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ABSTRACT

Specifying reward functions is difficult, which motivates the area of reward in-
ference: learning rewards from human behavior. The starting assumption in the
area is that human behavior is optimal given the desired reward function, but in
reality people have many different forms of irrationality, from noise to myopia to
risk aversion and beyond. This fact seems like it will be strictly harmful to reward
inference: it is already hard to infer the reward from rational behavior, and noise
and systematic biases make actions have less direct of a relationship with the re-
ward. Our insight in this work is that, contrary to expectations, irrationality can
actually help rather than hinder reward inference. For some types and amounts
of irrationality, the expert now produces more varied policies compared to ratio-
nal behavior, which help disambiguate among different reward parameters – those
that otherwise correspond to the same rational behavior. We put this to the test in
a systematic analysis of the effect of irrationality on reward inference. We start
by covering the space of irrationalities as deviations from the Bellman update,
simulate expert behavior, and measure the accuracy of inference to contrast the
different types and study the gains and losses. We provide a mutual information-
based analysis of our findings, and wrap up by discussing the need to accurately
model irrationality, as well as to what extent we might expect (or be able to train)
real people to exhibit helpful irrationalities when teaching rewards to learners.

1 INTRODUCTION

The application of reinforcement learning (RL) in increasingly complex environments has been most
successful for problems that are already represented by a specified reward function (Lillicrap et al.,
2015; Mnih et al., 2015; 2016; Silver et al., 2016). Unfortunately, not only do real-world tasks
usually lack an explicit exogenously-specified reward function, but attempting to specify one tends
to lead to unexpected side-effects as the agent is faced with new situations (Lehman et al., 2018).

This has motivated the area of reward inference: the process of estimating a reward function from
human inputs. The inputs are traditionally demonstrations, leading to inverse reinforcement learn-
ing (IRL) (Ng et al., 2000; Abbeel & Ng, 2004) or inverse optimal control (IOC) (Kalman, 1964;
Jameson & Kreindler, 1973; Mombaur et al., 2010; Finn et al., 2016). Recent work has expanded
the range of inputs significantly,to comparisons (Wirth et al., 2017; Sadigh et al., 2017; Christiano
et al., 2017), natural language instructions (MacGlashan et al., 2015; Fu et al., 2019), physical cor-
rections (Jain et al., 2015; Bajcsy et al., 2017), proxy rewards (Hadfield-Menell et al., 2017; Ratner
et al., 2018), or scalar reward values (Griffith et al., 2013; Loftin et al., 2014).

The central assumption behind these methods is that human behavior is rational, i.e. optimal with
respect to the desired reward (cumulative, in expectation). Unfortunately, decades of research in be-
havioral economics and cognitive science Chipman (2014) has unearthed a deluge of irrationalities,
i.e. of ways in which people deviate from optimal decision making: hyperbolic discounting, scope
insensitivity, optimism bias, decision noise, certainty effects, loss aversion, status quo bias, etc.

Work on reward inference has predominantly used one model of irrationality: decision-making
noise, where the probability of an action relates to the value that action has. The most widely used
model by far is a Bolzmann distribution stemming from the Luce-Sherpard rule (Luce, 1959; Shep-
ard, 1957; Lucas et al., 2009) and the principle of maximum (causal) entropy in (Ziebart et al., 2008;
2010), which we will refer to as Bolzmann-rationality (Fisac et al., 2017). Recent work has started
to incorporate systematic biases though, like risk-aversion (Singh et al., 2017), having the wrong
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dynamics belief (Reddy et al., 2018), and myopia and hyperbolic discounting (Evans & Goodman,
2015; Evans et al., 2016).

Learning from irrational experts feels like daunting task: reward inference is already hard with
rational behavior, but now a learner needs to make sense of behavior that is noisy or systematically
biased. Our goal in this work is to characterize just how muddied the waters are – how (and how
much) do different irrationalities affect reward inference?

Our insight is that, contrary to expectations, irrationality can actually help, rather
than hinder, reward inference.

Our explanation is that how good reward inference is depends on the mutual information between the
policies produced by the expert and the reward parameters to be inferred. While it is often possible
for two reward parameters to produce the same rational behavior, irrationalities can sometimes
produce different behaviors that disambiguate between those same two reward parameters. For
instance, noise can help when it is related to the value function, as Boltzmann noise is, because it
distinguishes the difference in values even when the optimal action stays the same. Optimism can
be helpful because the expert takes fewer risk-avoiding actions and acts more directly on their goal.

Overall, we contribute 1) an analysis and comparison of the effects of different biases on reward in-
ference testing our insight, 2) a way to systematically formalize and cover the space of irrationalities
in order to conduct such an analysis, and 3) evidence for the importance of assuming the right type
of irrationality during inference.

Our good news is that irrationalities can indeed be an ally for inference. Of course, this is not always
true – the details of which irrationality type and how much of it also matter. We see these results
as opening the door to a better understanding of reward inference, as well as to practical ways of
making inference easier by asking for the right kind of expert demonstrations – after all, in some
cases it might be easier for people to act optimistically or myopically than to act rationally. Our
results reinforce that optimal teaching is different from optimal doing, but point out that some forms
of teaching might actually be easier than doing.

2 METHOD

2.1 EXPLORING IRRATIONALITY THROUGH SIMULATION

Our goal is to explore the effect irrationalities have on reward inference if the learner knows about
them – we explore the need for the learner to accurately model irrationalities in section 4.2. While
ideally we would recruit human subjects with different irrationalities and measure how well we
can learn rewards, this is prohibitive because we do not get to dictate someone’s irrationality type:
people exhibit a mix of them, some yet to be discovered. Further, measuring accuracy of inference
is complicated by the fact that we do not have ground truth access to the desired reward: the learner
can measure agreement with some test set, but the test set itself is produced subject to the same
irrationalities that produced the training data. As experimenters, we would remain deluded about
the human’s true intentions and preferences.

To address this issue, we simulate expert behavior subject to different irrationalities based on ground
truth reward functions, run reward inference, and measure the performance against the ground truth,
i.e. the accuracy of a Bayesian posterior on the reward function given the (simulated) expert’s inputs.

2.2 TYPES AND DEGREES OF IRRATIONALITY

There are many possible irrationalities that people exhibit (Chipman, 2014), far more than what
we could study in one paper. They come with varying degrees of mathematical formalization and
replication across human studies. To provide good coverage of this space, we start from the Bell-
man update, and systematically manipulate its terms and operators to produce a variety of different
irrationalities that deviate from the optimal MDP policy in complementary ways. For instance, op-
erating on the discount factor can model more myopic behavior, while operating on the transition
function can model optimism or the illusion of control. Figure 1 summarizes our approach, which
we detail below.
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Vi+1(s) = max
a

∑

s′∈S

T (s′|s, a) (r(s, a, s′) + γVi(s))

Boltzmann

Optimism/Pessimism
Illusion of Control

Prospect
Myopic VI

Myopic Discount

Hyperbolic

Extremal

Figure 1: We modify the components of the Bellman update to cover different types of irrationali-
ties: changing the max into a softmax to capture noise, changing the transition function to capture
optimism/pessimism or the illusion of control, changing the reward values to capture the nonlin-
ear perception of gains and losses (prospect theory), changing the average reward over time into a
maximum (extremal), and changing the discounting to capture more myopic decision-making.

2.2.1 RATIONAL EXPERT

The rational expert does value iteration using the Bellman update from figure 1. Our models change
this update to produce different types of non-rational behavior.

2.2.2 MODIFYING THE MAX OPERATOR: BOLZMANN

Boltzmann-rationality modifies the maximum over actions maxa with a Boltzmann operator with
parameter β:

Vi+1(s) = Boltzβa
∑

s′∈S
T (s′|s, a) (r(s, a, s′) + γVi(s))

Where Boltzβ(x) =
∑
i xie

βxi/
∑
i e
βxi (Ziebart et al., 2010; Asadi & Littman, 2017) This models

that people will not be perfect, but rather noisily pick actions in a way that is related to the Q-
value of those actions. The constant β is called the rationality constant, because as β → ∞,
the human choices approach perfect rationality (optimality), whereas β = 0 produces uniformly
random choices. This is the standard assumption for reward inference that does not assume perfect
rationality, because it easily transforms the rationality assumption into a probability distribution over
actions, enabling learners to make sense of imperfect demonstrations that otherwise do not match
up with any reward parameters.

2.2.3 MODIFYING THE TRANSITION FUNCTION

Our next set of irrationalities manipulate the transition function away from reality.

Illusion of Control. Humans often overestimate their ability to control random events. To model
this, we consider experts that use the Bellman update:

Vi+1(s) = max
a

∑

s′∈S
Tn(s′|s, a) (r(s, a, s′) + γVi(s))

where Tn(s′|s, a) ∝ (T (s′|s, a))n. As n→∞, the demonstrator acts as if it exists in a deterministic
environment. As n→ 0, the expert acts as if it had an equal chance of transitioning to every possible
successor state. At n = 1, the expert is the rational expert.

Optimism/Pessimism. Humans tend to systematically overestimate their chance experiencing of
positive over negative events. We model this using experts that modify the probability they get
outcomes based on the value of those outcomes:

Vi+1(s) = max
a

∑

s′∈S
T 1/τ (s′|s, a) (r(s, a, s′) + γVi(s))

where T 1/τ (s′|s, a) ∝ T (s′|s, a)e(r(s,a,s′)+γVi(s))/τ . 1/τ controls how pessimistic or optimistic
the expert is. As 1/τ → +∞, the expert becomes increasingly certain that good transitions will
happen. As 1/τ → −∞, the expert becomes increasingly certain that bad transitions will happen.
As 1/τ → 0, the expert approaches the rational expert.
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2.2.4 MODIFYING THE REWARD: PROSPECT THEORY

Next, we consider experts that use the modified Bellman update:

Vi+1(s) = max
a

∑

s′∈S
T (s′|s, a) (f(r(s, a, s′)) + γVi(s))

where f : R→ R is some scalar function. This is equivalent to solving the MDP with reward f ◦ r.
This allows us to model human behavior such as loss aversion and scope insensitivity.

Prospect Theory Kahneman & Tversky (2013) inspires us to consider a particular family of reward
transforms:

fc(r) =





log(1 + |r|) r > 0

0 r = 0

−c log(1 + |r|) r < 0

c controls how loss averse the expert is. As c → ∞, the expert primarily focuses on avoiding
negative rewards. As c→ 0, the expert focuses on maximizing positive rewards and

2.2.5 MODIFYING THE SUM BETWEEN REWARD AND FUTURE VALUE: EXTREMAL

Extremal. Humans seem to exhibit duration neglect, sometimes only caring about the maximum
intensity of an experiennce (Do et al., 2008). We model this using experts that use the Bellman step:

Vi+1(s) = max
a

∑

s′∈S
T (s′|s, a) (max [r(s, a, s′), (1− α)r(s, a, s′) + αVi(s)])

These experts maximize the expected maximum reward along a trajectory, instead of the expected
sum of rewards. As α→ 1, the expert maximizes the expected maximum reward they achieve along
their full trajectory. As α → 0, the expert becomes greedy, and only cares about the reward they
achieve in the next timestep.

2.2.6 MODIFYING THE DISCOUNTING

Myopic Discount. In practice, humans are often myopic, only considering immediate rewards.
One way to model this is to decrease gamma in the Bellman update. At γ = 1, this is the rational
expert. As γ → 0, the expert becomes greedy and only acts to maximize immediate reward.

Myopic VI. As another way to model human myopia, we consider a expert that performs only
h steps of Bellman updates. That is, this expert cares equally about rewards for horizon h, and
discount to 0 reward after that. As h → ∞, this expert becomes rational. If h = 1, this expert only
cares about the immediate reward.

Hyperbolic Discounting. Human also exhibit hyperbolic discounting, with a high discount rate
for the immediate future and a low discount rate for the far future. Alexander & Brown (2010)
formulate this as the following Bellman update:

Vi+1(s) = max
a

∑

s′∈S
T (s′|s, a) (r(s, a, s′) + Vi(s)) /(1 + kVi(s))

k modulates how much the expert prefers rewards now versus the future. As k → 0, this expert
becomes the rational expert.

3 IMPACT OF IRRATIONALITIES ON REWARD INFERENCE

3.1 EXPERIMENTAL DESIGN

Simulation Environment. To reduce possible confounding from our choice of environment, we
used a small 5x5 gridworld where the irrationalities nonetheless cause experts to exhibit different
behavior. Our gridworld consists of three types of cells: ice, holes, and rewards. The expert can start
in any ice cell. At each ice cell, the expert can move in one of the four cardinal directions. With
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Figure 2: The log loss (lower = better) of the posterior as a function of the parameter we vary for
each irrationality type. These six irrationalities all have parameter settings that outperform rational
experts. For the models that interpolate to rational expert, we denote the value that is closest to
rational using a dashed vertical line.

probability 0.8, they will go in that direction. With probability 0.2, they will instead go in one of the
two adjacent directions. Holes and rewards are terminal states, and return the expert back to their
start state. They receive a penalty of −10 for falling into a hole and θi ∈ [0, 4] for entering into the
ith reward cell.

Dependent Measures. To separate the inference difficulty caused by suboptimal inference from
the difficulty caused by expert irrationality, we perform the exact Bayesian update on the trajectory
θ (Ramachandran & Amir, 2007), which gives us the posterior on θ given ξ:

P (θ|ξ) = P (ξ|θ)P (θ)∫
θ′ P (ξ|θ′)P (θ′)

We use two metrics to measure the difficulty of inference The first is the expected log loss of this
posterior, or negative log-likelihood:

Log Loss(θ|ξ) = Eθ,ξ∼πθ [− logP (θ|ξ)] .
A low log loss implies that we are assigning a high likelihood to the true θ. As we are performing
exact Bayesian inference with the true model P (ξ|θ) and prior P (θ), the log loss is equal to the
entropy of the posterior H(θ|ξ).
The second metric is the L2-distance between the mean posterior θ and the actual theta:

L2(θ|ξ) = Eθ∗,ξ∼πθ∗
[
||E[θ|ξ]− θ∗||2

]

The closer the inferred posterior mean of θ is to the actual value θ∗, the lower the loss.

For each irrationality type, we calculate the performance of reward inference on trajectories of a
fixed length T , with respect to the two metrics above. To sample a trajectory of length T from
a expert, we fix θ∗ and start state s. Then, we perform the expert’s (possibly modified) Bellman
updates until convergence to recover the policy πθ∗ . Finally, we generate rollouts starting from state
s until T state, action pairs have been sampled from πθ∗ .
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Figure 3: A best case analysis for each irrationality type: the log loss/L2 distance from mean
(lower=better) for experts, as a function of the length of trajectory observed. Each irrationality
uses the parameter value that is most informative. As discussed in section 3.2, different irrational-
ity types have different slopes and converge to different values. In addition, the best performing
irrationality type according to log loss is not the best performing type according to L2 loss.

3.2 ANALYSIS

Impact of Each Irrationality. We found that of the 8 irrationalities we studied, 6 had parameter
settings that lead to lower log loss than the rational expert. We report how the parameter influences
the log loss for each of these experts in figure 2.1 For T = 30, Optimism with 1/τ = 3.16 performed
the best, followed by Boltzmann with β = 100 and Hyperbolic with k = 0.1. Both forms of Myopia
also outperformed the rational expert, with best performance occurring at γ = 0.9 and h = 5.
Finally, the Extremal expert also slightly outperformed the rational expert, with best performance at
α = 0.9. Notably, in every case, neither the most irrational expert nor the perfectly rational expert
was the most informative.

Impact of Data for Different Irrationalities. Next, we investigate how the quality of inference
varies as we increase the length of the observed trajectory T . We report our results for the best
performing parameter for each irrationality type in figure 3. Interestingly, while both metrics de-
crease monotonically regardless of irrationality type, the rate at which they decrease differs by the
irrationality type, and the best performing irrationality type according to log loss (Optimism) is not
the best performing type according to L2 distance (Boltzmann).

What is behind these differences? To explain these results, we use the notion of mutual informa-
tion I(X;Y ) between two variables, defined as:

I(X;Y ) = EX,Y

[
log

(
P (X,Y )

P (X)P (Y )

)]
= H(X)−H(X|Y )

The mutual information measures how much our uncertainty about X decreases by observing Y .

For reward inference, the term we care about is the mutual information between the expert’s trajec-
tory and the reward parameters

I(θ; ξ) = Eθ,ξ∼θ

[
log

(
P (θ, ξ)

P (θ)P (ξ)

)]
= H(θ)−H(θ|ξ)

The mutual information I(θ; ξ) is equal to a constant minus the posterior log loss under the true
model. A expert with mutual information will cause the learner to have a lower posterior log loss.

1The plots for the other two irrationalities are included in the appendix.
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(a) Optimism Bias(β = 3.16) (b) Pessimism Bias(β = −3.16

Figure 4: (a) Optimism bias produces different actions for θ∗ = (4, 1) vs. θ∗ = (1, 4) in the states
shown: the rational policy is to go away from the hole regardless of θ, but an optimistic expert takes
the chance and goes for the larger reward – up in the first case, down in the second. (b) Pessimism
bias produces different actions for θ∗ = (1, 1) vs. θ∗ = (4, 4): when the reward is sufficiently large,
the expert becomes convinced that no action it takes will lead to the reward, leading it to perform
random actions.

(a) Boltzmann (β = 100) (b) Myopia(h = 5)

Figure 5: (a) Boltzmann-rationality produces different policies for θ∗ = (1, 1) vs. θ∗ = (4, 4):
when ||θ|| is larger, the policy becomes closer to that of the rational expert. (b) A Myopic expert
produces different policies for θ∗ = (4, 1) vs. θ∗ = (4, 0): while the rational expert always detours
around the hole and attempts to reach the larger reward, myopia causes the myopic expert to go for
the smaller source of reward when it is non-zero.

By the information processing inequality, we have the bound I(θ; ξ) ≤ I(θ;π).

To have higher mutual information, different θs should be mapped to different policies πs. Indeed,
we found that the experts that were able to outperform the rational expert were able to disambiguate
between θs that the rational expert could not. To visualize this, we show examples of how the policy
of several irrational experts differ when the rational expert’s policies are identical in figures 4 and 5.

We plot the correlation between I(θ; ξ) and I(θ;π) in figure 6. Experts that have more informative
policies tend to have more informative trajectories, but the correlation is not perfect. Notably, the
Optimism expert has the most informative trajectories of length 30, but has less informative policies
than the Boltzmann expert.

In the limit of infinite data from every state, we would have I(θ; ξ) → I(θ;π). However, as each
trajectory begins from the same start state, and not every state is reachable with every policy, the
bound is not achievable in general, even if we observe an arbitrarily large number of trajectories.
This highlights the need for off-policy data in reward inference tasks.

4 DISCUSSION

4.1 SUMMARY

We show that, contrary to what we might expect, suboptimal experts can actually help an agent learn
the reward function. Optimism bias, myopia (via heavier discounting or hyperbolic discounting),
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Figure 6: The informativeness of policies correlates with the informativeness of trajectories of length
30, as discussed in section 3.2

and noise via Boltzmann rationality were the most informative irrationalities in our environments,
far surpassing the performance of the rational expert for their ideal settings. Our contribution overall
was to identify a systematic set of irrationalities by looking at deviations in the terms of the Bellman
update, and show that being irrational is not automatically harmful to inference by quantifying and
comparing the inference performance for these different types.

4.2 LIMITATIONS AND FUTURE WORK.

Estimating expert irrationality. One major limitation of our work is that our findings hold for
when the learner knows the type and parameter value of the irrationality. In practice, reward infer-
ence will require solving the difficult task of estimating the irrationality type and degree (Armstrong
& Mindermann, 2018; Shah et al., 2019). We still need to quantify to what extent these results still
hold given uncertainty about the irrationality model. It does, however, seem crucial to reward in-
ference that learners do reason explicitly about irrationality – not only is the learner unable to take
advantage of the irrationality to make better inference if it does not model it, but actually reward
inference in general suffers tremendously if the learner assumes the wrong type.

In figure 10 in the Appendix, we compare inference with the true model vs. with assuming a Boltz-
mann model as default. The results are quite striking: not knowing the irrationality harms inference
tremendously. Whether irrationalities help, this means that it is really important to model them.

Generalization to other environments. A second limitation of our work is that we only tested
these models in a limited range of environments. Further work is needed to test generalization of
our findings across different MDPs of interest. Our analysis of mutual information lends credence
to the Boltzmann rationality result generalizing well: these policies are much more varied with the
reward parameters. In contrast, how useful the optimism bias is depends on the task: if we know
about what to avoid already, as was the case for our learner, the bias is useful; if, on the other hand,
we would know the goal but do not know what to avoid, the bias can hinder inference. Overall,
this paper merely points out that there is a lot of richness to the ways in which these biases affect
inference, and provides a quantitative comparison for a starting domain – much more is needed to
gain a deeper understanding of this phenomenon.

Applications to real humans. A third limitation is that we do not know where real humans lie.
Do they have the helpful irrationality types? Do they fall in the range of parameters for these types
that help inference? And what happens when types combine? While these questions are daunting,
there is also a hidden opportunity here: what if we could influence humans to exhibit helpful types of
irrationality? It might be much easier for them, for instance, to act myopically than to act rationally.
In the end, reward inference is the confluence of two factors: how well the robot learns, and how
well the teacher teaches. Our results point out that it might be easier than previously thought to be a
good teacher – even easier than being a rational expert.
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Policy Parameter Values
Rational γ [0.99]

Boltzmann β
[1, 1.78, 3.16, 5.62, 10, 17.8,

31.6, 56.2, 100, 178, 316, 562,
1000,1780, 3160, 5620, 10000]

Optimism 1/τ
[−10,−3.16,−1,−0.316,−0.1,

0.1, 0.316, 1, 3.16, 10]

Illusion of Control n
[0.1, 0.178, 0.316, 0.562,

1, 1.78, 3.16, 5.62, 10]

Prospect Theory c
[0.1, 0.178, 0.316, 0.562,
1., 1.78, 3.16, 5.62, 10]

Extremal α [0.5, 0.7, 0.8, 0.9, 0.99, 0.999]
Myopic γ γ [0.5, 0.7, 0.8, 0.9, 0.99, 0.999]
Myopic h h [1, 2, 3, 4, 5, 6]

Hyperbolic k
[0.01, 0.1, 0.178, 0.316,

0.562, 1, 1.78, 3.16, 5.62, 10]

Table 1: The parameter values we search over for each policy.

Figure 7: Log loss for the posterior on θ, given trajectories from the Prospect Theory expert and the
Illusion of Control expert.

A MORE EXPERIMENTAL DETAILS

To enable exact inference, we discretized θ, using 5 evenly spaced points for each θi. Our specific
grid is included in figures 4 and 5 As there are two reward cells, this gives us 25 possible distinct
reward parameters. We assumed a uniform prior on the reward parameter.

We list the parameter values we search over for each policy in table 1. Except for myopic γ and
myopic h, we use γ = 0.99. For myopic h, we use γ = 1.

From each start state, we sample 10 trajectories of each length for each reward parameter, policy
combination.

B ADDITIONAL RESULTS

We include the plots for the log loss of trajectories from the Prospect Theory and Illusion of Control
experts in 7

In addition, we include the plots for the L2 loss for all 8 irrationalities in figures 8 and figure 9.

C MODEL MISSPECIFICATION GREATLY IMPAIRS INFERENCE

Given that several types of irrationality can help inference when the form of irrationality is known,
a natural question to ask is how important is it to known the irrationality exactly. To investigate this,
we plot the log loss of the posterior of a learner who falsely assumes that the expert is Boltzmann-
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Figure 8: The L2 distance (lower = better) of posterior mean of θ to the true θ∗,s as a function of the
parameter we vary for each irrationality type. These six irrationalities all have parameter settings
that outperform rational experts. For the models that interpolate to rational expert, we denote the
value that is closest to rational using a dashed vertical line.

Figure 9: The L2 distance (lower=better) of the posterior mean θ to th true θ∗, given trajectories
from the Prospect Theory expert and the Illusion of Control expert.
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Figure 10: A comparison of reward inference using a correct model of the irrationality type, ver-
sus always using a Boltzman model. (Lower log loss = better.) The inference impairment from
using the misspecified irrationality model (Boltzmann) greatly outweighs the variation in inference
performance caused by the various irrationality types themselves. Hence, compared to using a mis-
specified model of irrationality, expert irrationality is not in itself a major impairment to reward
inference, and sometimes expert irrationality can even helps when a model of the irrationality is
known.

rational with β = 100. Where applicable, the log loss is averaged over possible hyperparameter
settings for the expert.

We report the results in figure 10. The log loss of the posterior if we wrongly imagine the expert is
Boltzmann-rational far outweighs differences between particular irrationality types.

C.1 WHY IS USING A MISSPECIFIED IRRATIONALITY TYPE FOR INFERENCE SO BAD?

Fundamentally, misspecification is bad for inference because different experts might exhibit the
same action only under different reward parameters. For example, consider figure the case where
the actual expert is myopic, with small n. Then the myopic agent might go toward a closer reward
even if it is much smaller, as shown in figure 11. This would cause the learner to falsely infer that
the closer reward is quite large, leading to a posterior with extremely high log loss when the reward
is actually smaller.
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Figure 11: An example of why assuming Boltzmann is bad for a myopic agent - the Boltzmann
rational agent would take this trajectory only if the reward at the bottom was not much less than the
reward at the top. The myopic agent with n ≤ 4, however, only ”sees” the reward at the bottom.
Consequently, inferring the preferences of the myopic agent as if it were Boltzmann leads to poor
performance in this case.
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