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Abstract

We propose a new framework for entity and event extraction based on generative ad-
versarial imitation learning – an inverse reinforcement learning method using generative
adversarial network (GAN). We assume that instances and labels yield to various extents
of difficulty and the gains and penalties (rewards) are expected to be diverse. We utilize
discriminators to estimate proper rewards according to the difference between the labels
committed by ground-truth (expert) and the extractor (agent). Experiments also demon-
strate that the proposed framework outperforms state-of-the-art methods.

1. Introduction

Event extraction (EE) is a crucial information extraction (IE) task that focuses on ex-
tracting structured information (i.e., a structure of event trigger and arguments, “what
is happening”, and “who or what is involved”) from unstructured texts. In most recent
five years, many event extraction approaches have brought forth encouraging results by
retrieving additional related text documents [Song et al., 2015], introducing rich features of
multiple categories [Li et al., 2013, Zhang et al., 2017b], incorporating relevant information
within or beyond context [Yang and Mitchell, 2016, Judea and Strube, 2016, Yang and
Mitchell, 2017, Duan et al., 2017] and adopting neural network frameworks [Chen et al.,
2015, Nguyen and Grishman, 2015, Feng et al., 2016, Nguyen et al., 2016, Huang et al.,
2016, Nguyen and Grishman, 2018, Sha et al., 2018, Huang et al., 2018, Hong et al., 2018,
Zhao et al., 2018].

There are still challenging cases: for example, in the following sentences: “Masih’s
alleged comments of blasphemy are punishable by death under Pakistan Penal Code” and
“Scott is charged with first-degree homicide for the death of an infant.”, the word death
can trigger an Execute event in the former sentence and a Die event in the latter one. With
similar local information (word embeddings) or contextual features (both sentences include
legal events), supervised models pursue the probability distribution which resembles that in
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the training set (in ACE2005 data, we have overwhelmingly more Die annotation on death
than Execute), and will label both as Die event, causing error in the former instance.

Such mistake is due to the lack of a mechanism that explicitly deals with wrong and con-
fusing labels. Many multi-classification approaches utilize cross-entropy loss, which aims at
boosting the probability of the correct labels. Many approaches – including AdaBoost which
focuses weights on difficult cases – usually treat wrong labels equally and merely inhibits
them indirectly. Models are trained to capture features and weights to pursue correct labels,
but will become vulnerable and unable to avoid mistakes when facing ambiguous instances,
where the probabilities of the confusing and wrong labels are not sufficiently “suppressed”.
Therefore, exploring information from wrong labels is a key to make the models robust.

In this paper, we propose a dynamic mechanism – inverse reinforcement learning – to
directly assess correct and wrong labels on instances in entity and event extraction. We
assign explicit scores on cases – or rewards in terms of Reinforcement Learning (RL). We
adopt discriminators from generative adversarial networks (GAN) to estimate the reward
values. Discriminators ensures the highest reward for ground-truth (expert) and the extrac-
tor attempts to imitate the expert by pursuing highest rewards. For challenging cases, if the
extractor continues selecting wrong labels, the GAN keeps expanding the margins between
rewards for ground-truth labels and (wrong) extractor labels and eventually deviates the
extractor from wrong labels.

The main contributions of this paper can be summarized as follows:
• We apply reinforcement learning framework to event extraction tasks, and the proposed

framework is an end-to-end and pipelined approach that extracts entities and event trig-
gers and determines the argument roles for detected entities.
• With inverse reinforcement learning propelled by GAN, we demonstrate that a dynamic

reward function ensures more optimal performance in a complicated RL task.

2. Task and Term Preliminaries

We follow the schema of Automatic Content Extraction (ACE)1 to detect the following
elements from unstructured natural language text:
• Entity: word or phrase that describes a real world object such as a person (“Masih” as
PER in Figure 1). ACE schema defines 7 types of entities.
• Event Trigger: the word that most clearly expresses an event (interaction or change

of status). ACE schema defines 33 types of events such as Sentence (“punishable” in
Figure 1) and Execute (“death”).
• Event argument: an entity that serves as a participant or attribute with a specific role

in an event mention, e.g., a PER “Masih” serves as a Defendant in a Sentence event
triggered by “punishable”.
For broader readers who might not be familiar with reinforcement learning, we briefly

introduce by their counterparts or equivalent concepts in supervised models with the RL
terms in the parentheses: our goal is to train an extractor (agent A) to label entities, event
triggers and argument roles (actions a) in text (environment e); to commit correct labels,
the extractor consumes features (state s) and follow the ground truth (expert E); a reward
R will be issued to the extractor according to whether it is different from the ground truth

1. https://en.wikipedia.org/wiki/Automatic content extraction
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Figure 1: Our framework includes a reward estimator based on GAN to issue dynamic
rewards with regard to the labels (actions) committed by event extractor (agent).
The reward estimator is trained upon the difference between the labels from
ground truth (expert) and extractor (agent). If the extractor repeatedly misses
Execute label for “death”, the penalty (negative reward values) is strengthened; if
the extractor make surprising mistakes: label “death” as Person or label Person
“Masih” as Place role in Sentence event, the penalty is also strong. For cases
where extractor is correct, simpler cases such as Sentence on “death” will take a
smaller gain while difficult cases Execute on “death” will be awarded with larger
reward values.

and how serious the difference is – as shown in Figure 1, a repeated mistake is definitely
more serious – and the extractor improves the extraction model (policy π) by pursuing
maximized rewards.

Our framework can be briefly described as follows: given a sentence, our extractor
scans the sentence and determines the boundaries and types of entities and event triggers
using Q-Learning (Section 3.1); meanwhile, the extractor determines the relations between
triggers and entities – argument roles with policy gradient (Section 3.2). During the training
epochs, GANs estimate rewards which stimulate the extractor to pursue the most optimal
joint model (Section 4).

3. Framework and Approach

3.1 Q-Learning for Entities and Triggers

The entity and trigger detection is often modeled as a sequence labeling problem, where long-
term dependency is a core nature; and reinforcement learning is a well-suited method [Maes
et al., 2007].
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Figure 2: A pipeline from input sentence to sequence labels mentioned in Section 3.1. Q-
table and values for each current step is calculated using the unidirectional LSTM
based on context embeddings of current and previous tokens as well as Q-tables
and values from previous steps. Context embeddings are calculated using Bi-
LSTM from local token ebmeddings. Pre-trained embeddings based on Bi-LSTM
such as ELMo [Peters et al., 2018] are also good candidates for context embed-
dings.

From RL perspective, our extractor (agent A) is exploring the environment, or unstruc-
tured natural language sentences when going through the sequences and committing labels
(actions a) for the tokens. When the extractor arrives at tth token in the sentence, it ob-
serves information from the environment and its previous action at−1 as its current state
st; the extractor commits a current action at and moves to the next token, it has a new
state st+1. The information from the environment is token’s context embedding vt, which
is usually acquired from Bi-LSTM [Hochreiter and Schmidhuber, 1997] outputs; previous
action at−1 may impose some constraint for current action at, e.g., I-ORG does not follow
B-PER2. With the aforementioned notations, we have

st =< vt, at−1 > . (1)

To determine the current action at, we generate a series of Q-tables with

Qsl(st, at) = fsl(st|st−1, st−2, . . . , at−1, at−2, . . .), (2)

where fsl(·) denotes a function that determine the Q-values using the current state as well
as previous states and actions. Then we achieve

ât = arg max
at

Qsl(st, at). (3)

Equation 2 and 3 suggest that an RNN-based framework which consumes current input and
previous inputs and outputs can be adopted, and we use a unidirectional LSTM as [Bakker,
2002]. We have a full pipeline as illustrated in Figure 2.

2. In this work, we use BIO, e.g., “B-Meet” indicates the token is beginning of Meet trigger, “I-ORG” means
that the token is inside an organization phrase, and “O” denotes null.
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Figure 3: An illustrative example of updating the Q-values with Equation 4, with fixed
rewards r = ±5 for correct/wrong labels and discount factor λ = 0.01. Score for
wrong label is penalized while correct one is reinforced.

For each label (action at) with regard to st, a reward rt = r(st, at) is assigned to the
extractor (agent). We use Q-learning to pursue the most optimal sequence labeling model
(policy π) by maximizing the expected value of the sum of future rewards E(Rt), where Rt
represents the sum of discounted future rewards rt + γrt+1 + γ2rt+2 + . . . with a discount
factor γ, which determines the influence between current and next states.

We utilize Bellman Equation to update the Q-value with regard to the current assigned
label to approximate an optimal model (policy π∗).

Qπ
∗
sl (st, at) = rt + γmax

at+1

Qsl(st+1, at+1). (4)

As illustrated in Figure 3, when the extractor assigns a wrong label on the “death” token
because the Q-value of Die ranks first, Equation 4 will penalize the Q-value with regard to
the wrong label; while in later epochs, if the extractor commits a correct label of Execute,
the Q-value will be boosted and make the decision reinforced.

We minimize the loss in terms of mean squared error between the original and updated
Q-values notated as Q′sl(st, at):

Lsl =
1

n

n∑
t

∑
a

(Q′sl(st, at)−Qsl(st, at))2 (5)

and apply back propagation to optimize the parameters in the neural network.

3.2 Policy Gradient for Argument Roles

After the extractor determines the entities and triggers, it takes pairs of one trigger and
one entity (argument candidate) to determine whether the latter serves a role in the event
triggered by the former.
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Figure 4: The extractor combines context embeddings of the trigger and entity, as well as a
one-hot vector that represents entity type and Bi-LSTM output of sub-sentence
between the trigger and argument. The column “trend” denotes the changes of
P (atr,ar|str,ar) after policy gradient optimization in Equation 10.

In this task, for each pair of trigger and argument candidate, our extractor observes the
context embeddings of trigger and argument candidate – vttr and vtar respectively, as well
as the output of another Bi-LSTM consuming the sequence of context embeddings between
trigger and argument candidates in the state; the state also includes a representation (one-
hot vector) of the entity type of the argument candidate atar , and the event type of the
trigger atar also determine the available argument role labels, e.g., an Attack event never
has Adjudicator arguments as Sentence events. With these notations we have:

str,ar =< vttr ,vtar , attr , atar ,fss >, (6)

where the footnote tr denotes the trigger, ar denotes argument candidate, and fss denotes
the sub-sentence Bi-LSTM for the context embeddings between trigger and argument.

We have another ranking table for argument roles:

Qtr,ar(str,ar, atr,ar) = ftr,ar(str,ar), (7)

where ftr,ar represents a mapping function whose output sizes is determined by the trigger
event type attr . e.g., Attack event has 5 – Attacker, Target, Instrument, Place and
Not-a-role labels and the mapping function for Attack event contains a fully-connected
layer with output size of 5.

And we determine the role with

âtr,ar = arg max
atr,ar

Qtr,ar(str,ar, atr,ar). (8)

We assign a reward r(str,ar, atr,ar) to the extractor, and since there is one step in deter-
mining the argument role label, the expected values of R = r(str,ar, atr,ar).
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We utilize another RL algorithm – Policy Gradient [Sutton et al., 2000] to pursue the
most optimal argument role labeling performance.

We have probability distribution of argument role labels that are from the softmax
output of Q-values:

P (atr,ar|str,ar) = softmax(Qtr,ar(str,ar, atr,ar)). (9)

To update the parameters, we minimize loss function

Lpg = −R logP (atr,ar|str,ar). (10)

From Equation 10 and Figure 4 we acknowledge that, when the extractor commits a
correct label (Agent for the GPE entity “Pakistan”), the reward encourages P (atr,ar|str,ar)
to increase; and when the extractor is wrong (e.g., Place for “Pakistan”), the reward will
be negative, leading to a decreased P (atr,ar|str,ar).

3.3 Choice of Algorithms

Here we have a brief clarification on different choices of RL algorithms in the two tasks.
In the sequence labeling task, we do not take policy gradient approach due to high

variance of E(Rt), i.e., the sum of future rewards Rt should be negative when the extractor
chooses a wrong label, but an ill-set reward and discount factor γ assignment or estimation
may give a positive Rt (often with a small value) and still push up the probability of
the wrong action, which is not desired. There are some variance reduction approaches to
constrain the Rt but they still need additional estimation and bad estimation will introduce
new risk. Q-learning only requires rewards on current actions rt, which are relatively easy
to constrain.

In the argument role labeling task, determination on each trigger-entity pair consists of
only one single step and Rt is exactly the current reward r, then policy gradient approach
performs correctly if we ensure negative rewards for wrong actions and positive for correct
ones. However, this one-step property impacts the Q-learning approach: without new
positive values from further steps, a small positive reward on current correct label may
make the updated Q-value smaller than those wrong ones.

4. Generative Adversarial Imitation Learning

So far in our paper, the reward values demonstrated in the examples are fixed, we have

r =

{
c1 when a is correct,

c2 otherwise,
(11)

and typically we have c1 > c2.
This strategy makes RL-based approach no difference from classification approaches

with cross-entropy in terms of “treating wrong labels equally” as discussed in introductory
section. Moreover, recent RL approaches on relation extraction [Zhang et al., 2017a, Feng
et al., 2017] adopt a fixed setting of reward values with regard to different phases of entity
and relation detection based on empirical tuning, which requires additional tuning work
when switching to another data set or schema.
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In event extraction task, entity, event and argument role labels yield to a complex struc-
ture with variant difficulties. Errors should be evaluated case by case, and from epoch to
epoch. In the earlier epochs, when parameters in the neural networks are slightly optimized,
all errors are tolerable, e.g., in sequence labeling, extractor within the first 2 or 3 iterations
usually labels most tokens with O labels. As the epoch number increases, the extractor is
expected to output more correct labels, however, if the extractor makes repeated mistakes
– e.g., the extractor persistently labels“death” as O in the example sentence “... are punish-
able by death ...” during multiple epochs – or is stuck in difficult cases – e.g., whether FAC
(facility) token “bridges” serves as a Place or Target role in an Attack event triggered by
“bombed” in sentence “U.S. aircraft bombed Iraqi tanks holding bridges...”– a mechanism
is required to assess these challenges and to correct them with salient and dynamic rewards.

We describe the training approach as a process of extractor (agent A) imitating the
ground-truth (expert E), and during the process, a mechanism ensures that the highest
reward values are issued to correct labels (actions a), including the ones from both expert
E and a.

EπE [R(s, a)] ≥ EπA [R(s, a)] (12)

This mechanism is Inverse Reinforcement Learning [Abbeel and Ng, 2004], which estimates
the reward first in an RL framework.

Equation 12 reveals a scenario of adversary between ground truth and extractor and
Generative Adversarial Imitation Learning (GAIL) [Ho and Ermon, 2016], which is based
on GAN [Goodfellow et al., 2014], fits such adversarial nature.

In the original GAN, a generator generates (fake) data and attempts to confuse a dis-
criminator D which is trained to distinguish fake data from real data. In our proposed
GAIL framework, the extractor (agent A) substitutes the generator and commits labels to
the discriminator D; the discriminator D, now serves as reward estimator, aims to issue
largest rewards to labels (actions) from the ground-truth (expert E) or identical ones from
the extractor but provide lower rewards for other/wrong labels.

Rewards R(s, a) and the output of D are now equivalent and we ensure:

EπE [D(s, aE)] ≥ EπA [D(s, aA)]. (13)

where s, aE and aA are input of the discriminator. In the sequence labeling task, s consists
of the context embedding of current token vt and a one-hot vector that represents the
previous action at−1 according to Equation 1, in the argument role labeling task, s comes
from the representations of all elements mentioned in Equation 6; aE is a one-hot vector
of ground-truth label (expert, or “real data”) while aA denotes the counterpart from the
extractor (agent, or “generator”). The concatenated s and aE is the input for “real data”
channel while s and aA build the input for “generator” channel of the discriminator.

In our framework, due to different dimensions in two tasks and event types, we have
34 discriminators (1 for sequence labeling, 33 for event argument role labeling with regard
to 33 event types). Every discriminator consists of 2 fully-connected layers with a sigmoid
output. The original output of D denotes a probability which is bounded in [0, 1], and we
use linear transformation to shift and expand it:

R(s, a) = α ∗ (D(s, a)− β), (14)
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Figure 5: An illustrative example of the GAN structure in sequence labeling scenario (ar-
gument role labeling scenario has the identical frameworks except vector dimen-
sions). As introduced in Section 4, the “real data” in the original GAN is replaced
by feature/state representation (Equation 1, or Equation 6 for argument role la-
beling scenario) and ground-truth labels (expert actions) in our framework, while
the “generator data” consists of features and extractor’s attempt labels (agent
actions). The discriminator serves as the reward estimator and a linear transform
is utilized to extend the D’s original output of probability range [0, 1].

e.g., in our experiments, we set α = 20 and β = 0.5 and make R(s, a) ∈ [−10, 10].

To pursue Equation 13, we minimize the loss function and optimize the parameters in
the neural network:

LD = −(E[logD(s, aE)] + E[log(1−D(s, aA))]). (15)

During the training process, after we feed neural network mentioned in Section 3.1 and
3.2 with a mini-batch of data, we collect the features (or states s), corresponding extractor
labels (agent actions aA) and ground-truth (expert actions aE) to update the discriminators
according to Equation 15; then we feed features and extractor labels into the discriminators
to acquire reward values and train the extractor – or the generator from GAN’s perspective.

Since the discriminators are continuously optimized, if the extractor (generator) makes
repeated mistakes or makes surprising ones (e.g., considering a PER as a Place), the mar-
gin of rewards between correct and wrong labels expands and outputs reward with larger
absolute values. Hence, in sequence labeling task, the updated Q-values are updated with
a more discriminative difference, and, similarly, in argument role labeling task, the P (a|s)
also increases or decreases more significantly with a larger absolute reward values.

Figure 5 illustrates how we utilize GAN for reward estimation.

In case where discriminators are not sufficiently optimized (e.g., in early epochs) and
may output undesired values – e.g., negative for correct actions, we impose a hard margin

R̃(s, a) =

{
max(0.1, R(s, a)) when a is correct,

min(−0.1, R(s, a)) otherwise
(16)

to ensure that correct actions will always take positive reward values and wrong ones take
negative.
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5. Exploration

In training phase, the extractor selects labels according to the rankings of Q-values in Equa-
tion 3 and 8 and GANs will issue rewards to update the Q-tables and policy probabilities;
and we also adopt ε-greedy strategy: we set a probability threshold ε ∈ [0, 1) and uniformly
sample a number ρ ∈ [0, 1] before the extractor commits a label for an instance:

â =

{
arg maxaQ(s, a), if ρ ≥ ε
Randomly pick up an action, if others

With this strategy, the extractor is able to explore all possible labels (including correct and
wrong ones), and acquires rewards with regard to all labels to update the neural networks
with richer information.

Moreover, after one step of ε-greedy exploration, we also force the extractor to commit
ground-truth labels and issue it with expert (highest) rewards, and update the parameters
accordingly. This additional step is inspired by [Pasunuru and Bansal, 2017, 2018], which
combines cross-entropy loss from supervised models with RL loss functions3. Such combi-
nation can simultaneously and explicitly encourage correct labels and penalize wrong labels
and greatly improve the efficiency of pursuing optimal models.

6. Experiments

6.1 Experiment Setup

To evaluate the performance with our proposed approach, we utilize ACE2005 documents
excluding informal documents from cts (Conversational Telephone Speech) and un (UseNet)
and we have 5, 272 triggers and 9, 612 arguments. We follow training (529 documents with
14, 180 sentences), validation (30 documents with 863 sentences) and test (40 documents
with 672 sentences) splits and adopt the same criteria of the evaluation to align with [Nguyen
et al., 2016, Sha et al., 2018]:
• An entity (named entities and nominals) is correct if its entity type and offsets find a

match in the ground truth.
• A trigger is correct if its event type and offsets find a match in the ground truth.
• An argument is correctly labeled if its event type, offsets and role find a match in the

ground truth.
We use ELMo embeddings4 [Peters et al., 2018]. Because ELMo is delivered with built-

in Bi-LSTMs, we treat ELMo embedding as context embeddings in Figure 2 and 4. We use
GAIL-ELMo in the tables to denote the setting.

Moreover, in order to disentangle the contribution from ELMo embeddings, we also
present the performance in a non-ELMo setting (denoted as GAIL-W2V) which utilizes the
following embedding techniques to represent tokens in the input sentence.
• Token surface embeddings: for each unique token in the training set, we have a look-

up dictionary for embeddings which is randomly initialized and updated in the training
phase.

3. We do not directly adopt this because we treat cross-entropy loss as fixed rewards with r = 1 for correct
label and r = 0 for wrong label but we prioritize the dynamic rewards.

4. We use pretrained version at https://www.tensorflow.org/hub/modules/google/elmo/2
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• Character-based embeddings: each character also has a randomly initialized embedding,
and will be fed into a token-level Bi-LSTM network, the final output of this network will
enrich the information of token.
• POS embeddings: We apply Part-of-Speech (POS) tagging on the sentences using Stan-

ford CoreNLP tool [Toutanova et al., 2003]. The POS tags of the tokens also have a
trainable look-up dictionary (embeddings).
• Pre-trained embeddings: We also acquire embeddings trained from a large and publicly

available corpus. These embeddings preserve semantic information of the tokens and they
are not updated in the training phase.

We concatenate these embeddings and feed them into the Bi-LSTM networks as demon-
strated in Figure 2 and 4. To relieve over-fitting issues, we utilize dropout strategy on the
input data during the training phase. We intentionally set “UNK” (unknown) masks, which
hold entries in the look-up dictionaries of tokens, POS tags and characters. We randomly
mask known tokens, POS tags and characters in the training sentences with “UNK” mask.
We also set an all-0 vector on Word2Vec embeddings of randomly selected tokens.

We tune the parameters according to the F1 score of argument role labeling. For Q-
learning, we set a discount factor γ = 0.01. For all RL tasks, we set exploration threshold
ε = 0.1. We set all hidden layer sizes (including the ones on discriminators) and LSTM (for
subsentence Bi-LSTM) cell memory sizes as 128. The dropout rate is 0.2. When optimizing
the parameters in the neural networks, we use SGD with Momentum and the learning rates
start from 0.02 (sequence labeling), 0.005 (argument labeling) and 0.001 (discriminators),
then the learning rate will decay every 5 epochs with exponential of 0.9; all momentum
values are set as 0.9.

For the non-ELMo setting, we set 100 dimensions for token embeddings, 20 for PoS
embeddings, and 20 for character embeddings. For pre-trained embeddings, we train a 100-
dimension Word2Vec [Mikolov et al., 2013] model from English Wikipedia articles (January
1st, 2017), with all tokens preserved and a context window of 5 from both left and right.

We also implemented an RL framework with fixed rewards of ±5 as baseline with iden-
tical parameters as above. For sequence labeling (entity and event trigger detection task),
we also set an additional reward value of −50 for B-I errors, namely an I- label does not
follow B- label with the same tag name (e.g., I-GPE follows B-PER). We use RL-W2V and
RL-ELMo to denote these fixed-reward settings.

6.2 Results and Analysis

6.2.1 Entity Performance

We compare the performance of entity extraction (including named entities and nominal
mentions) with the following state-of-the-art and high-performing approaches:

• JointIE [Li et al., 2014]: a joint approach that extracts entities, relations, events and
argument roles using structured prediction with rich local and global linguistic features.
• JointEntityEvent [Yang and Mitchell, 2016]: an approach that simultaneously extracts

entities and arguments with document context.
• Tree-LSTM [Miwa and Bansal, 2016]: a Tree-LSTM based approach that extracts entities

and relations.
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P R F1

JointIE [Li et al., 2014] 85.2 76.9 80.8
JointEntityEvent [Yang and Mitchell, 2016] 83.5 80.2 81.8
Tree-LSTM [Miwa and Bansal, 2016] 82.9 83.9 83.4
KBLSTM [Yang and Mitchell, 2017] 85.4 86.0 85.7

RL-W2V 82.0 86.1 84.0
RL-ELMo 83.1 87.0 85.0
GAIL-W2V 85.4 88.6 86.9∗

GAIL-ELMo 85.8 89.7 87.1∗

Table 1: Entity extraction performance. ∗: statistically significant (p < 0.05 with Wilcoxon
signed rank test) against KBLSTM [Yang and Mitchell, 2017]

• KBLSTM [Yang and Mitchell, 2017]: an LSTM-CRF hybrid model that applies knowledge
base information on sequence labeling.
From Table 1 we can conclude that our proposed method outperforms the other ap-

proaches, especially with an impressively high performance of recall. CRF-based models
are applied on sequence labeling tasks because CRF can consider the label on previous
token to avoid mistakes such as appending an I-GPE to a B-PER, but it neglects the infor-
mation from the later tokens. Our proposed approach avoids the aforementioned mistakes
by issuing strong penalties (negative reward with large absolute value); and the Q-values
in our sequence labeling sub-framework also considers rewards for the later tokens, which
significantly enhances our prediction performance.

6.2.2 Event Performance

For event extraction performance with system-predicted entities as argument candidates,
besides [Li et al., 2014] and [Yang and Mitchell, 2016] we compare5 our performance with:
• dbRNN [Sha et al., 2018]: an LSTM framework incorporating the dependency graph

(dependency-bridge) information to detect event triggers and argument roles.
Table 2 demonstrates that the performance of our proposed framework is better than

state-of-the-art approaches except lower F1 score on argument identification against [Sha
et al., 2018]. [Sha et al., 2018] utilizes Stanford CoreNLP to detect the noun phrases and
take the detected phrases as argument candidates, while our argument candidates come
from system predicted entities and some entities may be missed. However, [Sha et al.,
2018]’s approach misses entity type information, which cause many errors in argument role
labeling task, whereas our argument candidates hold entity types, and our final role labeling
performance is better than [Sha et al., 2018].

Our framework is also flexible to consume ground-truth (gold) annotation of entities as
argument candidates. And we demonstrate the performance comparison with the following
state-of-the-art approaches on the same setting besides [Sha et al., 2018]:
• JointIE-GT [Li et al., 2013]: similar to [Li et al., 2014], the only difference is that this

approach detects arguments based on ground-truth entities.

5. Some high-performing event approaches such as [Nguyen and Grishman, 2018, Hong et al., 2018] have
no argument role detection, thus they are not included for the sake of fair comparison.
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Tasks Trigger Identification Trigger Labeling

Metric P R F1 P R F1

JointIE [Li et al., 2014] - - - 65.6 61.0 63.2
JointEntityEvent [Yang and Mitchell, 2016] 77.6 65.4 71.0 75.1 63.3 68.7
dbRNN [Sha et al., 2018] - - - - - 69.6

RL-W2V 73.9 64.8 69.0 69.9 62.1 65.8
RL-ELMo 74.1 65.6 69.6 70.4 62.2 66.0
GAIL-W2V 76.5 70.9 73.2 74.4 69.3 71.8
GAIL-ELMo 76.8 71.2 73.9 74.8 69.4 72.0

Tasks Argument Identification Role Labeling

Metric P R F1 P R F1

JointIE [Li et al., 2014] - - - 60.5 39.6 47.9
JointEntityEvent [Yang and Mitchell, 2016] 73.7 38.5 50.6 70.6 36.9 48.4
dbRNN [Sha et al., 2018] - - 57.2 - - 50.1

RL-W2V 58.5 48.2 52.9 53.4 44.7 48.6
RL-ELMo 57.6 47.2 51.9 54.2 43.7 48.4
GAIL-W2V 62.3 48.2 54.3 61.7 44.8 51.9
GAIL-ELMo 63.3 48.7 55.1 61.6 45.7 52.4

Table 2: Performance comparison with state-of-the-art frameworks with system predicted
entities.

Tasks TI TL AI RL

JointIE-GT [Li et al., 2013] 70.4 67.5 56.8 52.7
JRNN [Nguyen et al., 2016] 71.9 69.3 62.8 55.4
dbRNN [Sha et al., 2018] - 71.9 67.7 58.7

RL-W2V 71.2 69.7 58.9 54.8
RL-ELMo 71.1 69.5 58.7 54.6
GAIL-W2V 74.6 72.7 67.8 59.1
GAIL-ELMo 74.6 72.9 67.9 59.7

Table 3: Comparison (F1) with State-of-the-Art frameworks on ground-truth (gold) en-
tity as argument candidates. TI=Trigger Identification, TL=Trigger Labeling,
AI=Argument Identification, RL=Role Labeling

• JRNN [Nguyen et al., 2016], an RNN-based approach which integrates local lexical fea-
tures.

For this setting, we keep the identical parameters (including both trained and preset
ones) and network structures which we used to report our performance in Table 1 and 2,
and we substitute system-predicted entity types and offsets with ground-truth counterparts.
Table 3 demonstrates that, without any further deliberate tuning, our proposed approach
can still provide better performance.

We notice that some recent approaches [Liu et al., 2018] consolidate argument role
labels with same names from different event types (e.g., Adjudicator in Trial-Hearing,
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Charge-Indict, Sue, Convict, etc.), for argument role labeling they only deal with 37
categories while our setting consists of 143 categories (with a hierarchical routine of 33
event types and 3-7 roles for each type). The strategy of consolidation can boost the scores
and our early exploration with similar strategy reaches an argument role labeling F1 score of
61.6 with gold entity annotation, however, the appropriateness with regard to ACE schema
definition still concerns us. For example, the argument role Agent appear in Injure, Die,
Transport, Start-Org, Nominate, Elect, Arrest-Jail and Release-Parole events, the
definition of each Agent in these types includes criminals, business people, law enforcement
officers and organizations which have little overlap and it is meaningless and ridiculous to
consider these roles within one single label. Moreover, when analyzing errors from this
setting, we encounter errors such as Attacker in Meet events or Destination in Mary

events, which completely violate ACE schema. Hence, for the sake of solid comparison, we
do not include this setting, though we still appreciate and honor any work and attempt to
pursue higher performance.

6.2.3 Merit of dynamic rewards

The statistical results in Table 1, 2 and 3 demonstrate that dynamic rewards outperforms
the settings with fixed rewards. As presented in Section 4, fixed reward setting resembles
classification methods with cross-entropy loss, which treat errors equally and do not in-
corporate much information from errors, hence the performance is similar to some earlier
approaches but does not outperform state-of-the-art.

For instances with ambiguity, our dynamic reward function can provide more salient
margins between correct and wrong labels: e.g., “... they sentenced him to death ...”, with
the identical parameter set as aforementioned, reward for the wrong Die label is −5.74 while
correct Execute label gains 6.53. For simpler cases, e.g., “... submitted his resignation
...”, we have flatter rewards as 2.74 for End-Position, −1.33 for None or −1.67 for Meet,
which are sufficient to commit correct labels.

6.2.4 Impact from Pretrained Embeddings

Scores in Table 1, 2 and 3 prove that non-ELMo settings already outperform state-of-the-art,
which confirms the advantage and contribution of our GAIL framework. Moreover, in spite
of insignificant drop in fixed reward setting, we agree that ELMo is a good replacement6 for
a combination of word, character and PoS embeddings. The only shortcoming according to
our empirical practice is that ELMo takes huge amount of GPU memory and the training
procedure is slow (even we do not update the pre-trained parameters during our training
phase).

6.3 Remaining Errors

Losses of scores are mainly missed trigger words and arguments. For example, the Meet

trigger “pow-wow” is missed because it is rarely used to describe a formal political meeting;

6. Due to time constraint, we do not include comparison with some latest embedding work such as
BERT [Devlin et al., 2018]
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and there is no token with similar surface form – which can be recovered using character
embedding or character information in ELMo setting – in the training data.

We observe some special erroneous cases due to fully biased annotation. In the sentence
“Bombers have also hit targets ...”, the entity “bombers” is mistakenly classified as the
Attacker argument of the Attack event triggered by the word “hit”. Here the “bombers”
refers to aircraft and is considered as a VEH (Vehicle) entity, and should be an Instrument

in the Attack event, while “bombers” entities in the training data are annotated as Person
(who detonates bombs), which are never Instrument. This is an ambiguous case, however,
it does not compromise our claim on the merit of our proposed framework against ambigu-
ous errors, because our proposed framework still requires a mixture of different labels to
acknowledge ambiguity.

7. Related Work

One of the recent event extraction approaches mentioned in the introductory section [Hong
et al., 2018] utilizes GAN in event extraction. The GAN in the cited work outputs generated
features to regulate the event model from features leading to errors, while our approach
directly assess the mistakes to explore levels of difficulty in labels. Moreover, our approach
also covers argument role labeling, while the cited paper does not.

RL-based methods have been recently applied to a few information extraction tasks such
as relation extraction; and both relation frameworks from [Feng et al., 2017, Zhang et al.,
2017a] apply RL on entity relation detection with a series of predefined rewards.

We are aware that the term imitation learning is slightly different from inverse rein-
forcement learning. Techniques of imitation learning[Daumé et al., 2009, Ross et al., 2011,
Chang et al., 2015] attempt to map the states to expert actions by following demonstra-
tion, which resembles supervised learning, while inverse reinforcement learning [Abbeel and
Ng, 2004, Syed et al., 2008, Ziebart et al., 2008, Ho and Ermon, 2016, Baram et al., 2017]
estimates the rewards first and apply the rewards to RL. [Vlachos and Craven, 2011] is
an imitation learning application on bio-medical event extraction, and there is no reward
estimator used. We humbly recognize our work as inverse reinforcement learning approach
although “GAIL” is named after imitation learning.

8. Conclusions and Future Work

In this paper, we propose an end-to-end entity and event extraction framework based on in-
verse reinforcement learning. Experiments have demonstrated that the performance benefits
from dynamic reward values estimated from discriminators in GAN, and we also demon-
strate the performance of recent embedding work in the experiments. In the future, besides
releasing the source code, we also plan to further visualize the reward values and attempt
to interpret these rewards so that researchers and event extraction system developers are
able to better understand and explore the algorithm and remaining challenges. Our future
work also includes using cutting edge approaches such as BERT [Devlin et al., 2018], and
exploring joint model in order to alleviate impact from upstream errors in current pipelined
framework.
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