in this setup display the plateaus that we observed in the
vanilla teacher-student setup (inset of Fig. 4).

On the right of Fig. 4, we summarise the four different setups for synthetic data sets in supervised
learning problems that we have analysed in this paper. Only the hidden manifold model, consisting of
a latent task on structured inputs, reproduced the behaviour of neural networks trained on the MNIST
task, leading us to conclude that a model for realistic data sets has to feature both, structured inputs
and a latent task.

5 CONCLUDING PERSPECTIVES

We have introduced the hidden manifold model for structured data sets that is simple to write down,
yet displays some of the phenomena that we observe when training neural networks on real-world
inputs. We saw that the model has two key ingredients, both of which are necessary: (1) high-
dimensional inputs which lie on a lower-dimensional manifold and (2) latent labels for these inputs
that depend on the inputs’ position within the low dimensional manifold. We hope that this model is
a step towards a more thorough understanding of how the structure we find in real-world data sets
impacts the training dynamics of neural networks and their ability to generalise.

We see two main lines for future work. On the one hand, the present work needs to be generalised to
multi-layer networks to identify how depth helps to deal with structured data sets and to build a model
capturing the key properties. On the other hand, the key promise of the synthetic hidden manifold
model is that the learning dynamics should be amenable to closed-form analysis in some limit. Such
analysis and its results would then provide further insights about the properties of learning beyond
what is possible with numerical experiments.

8



Under review as a conference paper at ICLR 2020

REFERENCES

M.S. Advani and A.M. Saxe. High-dimensional dynamics of generalization error in neural networks.
arXiv:1710.03667, 2017.

S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit Regularization in Deep Matrix Factorization. In
Advances in Neural Information Processing Systems 33, arXiv:1905.13655, 2019.

B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zdeborová. The committee machine:
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M. Biehl, P. Riegler, and C. Wöhler. Transient dynamics of on-line learning in two-layered neural
networks. Journal of Physics A: Mathematical and General, 29(16), 1996.

J. Bruna and S. Mallat. Invaraint scattering convolution networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (35):1872–1886, 2013.

S. Chung, Daniel D. Lee, and H. Sompolinsky. Classification and Geometry of General Perceptual
Manifolds. Physical Review X, 8(3):31003, 2018.

J.A. Costa and A.O. Hero. Learning intrinsic dimension and intrinsic entropy of high-dimensional
datasets. In 2004 12th European Signal Processing Conference, pp. 369–372, 2004.

T.M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications
in Pattern Recognition. IEEE Transactions on Electronic Computers, EC-14(3):326–334, 1965.

A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge University Press,
2001.

Elena Facco, Maria D’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic
dimension of datasets by a minimal neighborhood information. Scientific Reports, 7(1):1–8, 2017.
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A THE EXACT FORM OF THE DATA-GENERATING FUNCTION f(·) IS NOT
IMPORTANT, AS LONG AS IT IS NON-LINEAR

Two questions arise when looking at the way we generate inputs in our data sets,X = f
(
CF/

√
D
)

:
is the non-linearity necessary f(·) necessary, and is the choice of non-linearity important?

To answer the first question, we plot the results of the experiment with independent networks described
in Sec. 4.1. The setup is exactly the same, except that we now take inputs to be

X = CF, (8)

i.e. inputs are just a linear combination of the feature vectors, without applying a non-linearity.
In this case, two networks trained in the vanilla teacher-student setup will learn globally different
functions, as can be seen from the fractional generalisation error between the networks (5) (green
diamonds), which is 1/2, i.e. not better than chance. This is a direct consequence of using f(x) = x:
to perfectly generalise with respect to the teacher, it is thus sufficient to learn only the D components
of the teacher weightsw∗

m in the direction F. Thus the weights of the network in the weight space
orthogonal to the directions F are unconstrained, and by starting from random initial conditions, will
converge to different values for each network.

We also checked that the qualitative behaviour of a neural networks trained on the hidden manifold
model does not depend on the data-generating non-linearity f(x). In Fig. 6, we therefore show the
results of the same experiment described in Sec. 4.1, but this time using

X = max (0,CF) . (9)

where the application of the non-linearity is again component-wise. Indeed, the results mirror those
when we used the sign function f(x) = sgn(x).
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Figure 5: The input-generating function must be non-linear. We repeat the plots of Fig. 3,
where we plot the fractional test errors of networks trained on labels generated by a teacher with
M = 1 hidden units acting on the inputs (Left) and on the coefficients (Right), only that we take
the inputs to be X = CF, i.e. we choose a linear data-generating function f(x) = x. Notably,
even networks trained within the vanilla teacher-student setup will disagree on Gaussian inputs.
M = 1, η = 0.2, D = 10, ṽ∗m = 1.

B THE EXISTENCE OF PLATEAUS DOES NOT DEPEND ON THE ASYMPTOTIC
GENERALISATION ERROR

We have demonstrated on the right of Fig. 2 that neural networks trained on data drawn from the
hidden manifold model (HMF) introduced here do not show the plateau phenomenon, where the
generalisation error stays stationary after an initial exponential decay, before dropping again. Upon
closer inspection, one might think that this is due to the fact that the student trained on data from the
HMF asymptotes at a higher generalisation error than the student trained in the vanilla teacher-student
setup. This is not the case, as we demonstrate in Fig. 7: we observe no plateau in a sigmoidal network
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Figure 6: The qualitative behaviour of inde-
pendent students trained on the hidden man-
ifold model does not depend on our choice of
data-generating non-linearity f(x). Same plot
as Fig. 3, with X = max(0,CF). M = 1, η =
0.2, D = 10, ṽ∗m = 1.
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Figure 7: The plateau in the vanilla teacher-
student setup can have larger generalisation
error than the asymptotic error in a latent
task on structured inputs. Generalisation dy-
namics of a sigmoidal network where we train
only the first layer on (i) structured inputs X =
max(0,CF) with latent labels ỹi (7) (blue, D =
10) and (ii) the vanilla teacher-student setup
(Sec. 2, orange). In both cases, M = 5,K =
6, η = 0.2, P = 76N, v∗m = v∗ = 1.

trained on data from the HMF even that network asymptotes at a generalisation error that is, within
fluctuations, the same as the generalisation error of a network of the same sized trained in the vanilla
teacher-student setup and which shows a plateau.

C EARLY-STOPPING YIELDS QUALITATIVELY SIMILAR RESULTS

In Fig. 8, we reproduce Fig. 3, where we compare the performance of independent neural networks
trained on the MNIST task (Left), or trained on structured inputs with a latent task (Center) and a
teacher task (Right), respectively. This time, we the early-stopping generalisation error ε̂frac

g rather
than the asymptotic value at the end of training. We define ε̂frac

g as the minimum of εfrac
g during

the whole of training. Clearly, the qualitative result of Sec. 4.1 is unchanged: although we use
structured inputs (6) in both cases, independent students will learn different functions which agree
on those inputs only when they are trained on a latent task (7) (Center), but not when trained on a
vanilla teacher task (4) (Right). Thus structured inputs and latent tasks are sufficient to reproduce the
behaviour observed when training on the MNIST task.

D DYNAMICS WITH A LARGE NUMBER OF FEATURES D ∼ N

It is of independent interest to investigate the behaviour of networks trained on data from the hidden
manifold model when the number of feature vectors D is on the same order as the input dimension N .
We call this the regime of extensive D. It is a different regime from MNIST, where experimental
studies consistently find that inputs lie on a low-dimensional manifold of dimension D ∼ 14, which
is much smaller than the input dimension N = 784 (Costa & Hero, 2004; Levina & Bickel, 2004;
Spigler et al., 2019).

We show the results of our numerical experiments with N = 500, D = 250 in Fig. 9, where we
reproduce Fig. 3 for the asymptotic (top row) and the early-stopping (bottow row) generalisation
error. The behaviour of networks trained on a teacher task with structured inputs (right column)
is unchanged w.r.t. to the case with D = 10. For the latent task, increasing the number of hidden
units however increases the generalisation error, indicating severe over-fitting, which is only partly
mitigated by early stopping. The generalisation error on this task is generally much higher than in the
low-D regime and clearly, increasing the width of the network is not the right way to learn a latent
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Figure 8: Measuring early stopping errors does not affect the phenomenology of latent and
teacher tasks. (Left) Performance of independent sigmoidal students on the MNIST task as evaluated
by the early-stopping generalisation error. (Center and Right) We reproduce Fig. 3 of the main
text, but this time we plot the early-stopping generalisation error ε̂frac

g for two networks trained
independently on a binary classification task with structured inputs (6) and latent labels ỹ∗i (Eq. 7,
M = 1, Center) and teacher labels y∗i (4) (M = 4) (Left). In both plots, f(x) = sgn(x), g(x) =

erf
(
x/
√

2
)
, D = 10, η = 0.2.

task; instead, it would be intriguing to analyse the performance of deeper networks on this task where
finding a good intermediate representation for inputs is key. This is an intriguing avenue for future
research.

E INDEPENDENT STUDENTS WITH RELU ACTIVATION FUNCTION

We also verified that the behaviour of independent networks we observed on MNIST with sigmoidal
students persists when training networks with ReLU activation function and that the hidden manifold
model is able to reproduce it for these networks. We show the results of our numerical experiments
in Fig. 10. To that end, we trained both layers of a network φ(x,θ) with g(x) = max(x, 0) starting
from small initial conditions, where we draw the weights component-wise i.i.d. from a normal
distribution with variance 10−6.

We see that the generalisation error of ReLU networks on the MNIST task (Left of Fig. 10) decreases
with increasing number of hidden units, while the generalisation error on MNIST inputs of the two
independent students with respect to each other is comparable or less than the generalisation error of
each individual network on the MNIST task.

On structured inputs with a teacher task (Right of Fig. 10), where labels were generated by a teacher
with M = 4 hidden units, the student recovers the teacher such that its generalisation error is less
than 10−3 for K > 4, and both independent students learn the same function, as evidenced by their
generalisation errors with respect to each other. This is the same behaviour that we see in Fig. 3 for
sigmoidal networks. The finite value of the generalisation error for K = M = 4 is due to two out of
ten runs taking a very long time to converge, longer than our simulation lasted for. Finally, we see
that for a latent task on structured inputs, the generalisation error of the two networks with respect
to each other increases beyond the generalisation error on structured inputs of each of them, as we
observed on MNIST. Thus we have recovered the phenomenology that we described for sigmoidal
networks in ReLU networks, too.
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Figure 9: Performance of independent networks trained on a latent task with inputs in many
latent directions D = N/2. (Top Left) For two networks trained independently on a binary classifi-
cation task with structured inputs (6) and latent labels ỹ∗i (Eq. 7, M = 1), we plot the final fractional
test error, εfracg (blue dots). We also plot εfrac1,2 (5), the fraction of Gaussian i.i.d. inputs and structured
inputs the networks classify differently after training (green diamonds and orange crosses, resp.).
(Top Right) Same experiment, but with structured inputs and teacher labels y∗i (4) (M = 4). (Bottom
row) Same plots as in the top row, but this time for the early-stopping error ε̂frac (see Sec. C). In all
plots, f(x) = sgn(x), g(x) = erf

(
x/
√

2
)
, N = 500, D = 250, η = 0.2.

2 4 6 8
K

0.0

0.1

0.2

0.3

0.4

0.5

fra
c

g

2 4 6 8
K

0.00

0.01

0.02

0.03

0.04

0.05

m
se

g

2 4 6 8
K

0.00

0.02

0.04

0.06

fra
c

g

frac
g
frac
1, 2  (structured)
frac
1, 2   (i.i.d. Gaussian)

Figure 10: Behaviour of independent students with ReLU activation functions. (Left) Asymp-
totic generalisation error of independent students with ReLU activation function g(x) = max(0, x)
on the MNIST task. (Center and Right) We reproduce Fig. 3 of the main text for two networks with
ReLU activation trained independently on a binary classification task with structured inputs (6) and
latent labels ỹ∗i (Eq. 7, M = 1) (Center) and teacher labels y∗i (4) (M = 4 Right). In both plots,
f(x) = sgn(x), g(x) = max(0, x), D = 10, η = 0.1.

14


	Introduction and related work
	Setup
	Learning from real data or from generative models?

	Two characteristic behaviours of neural networks trained on structured data sets
	Independent networks achieve similar performance, but learn different functions when trained on structured tasks
	The generalisation error exhibits plateaus during training on i.i.d. inputs

	The hidden manifold model
	The impact of the hidden manifold model on neural networks
	Latent tasks, structured inputs are both necessary to model real data sets

	Concluding perspectives
	The exact form of the data-generating function f() is not important, as long as it is non-linear
	The existence of plateaus does not depend on the asymptotic generalisation error
	Early-stopping yields qualitatively similar results
	Dynamics with a large number of features DN
	Independent students with ReLU activation function

