
Under review as a conference paper at ICLR 2017

TENSORIAL MIXTURE MODELS

Or Sharir, Ronen Tamari, Nadav Cohen & Amnon Shashua
The Hebrew University of Jerusalem
{or.sharir,ronent,cohennadav,shashua}@cs.huji.ac.il

ABSTRACT

We introduce a generative model, we call Tensorial Mixture Models (TMMs)
based on mixtures of basic component distributions over local structures (e.g.
patches in an image) where the dependencies between the local-structures are rep-
resented by a ”priors tensor” holding the prior probabilities of assigning a compo-
nent distribution to each local-structure.
In their general form, TMMs are intractable as the priors tensor is typically of
exponential size. However, when the priors tensor is decomposed it gives rise
to an arithmetic circuit which in turn transforms the TMM into a Convolutional
Arithmetic Circuit (ConvAC). A ConvAC corresponds to a shallow (single hidden
layer) network when the priors tensor is decomposed by a CP (sum of rank-1)
approach and corresponds to a deep network when the decomposition follows the
Hierarchical Tucker (HT) model.
The ConvAC representation of a TMM possesses several attractive properties.
First, the inference is tractable and is implemented by a forward pass through
a deep network. Second, the architectural design of the model follows the deep
networks community design, i.e., the structure of TMMs is determined by just
two easily understood factors: size of pooling windows and number of channels.
Finally, we demonstrate the effectiveness of our model when tackling the problem
of classification with missing data, leveraging TMMs unique ability of tractable
marginalization which leads to optimal classifiers regardless of the missingness
distribution.

1 INTRODUCTION

Generative models have played a crucial part in the early development of the field of Machine
Learning. However, in recent years they were mostly cast aside in favor of discriminative models,
lead by the rise of ConvNets (LeCun et al., 2015), which were found to perform equally well or
better than classical generative counter-parts on almost any task. Despite the increased interest in
unsupervised learning, many of the recent studies on generative models choose to focus solely on
the generation capabilities of these models (Goodfellow et al., 2014; Gregor et al., 2015; van den
Oord et al., 2016; Dinh et al., 2016; Tran et al., 2016; Chen et al., 2016; Kingma et al., 2016; Kim
and Bengio, 2016). There is much less emphasis on leveraging generative models to solve actual
tasks, e.g. semi-supervised learning (Kingma et al., 2014; Springenberg, 2016; Maaløe et al., 2016;
Forster et al., 2015; Salimans et al., 2016), image restoration (Dinh et al., 2014; Bengio et al., 2014;
van den Oord et al., 2016; Zoran and Weiss, 2011; Rosenbaum and Weiss, 2015; Sohl-Dickstein
et al., 2015; Theis and Bethge, 2015) or unsupervised feature representation (Radford et al., 2016;
Coates et al., 2011). Nevertheless, work on generative models for solving actual problems are yet to
show a meaningful advantage over competing discriminative models.

On the most fundamental level, the difference between a generative model and a discriminative one
is simply the difference between learning P (X,Y) and learning P (Y |X), respectively. While it
is always possible to infer P (Y |X) given P (X,Y), it might not be immediately apparent why the
generative objective is preferred over the discriminative one. In Ng and Jordan (2002), this ques-
tion was studied w.r.t. the sample complexity, proving that under some cases it can be significantly
lesser in favor of the generative classifier. However, their analysis was limited only to specific pairs
of discriminative and generative classifiers, and they did not present a general case where the the
generative method is undeniably preferred. We wish to highlight one such case, where learning

1

Under review as a conference paper at ICLR 2017

P (X,Y) is provenly better regardless of the models in question, by examining the problem of clas-
sification with missing data. Despite the artificially well-behave nature of the typical classification
benchmarks presented in current publications, real-world data is usually riddled with noise and miss-
ing values – instead of observing X we only have a partial observation X̂ – a situation that tends
to be ignored in modern research. Discriminative models have no natural mechanisms to handle
missing data and instead must rely on data imputation, i.e. filling missing data by a preprocessing
step prior to prediction. Unlike the discriminative approaches, generative models are naturally fitted
to handle missing data by simply marginalizing over the unknown values in P (X,Y), from which
we can attain P (Y |X̂) by an application of Bayes Rule. Moreover, under mild assumptions which
apply to many real-world settings, this method is proven to be optimal regardless of the process by
which values become missing (see sec. 5 for a more detailed discussion).

While almost all generative models can represent P (X,Y), only few can actually infer its exact
value efficiently. Models which possess this property are said to have tractable inference. Many
studies specifically address the hard problem of learning generative models that do not have this
property. Notable amongst those are works based on Variational Inference (Kingma and Welling,
2014; Kingma et al., 2014; Blei et al., 2003; Wang and Grimson, 2007; Makhzani et al., 2015;
Kingma et al., 2016), which only provide approximated inference, and ones based on Generative
Adversarial Networks (Goodfellow et al., 2014; Radford et al., 2016; Springenberg, 2016; Chen
et al., 2016; Salimans et al., 2016; Makhzani et al., 2015), which completely circumvent the infer-
ence problem by restructuring the learning problem as a two-player game of discriminative objec-
tives – both of these approaches are incapable of tractable inference.

There are several advantages to models with tractable inference (e.g. they could be simpler to
train), and as we have shown above, this property is also a requirement for proper handling of
missing data in the form of marginalization. In practice, to marginalize over P (X,Y) means to
perform integration on it, thus, even if it is tractable to compute P (X,Y), it still might not be
tractable to compute every possible marginalization. Models which are capable of this are said to
have tractable marginalization. Mixture Models (e.g. Gaussian Mixture Models) are the classical
example of a generative model with tractable inference, as well as tractable marginalization. Though
they are simple to understand, easy to train and even known to be universal – can approximate any
distribution given sufficient capacity – they do not scale well to high-dimensional data. The Gaussian
Mixture Model is an example of a shallow model – containing just a single latent variable – with
limited expressive efficiency. More generally, Graphical Models are deep and exponentially more
expressive, capable of representing intricate relations between many latent variables. While not
all kinds of Graphical Models are tractable, many are, e.g. Latent Tree Models (Zhang, 2004;
Mourad et al., 2013) and Sum-Product Networks (Poon and Domingos, 2011). The main issue with
generic graphical models is that by virtue of being too general they lack the inductive bias needed
to efficiently model unstructured data, e.g. images or text. Despite the success of structure learning
algorithms (Huang et al., 2015; Gens and Domingos, 2013; Adel et al., 2015) on structured datasets,
such as discovering a hierarchy among diseases in patients health records, there are no similar results
on unstructured datasets. Indeed some recent works on the subject have failed to solve even simple
handwritten digit classification tasks (Adel et al., 2015). Thus deploying graphical models on such
cases requires experts to manually design the model. Other attempts which harness neural networks
blocks (Dinh et al., 2014; 2016) offer tractable inference, but not tractable marginalization.

To summarize, most generative models do not have tractable inference, and of the few models which
do, they all possess one or more of the following shortcomings: (i) they do not possess the expressive
capacity to model high-dimensional data (e.g. images), (ii) they require explicitly designing all the
dependencies of the data, or (iii) they do not have tractable marginalization.

We present in this paper a family of generative models we call Tensorial Mixture Models (TMMs),
which aim to address the above shortcomings of alternative models. Under TMMs, we assume that
the data generated by our model is composed of a sequence of local-structures (e.g. patches in an
image), where each local-structure is generated from a small set of simple component distributions
(e.g. Gaussian), and the dependencies between the local-structures are represented by a prior tensor
holding the prior probabilities of assigning a component distribution to each local-structure. In their
general form, TMMs are intractable as the prior tensor is typically of exponential size. However, by
decomposing the prior tensor, inference of TMMs becomes realizable by Convolutional Arithmetic
Circuits (ConvACs) – a recently proposed (Cohen et al., 2016a) ConvNet architecture based on two

2

Under review as a conference paper at ICLR 2017

hidden	layer	0

r0

1x1	conv
input	

coordinates	
by	indicators

M r0
�i = 1[j=di]

hidden	layer	L-1

1x1	conv dense	
(output)

rL-1 rL-1
Ad1,...,dN

�i

product	
pooling

product	
pooling

Figure 1: The decoding algorithm of an arbitrary tensor decomposition represented by a ConvAC.

operations, weighted sum and product pooling – which enables both tractable inference as well as
tractable marginalization. While Graphical Models are typically hard to design, ConvACs follow
the same design conventions of modern ConvNets, which reduces the task of designing a model to
simply choosing the number of channels at each layer, and size of pooling windows. ConvACs were
also the subject of several theoretical studies on its expressive capacity (Cohen et al., 2016a; Cohen
and Shashua, 2016b) and comparing them to ConvNets (Cohen and Shashua, 2016a), showing they
are especially suitable for high-dimensional natural data (images, audio, etc.) with a non-negligible
advantage over standard ConvNets. Sum-Product Networks are another kind of Graphical Model
realizable by Arithmetic Circuits, but they do not posses the same theoretical guarantees, nor do
they provide a simple method to design efficient and expressive models.

The rest of the article is organized as follows. In sec. 2 we briefly review mathematical background
on tensors required in order to follow our work. This is followed by sec. 3 which presents our
generative model and its theoretical properties. How our model is trained is covered in sec. 4, and a
thorough discussion on the importance of marginalization and its implications on our model is given
in sec. 5. We conclude the article by presenting our experiments on classification with missing data
in sec. 6, and revisit the main points of the article and future research in sec. 7.

2 PRELIMINARIES

We begin by establishing the minimal background in the field of tensor analysis required for fol-
lowing our work (see app. A for a more detailed review of the subject). A tensor is best thought of
as a multi-dimensional array Ad1,...,dN ∈ R, where ∀i ∈ [N], di ∈ [Mi] and N is referred to as
the order of the tensor. For our purposes we typically assume that M1 = . . . = MN = M , and
denote it as A ∈ (RM)⊗N . It is immediately apparent that performing operations with tensors, or
simply storing them, quickly becomes intractable due to their exponential size of MN . That is one
of the primary motivations behind tensor decomposition, which can be seen as a generalization of
low-rank matrix factorization.

The relationship between tensor decomposition and networks arises from the simple observation,
that through decomposition one can tradeoff storage complexity with computation, where the type
of computation consists of sums and products. Specifically, the decompositions could be described
by a compact representation coupled with a decoding algorithm of polynomial complexity to retrieve
the entries of the tensor. Most tensor decompositions have a decoding algorithm representable via
computation graphs of products and weighted sums, also known as Arithmetic Circuits (Shpilka and
Yehudayoff, 2010) or Sum-Product Networks (Poon and Domingos, 2011). More specifically, these
circuits take as input N indicator vectors δ1, . . . , δN , representing the coordinates (d1, . . . , dN),
where δi = 1[j=di], and output the value ofAd1,...,dN , where the weights of these circuits form the
compact representation of tensors.

Applying this perspective to two of the most common decomposition formats, CANDE-
COMP/PARFAC (CP) and Hierarchical Tucker (HT), give rise to a shared framework for repre-
senting their decoding circuits by convolutional networks as illustrated in fig. 1, where a shallow
network with one hidden layer corresponds to the CP decomposition, and a deep network with
log2(N) hidden layers corresponds to the HT decomposition. The networks consists of just product
pooling and 1×1 conv layers. Having no point-wise activations between the layers, the non-linearity
of the models stems from the product pooling operation itself. The pooling layers also control the
depth of the network by the choice of the size and the shape of pooling windows. The conv operator
is not unlike the standard convolutional layer of ConvNets, with the sole difference being that it may
operate without coefficient sharing, i.e. the filters that generate feature maps by sliding across the

3

Under review as a conference paper at ICLR 2017

previous layer may have different coefficients at different spatial locations. This is often referred to
in the deep learning community as a locally-connected operator (Taigman et al., 2014).

Arithmetic Circuits constructed from the above conv and product pooling layers are called Con-
volutional Arithmetic Circuits, or ConvACs for short, first suggested by Cohen et al. (2016a) as a
theoretical framework for studying standard convolutional networks, sharing many of the defining
traits of the latter, most noteworthy, the locality, sharing and pooling properties of ConvNets. Unlike
general circuits, the structure of the network is determined solely by two parameters, the number of
channels of each conv layer and the size of pooling windows, which indirectly controls the depth
of the network. Any decomposition that corresponds to a ConvAC can represent any tensor, given
sufficient number of channels, though deeper circuits result in more efficient representations (Cohen
et al., 2016a).

Finally, since we are dealing with generative models, the tensors we study are non-negative and
sum to one, i.e. the vectorization of A (rearranging its entries to the shape of a vector), denoted by
vec(A), is constrained to lie in the multi-dimensional simplex, denoted by:

4k :=

{
x ∈ Rk+1|

∑k+1

i=1
xi = 1,∀i ∈ [k + 1] : xi ≥ 0

}
(1)

3 TENSORIAL MIXTURE MODELS

We represent the input signal X by a sequence of low-dimensional local structures

X = (x1, . . . ,xN) ∈ (Rs)N

This representation is quite natural for many high-dimensional input domains such as images –
where the local structures represent patches consisting of s pixels – voice through spectrograms,
and text through words.

A well-known observation, which has been verified in several empirical studies (e.g. by Zoran
and Weiss (2011)), is that the distributions of local structures typically found in natural data could
be sufficiently modeled by a mixture model consisting of only few components (on the order of
100) of simple distributions (e.g. Gaussian). Assuming the above holds for X ∈ (Rs)N and let
{P (x|d; θd)}Md=1 be the mixing components, parameterized by θ1, . . . , θM , from which local struc-
tures are generated, i.e. for all i ∈ [N] there exist di ∈ [M] such that xi ∼ P (x|di; θdi), where di is
a hidden variable specifying the matching component for the i-th local structure, then the probability
density of sampling X is fully described by:

P (X) =
∑M

d1,...,dN=1
P (d1, . . . , dN)

∏N

i=1
P (xi|di; θdi) (2)

where P (d1, . . . , dN) represents the prior probability of assigning components d1, . . . , dN to their
respective local structures x1, . . . ,xN . Even though we had to make an assumption on X to derive
eq. 2, it is important to note that if we allow M to become unbounded, then any distribution with
support in (Rs)N could be approximated by this equation. The argument follows from the universal-
ity property of the common parametric families of distributions (Gaussian, Laplacian, etc.), where
any distribution can be approximated given sufficient number of components from these families,
and thus the assumption always holds to some degree (see app. B for the complete proof).

The prior probabilities P (d1, . . . , dN) can also be represented by a tensorA ∈ (RM)⊗N of orderN ,
given that the vectorization of A is constrained to the simplex, i.e. vec(A) ∈ 4(MN−1) (see eq. 1).
Thus, we refer to eq. 2 as a Tensorial Mixture Model (TMM) with priors tensor A and mixing
components P (x|d1; θ1), . . . , P (x|dN ; θN). Notice that if N = 1 then we obtain the standard
mixture model, whereas for a general N it is equivalent to a mixture model with tensorised mixing
weights and conditionally independent mixing components.

Unlike standard mixture models, we cannot perform inference directly from eq. 2, nor can we even
store the priors tensor directly given its exponential size of MN entries. Therefore the TMM as
presented by eq. 2 is not tractable. The way to make the TMM tractable is to replace the tensor
Ad1,...,dN by a tensor decomposition and, as described in the previous section, this gives rise to
arithmetic circuits. But before we present our approach for tractable TMMs through tensor decom-
positions, it is worth examining some of the TMM special cases and how they relate to other known
generative models.

4

Under review as a conference paper at ICLR 2017

hidden	layer	0

r0

1x1	convrepresenta.oninput	X

M r0
rep(i, d) = P (xi|di; ✓di)

xi

hidden	layer	L-1

1x1	conv dense	
(output)

rL-1 rL-1

product	
pooling

P (X)

product	
pooling

Figure 2: Inference of a TMM carried out by a ConvAC.

3.1 SPECIAL CASES

We have already shown that TMMs can be thought of as a special case of mixture models, but it is
important to also note that diagonal Gaussian Mixture Models (GMMs), probably the most common
type of mixture models, are a strict subset of TMMs. Assume M = N ·K, as well as:

P (d1, . . . , dN) =

{
wk ∀i ∈ [N], di=N ·(k−1)+i

0 Otherwise

P (x|d; θd) = N (x;µki, diag(σ2
ki)), d=N ·(k−1)+i

then eq. 2 reduces to:

P (X) =
∑K

k=1
wk

∏N

i=1
N (x;µki, diag(σ2

ki)) =
∑K

k=1
wkN (x; µ̃k, diag(σ̃2

k))

µ̃k = (µT
k1, . . . ,µ

T
kN)T σ̃2

k = ((σ2
k1)T , . . . , (σ2

kN)T)T

which is equivalent to a diagonal GMM with mixing weights w ∈ 4K−1 and Gaussian mixture
components with means {µ̃k}Kk=1 and covariances {diag(σ̃2

k)}Kk=1.

While the previous example highlights another connection between TMMs and mixture models,
it does not take full advantage of the priors tensor, setting most of its entries to zero. Perhaps
the simplest assumption we could make about the priors tensor, without it becoming degener-
ate, would be to assume that that the hidden variables d1, . . . , dN are statistically independent,
i.e. P (d1, . . . , dN)=

∏N
i=1 P (di). Then rearranging eq. 2 will result in a product of mixture models:

P (X) =
∏N

i=1

∑M

d=1
P (di = d)P (xi|di = d; θd)

If we also assume that the priors are identical in addition to being independent,
i.e. P (d1 = d) = . . . = P (dN = d), then this model becomes a bag-of-words model, where the
components {P (x|d; θd)}Md=1 define a soft dictionary for translating local-structures into ”words”,
as is often done when applying bag-of-words models to images. Despite this familiar setting, had we
subscribed to only using independent priors, we would lose the universality property of the general
TMM model – it would not be capable of modeling dependencies between the local-structures.

3.2 DECOMPOSING THE PRIORS TENSOR

We have just seen that TMMs could be made tractable through constraints on the priors tensor, but
it was at the expense of either not taking advantage of its tensor structure, or losing its universality
property. Our approach for tractable TMMs is to apply tensor decompositions to the priors tensor,
which is the conventional method for tackling the exponential size of high-order tensors.

We have already mentioned in sec. 2 that any decomposition representable by ConvACs, includ-
ing the well-known CP and HT decompositions, can represent any tensor, and thus applying them
would not limit the expressivity of our model. Fixing a ConvAC representing the priors tensor, i.e.
ΦΘ(δ1, . . . , δN) = Ad1,...,dN where Θ are the parameters of the ConvAC and {δi}Ni=1 are the in-
dicators representation of {di}Ni=1, and simply rearranging the terms of eq. 2 after substituting the
entries of the priors tensor with the sums and products expression of ΦΘ(δ1, . . . , δN) results in:

P (X) = ΦΘ(q1, . . . ,qN) ∀i ∈ [N]∀d ∈ [M], qid = P (xi|di = d) (3)

which is nearly equivalent to how the ConvAC is used for computing the entries of the priors
tensor, differing only in the way the input vectors are defined. Namely, eq. 3 is a result of

5

Under review as a conference paper at ICLR 2017

replacing indicator vectors δi with probability vectors qi, which could be interpreted as a soft
variant of indicator vectors. Viewed as a network, it begins with a representation layer, map-
ping the local structures to the likelihood probabilities of belonging to each mixing component,
i.e. {xi}Ni=1→{P (xi|di=d; θd)}N,M

i=1,d=1. Following the representation layer is the same ConvAC
described by ΦΘ(·, . . . , ·). The complete network is illustrated by fig. 2.

Unlike general tensors, for a TMM to represent a valid distribution, the priors tensor is constrained
to the simplex and thus not every choice of parameters for the decomposition would result in a
tensor holding this constraint. By restricting ourselves to non-negative decomposition parameters,
i.e. use positive weights in the 1×1 conv layers, it guarantees the resulting tensors would be non-
negative as well. Additionally, normalizing the non-negative tensor is equivalent to requiring the
parameters to be restricted to the simplex, i.e. for every layer l and spatial position j the weight
vector wl,j ∈ 4rl−1−1 of the respective 1×1 conv kernel is normalized to sum to one. Under
these constraints we refer to it as a generative decomposition. Notice that restricting ourselves
to generative decompositions does not limit the expressivity of our model, as we can still repre-
sent any non-negative tensor and thus any distribution that the original TMM could represent. In
discussing the above, it helps to distinguish between the two extreme cases of generative decompo-
sitions representable by ConvACs, namely, the shallow Generative CP decomposition referred to as
the GCP-model, and the deep Generative HT decomposition referred to as the GHT-model.

Non-negative matrix and tensor decompositions have a long history together with the development
of corresponding generative models, e.g., pLSA (Hofmann, 1999) which uses non-negative ma-
trix decompositions for text analysis, which was later extended for images with the help of “vi-
sual words” (Li and Perona, 2005). The non-negative variant of the CP decomposition presented
above is related to the more general Latent Class Models (Zhang, 2004), which could be seen as
a multi-dimensional pLSA. Likewise, the non-negative HT decomposition is related to the Latent
Tree Model (Zhang, 2004; Mourad et al., 2013) with the structure of a complete binary tree. Thus
both the GCP and GHT models can be represented as a two-level graphical model, where the top
level is either an LCM or an LTM, and the bottom level represent the local structures which are
conditionally sampled from the mixing components of the TMM.

To conclude, the application of ConvACs to decompose the priors tensor leads to tractable TMMs
with inference implemented by convolutional networks, has deep roots to classical use of non-
negative factorizations of generative models, and given sufficient resources does not limit expressiv-
ity. However, practical considerations raise the question on the extent of the expressive capacity of
our models when the size of the ConvAC is polynomial with respect to the number of local struc-
tures and mixing components. This question was thoroughly studied in a series of works analyzing
the importance of depth (Cohen et al., 2016a), compared them to the expressive capacity of Con-
vNets (Cohen and Shashua, 2016a), showing the latter is less capable than ConvACs, and the ability
of ConvACs to model the dependency structure typically found in natural data (Cohen and Shashua,
2016b). We prove in app. D that their main results are not hindered by the introduction of simplex
constraints to ConvACs as we did above. Together these results give us a detailed understanding of
how the number of channels and size of pooling windows control the expressivity of the model. A
more in depth overview of their results and its application to our models can be found in app. C.

3.3 COMPARISON TO SUM-PRODUCT NETWORKS

Sum-Product Networks (SPNs) are a related class of generative models which are also realized by
Arithmetic Circuits, though not strictly convolutional circuits as defined above. While SPNs can
realize any ConvAC and thus are universal and posses tractable inference, their lack of structure
puts them at a disadvantage.

Picking the right SPN structure from the infinite possible combinations of sum and product nodes
could be perplexing even for experts in the field. Indeed Poon and Domingos (2011); Gens and
Domingos (2012) had to hand-engineer complex structures for each dataset guided by prior knowl-
edge and heuristics, and while their results were impressive for their time, they are poor by current
measures. This lead to many works studying the task of learning the structure directly from the
data itself (Peharz et al., 2013; Gens and Domingos, 2013; Adel et al., 2015; Rooshenas and Lowd,
2014), which indeed improved upon manually designed SPNs on some tasks. Nevertheless, when

6

Under review as a conference paper at ICLR 2017

hidden	layer	0

r0

1x1	convrepresenta.oninput	X

M r0
rep(i, d) = P (xi|di; ✓di)

xi

hidden	layer	L-1

1x1	conv product	
pooling

dense	
(output)

rL-1 rL-1
P (X|Y = y)

K

product	
pooling

Figure 3: Classifier variant of TMM carried out by a ConvAC.

compared in absolute terms compared to other models, and not just average log-likelihood, they do
not perform well even on simple handwritten digit classification datasets (Adel et al., 2015).

As opposed to SPNs, TMMs implemented with ConvACs have an easily designed architecture with
only two set of parameters, size of pooling windows and number of channels, both of which can be
directly related to the expressivity of the model as detailed in app. C. Additionally, while SPNs are
typically trained using special EM-type algorithms, TMMs are trained using the stochastic gradient
descent type algorithms as is common in training neural networks (see sec. 4 for details), thereby
benefiting from the shared experience of a large and growing community.

4 CLASSIFICATION AND LEARNING WITH TMMS

Until this point we presented the TMM as a generative model for high-dimensional data, which is
universal, and whose structure is tightly coupled to that of convolutional networks. We have yet to
incorporate classification and learning into our framework. This is the purpose of the current section.

The common way to introduce object classes into a generative framework is to consider a class
variable Y , and the distributions P (X|Y) of the instanceX conditioned on Y . Under our model this
is equivalent to having shared mixing components, but different priors tensors P (d1, . . . , dN |Y=y)
for each class. Though it is possible to decompose each priors tensor separately, it is much more
efficient to employ the concept of joint tensor decomposition, and use a shared ConvAC instead. This
results in a single ConvAC computing inference, where instead of a single scalar output, multiple
outputs are driven by the network – one for each class – as illustrated through the network in fig. 3.

Heading on to predicting the class of a given instance, we note that in practice, naı̈ve implementation
of ConvACs is not numerically stable, the reason being that high degree polynomials (as computed
by such networks) are easily susceptible to numerical underflow or overflow. The conventional
method for tackling this issue is to perform all computations in log-space. This transforms ConvACs
into SimNets, a recently introduced deep learning architecture (Cohen and Shashua, 2014; Cohen
et al., 2016b). Finally, prediction is carried by returning the most likely class, which in the common
setting of uniform class priors (PΘ(Y=y)≡1/K), translates to simply predicting the class for which
the corresponding network output is maximal, in accordance with standard neural network practice:

Ŷ (X) = argmaxy P (Y = y|X) = argmaxy logP (X|Y = y)

Suppose now that we are given a training set S = {(X(i)∈(Rs)N , Y (i)∈[K])}|S|i=1 of instances
and labels, and would like to fit the parameters Θ of multi-class TMM according to the Maximum
Likelihood method. Equivalently, we minimize the Negative Log-Likelihood (NLL) loss function:
L(Θ) = E[− logPΘ(X,Y)], which can be factorized into two separate loss functions:

L(Θ) = E[− logPΘ(Y |X)] + E[− logPΘ(X)]

where E[− logPΘ(Y |X)] is commonly known as the cross-entropy loss, which we refer to as the
discriminative loss, while E[− logPΘ(X)] corresponds to maximizing the prior likelihood P (X),
and has no analogy in standard discriminative neural networks. It is this term that captures the
generative nature of our model, and we accordingly refer to it as the generative loss. Now, let
NΘ(X(i); y):= logPΘ(X(i)|Y=y) stand for the y’th output of the SimNet (ConvAC in log-space)
realizing the TMM with parameters Θ, then in the case of uniform class priors, the empirical esti-
mation of L(Θ) may be written as:

L(Θ;S) = − 1

|S|
∑|S|

i=1
log

eNΘ(X(i);Y (i))

∑K
y=1 e

NΘ(X(i);y)
− 1

|S|
∑|S|

i=1
log
∑K

y=1
eNΘ(X(i);y) (4)

7

Under review as a conference paper at ICLR 2017

Maximum likelihood training of generative models is oftentimes based on dedicated algorithms
such as Expectation-Maximization, which are typically difficult to apply at scale. We leverage the
resemblance between our objective (eq. 4) and that of standard neural networks, and apply the same
optimization procedures used for the latter, which have proven to be extremely effective for training
classifiers at scale. Whereas other works have used tensor decompositions for the optimization of
probabilistic models (Song et al., 2013; Anandkumar et al., 2014), we employ them strictly for mod-
eling and instead make use of conventional methods. In particular, our implementation of TMMs
is based on the SimNets extension of Caffe toolbox (Cohen et al., 2016b; Jia et al., 2014), and uses
standard Stochastic Gradient Descent-type methods for optimization (see sec. 6 for more details).

5 CLASSIFICATION WITH MISSING DATA THROUGH MARGINALIZATION

A major advantage of generative models over discriminative ones lies in the ability to cope with
missing data, specifically in the context of classification. By and large, discriminative methods
either attempt to complete missing parts of the data before classification, known as data imputation,
or learn directly to classify data with missing values (Little and Rubin, 2002). The first of these
approaches relies on the quality of data completion, a much more difficult task than the original
one of classification with missing data. Even if the completion was optimal, the resulting classifier
is known to be sub-optimal (see app. E). The second approach does not make this assumption, but
nonetheless assumes that the distribution of missing values at train and test times are similar, a
condition which often does not hold in practice. Indeed, Globerson and Roweis (2006) coined the
term “nightmare at test time” to refer to the common situation where a classifier must cope with
missing data whose distribution is different from that encountered in training.

As opposed to discriminative methods, generative models are endowed with a natural mechanism for
classification with missing data. Namely, a generative model can simply marginalize over missing
values, effectively classifying under all possible completions, weighing each completion according
to its probability. This, however, requires tractable inference and marginalization. We have already
shown in sec. 3 that TMM support the former, and will show in sec. 5.1 bring forth marginalization
which is just as efficient. Beforehand, we lay out the formulation of classification with missing data.

Let X be a random vector in Rs representing an object, and Y be a random variable in
[K]:={1, . . . ,K} representing its label. Denote byD(X ,Y) the joint distribution of (X ,Y), and by
(x∈Rs, y∈[K]) specific realizations thereof. Assume that after sampling a specific instance (x, y), a
random binary vectorM is drawn conditioned on X=x. More concretely, we sample a binary mask
m∈{0, 1}s (realization ofM) according to a distributionQ(·|X=x). xi is considered missing ifmi

is equal to zero, and observed otherwise. Formally, we consider the vector x�m, whose i’th coor-
dinate is defined to hold xi if mi=1, and the wildcard ∗ if mi=0. The classification task is then to
predict y given access solely to x�m.

Following the works of Rubin (1976); Little and Rubin (2002), we consider three cases for the
missingness distribution Q(M=m|X=x): missing completely at random (MCAR), where M is
independent of X , i.e. Q(M=m|X=x) is a function of m but not of x; missing at random (MAR),
whereM is independent of the missing values in X , i.e. Q(M=m|X=x) is a function of both m
and x, but is not affected by changes in xi if mi=0; and missing not at random (MNAR), covering
the rest of the distributions for whichM depends on missing values in X , i.e.Q(M=m|X=x) is a
function of both m and x, which at least sometimes is sensitive to changes in xi when mi=0.

Let P be the joint distribution of the object X , label Y , and missingness maskM:

P(X=x,Y=y,M=m) = D (X=x,Y=y) · Q(M=m|X=x)

For given x ∈ Rs and m ∈ {0, 1}s, denote by o(x,m) the event where the random vector X
coincides with x on the coordinates i for which mi = 1. For example, if m is an all-zero vector
o(x,m) covers the entire probability space, and if m is an all-one vector o(x,m) corresponds to
the event X = x. With these notations in hand, we are now in a position to characterize the optimal
predictor in the presence of missing data:
Claim 1. For any data distribution D and missingness distribution Q, the optimal classification
rule in terms of 0-1 loss is given by:

h∗(x�m) = argmaxy P(Y=y|o(x,m))P(M=m|o(x,m),Y=y)

8

Under review as a conference paper at ICLR 2017

Proof. See app. E.

When the distributionQ is MAR (or MCAR), the classifier admits a simpler form, referred to as the
marginalized Bayes predictor:
Corollary 1. Under the conditions of claim 1, if the distributionQ is MAR (or MCAR), the optimal
classification rule may be written as:

h∗(x�m) = argmaxy P(Y=y|o(x,m)) (5)

Proof. See app. E.

Corollary 1 indicates that in the MAR setting, which is frequently encountered in practice, optimal
classification does not require prior knowledge regarding the missingness distribution Q. As long
as one is able to realize the marginalized Bayes predictor (eq. 5), or equivalently, to compute the
likelihoods of observed values conditioned on labels (P(o(x,m)|Y=y)), classification with miss-
ing data is guaranteed to be optimal, regardless of the corruption process taking place. This is in
stark contrast to discriminative methods, which require access to the missingness distribution during
training, and thus are not able to cope with unknown conditions at test time.

Most of this section dealt with the task of prediction given an input with missing data, where we
assumed we had access to a complete and uncorrupted training set, and only faced missingness dur-
ing prediction. However, many times we wish to tackle the reverse problem, where the training set
itself is riddled with missing data. Generative methods can once again leverage their natural ability
to handle missing data in the form of marginalization during the learning stage. Generative models
are typically learned through the Maximum Likelihood principle. When it comes to learning from
missing data, the marginalized likelihood objective is used instead. Under the MAR assumption,
this method results in an unbiased classifier (Little and Rubin, 2002).

5.1 EFFICIENT MARGINALIZATION WITH TMMS

As discussed above, with generative models optimal classification with missing data (in the MAR
setting) is oblivious to the specific missingness distribution. However, it requires tractable compu-
tation of the likelihood of observed values conditioned on labels, i.e. tractable marginalization over
missing values. The plurality of generative models that have recently gained attention in the deep
learning community (Goodfellow et al., 2014; Kingma and Welling, 2014; Dinh et al., 2014; 2016)
do not meet this requirement, and thus are not suitable for classification with missing data. TMMs
on the other hand bring forth extremely efficient marginalization, requiring only a single forward
pass through the corresponding network. Details follow.

Recall from sec. 3 and 4 that a multi-class TMM realizes the following form:

P (x1, . . . ,xN |Y=y) =
∑M

d1,...,dN
P (d1, . . . , dN |Y=y)

∏N

i=1
P (xi|di; θdi) (6)

Suppose now that only the local structures xi1 . . .xiV are observed, and we would like to marginal-
ize over the rest. Integrating eq. 6 gives:

P (xi1 , . . . ,xiV |Y=y) =
∑M

d1,...,dN
P (d1, . . . , dN |Y=y)

∏V

v=1
P (xiv |div ; θdiv)

from which it is evident that the same ConvAC used to compute P (x1, . . . ,xN |Y=y), can be used
to compute P (xi1 , . . . ,xiV |Y=y) – all it requires is a slight adaptation of the representation layer.
Namely, the latter would represent observed values through the usual likelihoods, whereas missing
(marginalized) values would now be represented via constant ones:

rep(i, d) =

{
1 , xi is missing (marginalized)

P (xi|d; Θ) , xi is visible (not marginalized)

To conclude, with TMMs marginalizing over missing values is just as efficient as plain inference –
requires only a single pass through the corresponding ConvAC. Accordingly, the marginalized Bayes
predictor (eq. 5) is realized efficiently, and classification with missing data (in the MAR setting) is
optimal, regardless of the missingness distribution. This capability is not provided by discriminative
methods, which rely on the distribution of missing values being know at training, and by contempo-
rary generative models, which do not bring forth tractable marginalization.

9

Under review as a conference paper at ICLR 2017

N = 0 25 50 75 100 125 150

LP-Based 97.9 97.5 96.4 94.1 89.2 80.9 70.2
GHT-model 98.5 98.2 97.8 96.5 93.9 87.1 76.3

Table 1: Blind classification with missing data on the binary MNIST dataset with feature deletion
noise according to Globerson and Roweis (2006), averaged over all pairs of digits.

6 EXPERIMENTS

We demonstrate the properties of our models through both qualitative and quantitative experiments.
In subsec. 6.1 we present our state-of-the-art results on image classification with missing data, with
robustness to various missingness distributions. In app. G we show visualizations produced by our
models, which gives us insight into its inner workings. Our experiments were conducted on the
MNIST digit classification dataset, consisting of 60000 grayscale images of single digit numbers, as
well as the small NORB 3D object recognition dataset, consisting of 48600 grayscale stereo images
of toys belonging to 5 categories: four-legged animals, human figures, airplanes, trucks, and cars

In all our experiments we use either the GCP or GHT model with Gaussian mixing components.
The weights of the conv layers are partially shared as described in sec 3.2, and are represented in
log-space. For the case of the GHT model, we use 2× 2 pooling windows for all pooling layers. We
train our model according to the loss described in sec. 4, using the Adam (Kingma and Ba, 2015)
variant of SGD and decaying learning rates. We apply L2-regularization to the weights while taking
into account they are stored in log-space. Additionally, we also adapt a probabilistic interpretation
of dropout (?) by introducing random marginalization layers, that randomly select spatial locations
in the input and marginalize over them. We provide a complete and detailed description of our
experiments in app. F.

Our implementation, which is based on Caffe (Jia et al., 2014) and MAPS (Ben-Nun et al., 2015),
as well as other code for reproducing our experiments, is available through our Github repository:
https://github.com/HUJI-Deep/TMM.

6.1 IMAGE CLASSIFICATION WITH MISSING DATA

We demonstrate the effectiveness of our method for classification with missing data of unknown
missingness distribution (see sec. 5), by conducting three kinds of experiments on the MNIST
dataset, and an additional experiment on the NORB dataset. We begin by following the protocol
of Globerson and Roweis (2006) – the binary classification problem of digit pairs with feature dele-
tion noise – where we compare our method to the best known result on that benchmark (Dekel and
Shamir, 2008). For our main experiment, we move to the harder multi-class digit classification un-
der two different MAR missingness distributions, comparing against other methods which do not
assume a specific missingness distribution. We repeat this experiment on the NORB dataset as well.
Finally, our last experiment demonstrates the failure of purely discriminative methods to adapt to
previously unseen missingness distributions, underlining the importance of the generative approach
to missing data. We do wish to emphasize that missing data is not typically found in most image
data, nevertheless, experiments on images with missing data are very common, for both classifi-
cation and inpainting tasks. Additionally, there is nothing about our method, nor the methods we
compare it against, that is very specific to the image domain, and thus any conclusion drawn should
not be limited to the chosen datasets, but be taken in the broader context of the missing data problem.

The problem of learning classifiers which are robust to unforeseen missingness distributions at test
time was first proposed by Globerson and Roweis (2006). They suggested missing values could be
denoted by values which were deleted, i.e. their values were changed to zero, and a robust classifier
would have to assume that any of its zero-value inputs could be the result of such a deletion process,
and must be treated as missing. Their solution was to train a linear classifier and formulate the
optimization as a quadric program under the constraint that N of its features could be deleted.
In Dekel and Shamir (2008), this solution was improved upon and generalized to other kinds of
corruption beyond deletion as well as to an adversarial setting.

We follow the central experiment of these articles, conducted on binary classification of digits pairs
from the MNIST dataset, where N non-zero pixels are deleted with uniform probability over the set
of N non-zero pixel locations of the given image. We compare our method, using the deep GHT-

10

https://github.com/HUJI-Deep/TMM

Under review as a conference paper at ICLR 2017

0.00 0.25 0.50 0.75 0.90 0.95 0.99

Probability of Missing Pixels

10
20
30
40
50
60
70
80
90

100

T
e
st

 A
cc

u
ra

cy
 (

%
)

KNN

Zero

Mean

GSN

NICE

DPM

MP-DBM *

GCP-model

GHT-model

(a) MNIST with i.i.d. corruption.

(1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)

(Number of Rectangles, Width)

10
20
30
40
50
60
70
80
90

100

T
e
st

 A
cc

u
ra

cy
 (

%
)

KNN

Zero

Mean

GSN

NICE

DPM

GCP-model

GHT-model

(b) MNIST with missing rectangles.

0.00 0.25 0.50 0.75 0.90 0.95 0.99

Probability of Missing Pixels

10
20
30
40
50
60
70
80
90

100

T
e
st

 A
cc

u
ra

cy
 (

%
)

KNN

Zero

Mean

NICE

DPM

GHT-model

(c) NORB with i.i.d. corruption.

(1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)

(Number of Rectangles, Width)

10
20
30
40
50
60
70
80
90

100

T
e
st

 A
cc

u
ra

cy
 (

%
)

KNN

Zero

Mean

NICE

DPM

GHT-model

(d) NORB with missing rectangles.

Figure 4: Blind classification with missing data. (a,c) Testing i.i.d. corruption with probability p for
each pixel. (b,d) Testing missing rectangles corruption withN missing rectangles, each of width and
hight equal to W . (*) Accuracies are estimated from the plot of Goodfellow et al. (2013). (†) Data
imputation algorithms followed by a ConvNet. Raw results can be found in app. H.

Model, solely against the LP-based algorithm of Dekel and Shamir (2008), which is the previous
state-of-the-art on this task. Due to the limited computational resources at the time, the original
experiments were limited to training sets of just 50 images per digit. We have repeated their experi-
ment, using the implementation kindly supplied to us by the authors, and increased the limit to 300
images per digit, which is the maximal amount possible with our current computational resources.
Though it is possible to train our own models using much larger training sets, we have trained them
under the same limitations. Despite the fact that missingness distribution of this experiment is of the
MNAR type, which our method was not guarantied to be optimal under, the test results (see table 1)
clearly show the large gap between our method and theirs. Additionally, whereas our method uses a
single model trained once and with no prior knowledge on the missingness distribution, their method
requires training special classifiers for each value of N , chosen through a cross-validation process,
disqualifying it from being truly blind to the missingness distribution.

We continue to our main experiments on multi-class blind classification with missing data, where
the missingness distribution is completely unknown during test time, and a single classifier must
handle all possible distributions. We simulate two kinds of MAR missingness distributions: (i) an
i.i.d. mask with a fixed probability p ∈ [0, 1] of missing each pixel, and (ii) a mask composed of the
union of N possibly overlapping rectangles of width and height equal to W , each with a randomly
assigned position in the image, distributed uniformly. We evaluate both our shallow GCP-Model
as well as the deep GHT-Model against the most widely used methods for blind classification with
missing data. We repeat these experiments on the MNIST and NORB datasets, the results of which
are presented in fig. 4.

As a baseline for our results, we use K-Nearest Neighbors (KNN) to vote on the most likely class of
a given example. We extend KNN to missing data by comparing distances using only the observed
entries, i.e. for a corrupted instance x�m, and a clean image from the training set x̃, we compute:
d(x̃,x�m)=

∑
mij=1(x̃ij−xij)2. Though it scores better than the majority of modern methods we

have compared, in practice KNN is very inefficient, even more so for missing data, which prevents
most common memory and runtime optimizations typically employed to reduce its inefficiency.
Additionally, KNN does not generalize well for more complex datasets, as is evident by its poor
performance on the clean test set of the NORB dataset.

11

Under review as a conference paper at ICLR 2017

ptrain
ptest 0.25 0.50 0.75 0.90 0.95 0.99

0.25 98.9 97.8 78.9 32.4 17.6 11.0
0.50 99.1 98.6 94.6 68.1 37.9 12.9
0.75 98.9 98.7 97.2 83.9 56.4 16.7
0.90 97.6 97.5 96.7 89.0 71.0 21.3
0.95 95.7 95.6 94.8 88.3 74.0 30.5
0.99 87.3 86.7 85.0 78.2 66.2 31.3
i.i.d. (rand) 98.7 98.4 97.0 87.6 70.6 29.6
rects (rand) 98.2 95.7 83.2 54.7 35.8 17.5

(a) MNIST with i.i.d. corruption

(1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)

(Number of Rectangles, Width)

45
50
55
60
65
70
75
80
85
90
95

100

T
e
st

 A
cc

u
ra

cy
 (

%
)

rects (fixed)

rects (rand)

i.i.d. (rand)

(b) MNIST with missing rectangles.

Figure 5: We compare ConvNets trained on one distribution while tested on others. Training on
randomly (rand) chosen distributions were also examined. (a) Trained on i.i.d. corruption with
probability ptrain, while tested on i.i.d. corruption with probability ptest. (b) Train and tested on the
same (fixed) missing rectangles distribution, against ones trained on randomly chosen distributions.

As discusses in sec. 5, data-imputation is the most common method to handle missing data of un-
known missingness distributions. Despite the popularity of this method, high quality data impu-
tations are very hard to produce, amplified by the fact that classification algorithms are known to
be highly sensitive to even a small noise applied to their inputs (?). Even if we assume the data-
imputation step was done optimally, it would still not give optimal performance under all MAR
missingness distributions, and under some settings could produce results which are only half as
good as our method (see app. E for such a case). In our experiments, we have applied several
data-imputations methods to complete the missing data, followed by classifying its outputs using
a standard ConvNet fitted to the fully-observed training set. We first tested naive heuristics, fill-
ing missing values with zeros or the mean pixel value computed over all the images in the dataset.
We then tested three generative models: GSN (Bengio et al., 2014), NICE (Dinh et al., 2014) and
DPM (Sohl-Dickstein et al., 2015), which are known to work well for inpainting. GSN was omitted
from the NORB experiments as we have not manage to properly train it on that dataset. Though the
data-imputation methods are competitive when only few of the pixels are missing, they all fall far
behind our models above a certain threshold, with more than 50 percentage points separating our
GHT-model from the best data-imputation method under some of the cases. Additionally, all the
generative models require very long runtimes, which prevents from using them in most real-world
applications. While we tried to be as comprehensive as possible when choosing which inpainting
methods to use, some of the most recent studies on the subject, e.g. the works of van den Oord et al.
(2016) and Pathak et al. (2016), have either not yet published their code or only partially published
it. We have also ruled out inpainting algorithms which are made specifically for images, as we did
not want to limit the implications of these experiments solely to images.

We have also compared ourselves to the published results of the MPDBM model (Goodfellow et al.,
2013). Unlike the previous generative models we tested, MPDBM is a generative classifier similar to
our method. However, unlike our model, MPDBM does not posses the tractable marginalization nor
the tractable inference properties, and uses approximations instead. Its lesser performance under-
lines the importance of these properties for achieving optimality under missing data. An additional
factor might also be their training method, which includes randomly picking a subset of variables
to act as missing, which might have introduced a bias to the specific missingness distribution used
during their training.

In order to demonstrate the ineffectiveness of purely discriminative models, we trained ConvNets
directly on randomly corrupted instances according to pre-selected missingness distributions on the
MNIST dataset. Unlike the previous experiments, we do allow prior knowledge about the missing-
ness distribution during training time. We found that the best results are achieved when replacing
missing values with zeros, and adding as an extra input channel the mask of missing values (known
as flag data-imputation). The results (see fig. 5) unequivocally show the effectiveness of this method
when tested on the same distribution it was trained on, achieving a high accuracy even when only
10% of the pixels are visible. However, when tested on different distributions, whether on a com-
pletely different kind or even on the same kind but with different parameters, the accuracy drops
by a large factor, at times by more than 35 percentage points. This illustrate the disadvantage of
the discriminative method, as it necessarily incorporates bias towards the corruption process it had
seen during training, which makes it fail on other distributions. One might wonder whether it is

12

Under review as a conference paper at ICLR 2017

possible for a single network to be robust on more than a single distribution. We found out that
the latter is true, and if we train a network on multiple different missingness distributions1, then the
network will achieve good performance on all such distributions, though at some cases not reaching
the optimal performance. However, though it is possible to train a network to be robust on more
than one distribution, the type of missingness distributions are rarely known in advance, and there is
no known method to train a neural network against all possible distributions, limiting the effectivity
of this method in practice.

Unlike all the above methods, our GHT-model, which is trained only once on the clean dataset, match
or sometimes even surpass the performance of ConvNets that are trained and tested on the same dis-
tribution, showing it is achieving near optimal performance – as much as possible on any given
distribution. Additionally, note that similar to ConvNets and according to the theory in app. C, the
deep GHT-model is decidedly superior to the shallow GCP-model. Experimenting on more complex
datasets is left for further research. Progress on optimization and regularization of networks based
on product pooling (even in log-space) is required, and ways to incorporate larger b×b convolu-
tional operations with overlaps would be useful before we venture into larger and complex datasets.
Nevertheless, our preliminary results demonstrate an overwhelming advantage of our TMM models
compared to competing methods, both in terms of robustness to different types of missing data, as
well as in terms of raw performance, with very wide gaps in absolute accuracy than the next best
method, at times as large as 50 percentage points more than the next best method.

7 SUMMARY

We have introduced a new family of probabilistic models, which we call Tensorial Mixture Models.
TMMs are based on a simple assumption on the data, which stems from known empirical results on
natural images, that gives rise to mixture models with tensorial structure represented by the priors
tensor. When the priors tensor is decomposed it gives rise to an arithmetic circuit which in turn
transforms the TMM into a Convolutional Arithmetic Circuit (ConvAC). A ConvAC corresponds
to a shallow (single hidden layer) network when the priors tensor is decomposed by a CP (sum of
rank-1) approach and corresponds to a deep network when the decomposition follows the Hierarchi-
cal Tucker (HT) model.

The ConvAC representation of a TMM possesses several attractive properties. First, the inference is
tractable and is implemented by a forward pass through a deep network. Second, the architectural
design of the model follows the deep networks community design, i.e., the structure of TMMs is
determined by just two easily understood factors: size of pooling windows and number of channels.
Finally, we have demonstrated the effectiveness of our model when tackling the problem of classifi-
cation with missing data, leveraging TMMs unique ability of tractable marginalization which leads
to optimal classifiers regardless of the missingness distribution.

There are several avenues for future research on TMMs which we are currently looking at, including
other problems which TMMs could solve (e.g. semi-supervised learning), experimenting with other
ConvACs architectures (e.g. through different decompositions), and further progress on optimiza-
tion and regularization of networks with product pooling.

REFERENCES

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the Structure of Sum-Product Networks via an
SVD-based Algorithm. UAI, 2015.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor decompo-
sitions for learning latent variable models. Journal of Machine Learning Research (), 15(1):2773–2832,
2014.

Tal Ben-Nun, Ely Levy, Amnon Barak, and Eri Rubin. Memory Access Patterns: The Missing Piece of the
Multi-GPU Puzzle. In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 19:1–19:12. ACM, 2015.

1Specifically, we trained the network by randomizing not only the corruption noise, but the parameters of
the corruption process (e.g. for i.i.d. corruption we sampled p for each image from a uniform distribution).

13

Under review as a conference paper at ICLR 2017

Yoshua Bengio, Éric Thibodeau-Laufer, Guillaume Alain, and Jason Yosinski. Deep Generative Stochastic
Networks Trainable by Backprop. In International Conference on Machine Learning, 2014.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, March 2003.

Richard Caron and Tim Traynor. The Zero Set of a Polynomial. WSMR Report 05-02, 2005.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN: Inter-
pretable Representation Learning by Information Maximizing Generative Adversarial Nets. arXiv.org, June
2016.

Adam Coates, Andrew Y Ng, and Honglak Lee. An Analysis of Single-Layer Networks in Unsupervised
Feature Learning. International Conference on Artificial Intelligence and Statistics, pages 215–223, 2011.

Nadav Cohen and Amnon Shashua. SimNets: A Generalization of Convolutional Networks. In Advances in
Neural Information Processing Systems NIPS, Deep Learning Workshop, 2014.

Nadav Cohen and Amnon Shashua. Convolutional Rectifier Networks as Generalized Tensor Decompositions.
In International Conference on Machine Learning, May 2016a.

Nadav Cohen and Amnon Shashua. Inductive Bias of Deep Convolutional Networks through Pooling Geome-
try. arXiv.org, May 2016b.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the Expressive Power of Deep Learning: A Tensor Analysis.
In Conference on Learning Theory COLT, May 2016a.

Nadav Cohen, Or Sharir, and Amnon Shashua. Deep SimNets. In Computer Vision and Pattern Recognition
CVPR, May 2016b.

Ofer Dekel and Ohad Shamir. Learning to classify with missing and corrupted features. In International
Conference on Machine Learning. ACM, 2008.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components Estimation.
arXiv.org, October 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. arXiv.org, May
2016.

Dennis Forster, Abdul-Saboor Sheikh, and Jörg Lücke. Neural Simpletrons - Minimalistic Probabilistic Net-
works for Learning With Few Labels. arXiv.org, June 2015.

R Gens and P M Domingos. Learning the Structure of Sum-Product Networks. Internation Conference on
Machine Learning, 2013.

Robert Gens and Pedro M Domingos. Discriminative Learning of Sum-Product Networks. Advances in Neural
Information Processing Systems, 2012.

Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by feature deletion. In International
Conference on Machine Learning. ACM, 2006.

Ian Goodfellow, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Multi-Prediction Deep Boltzmann Ma-
chines. Advances in Neural Information Processing Systems, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. Advances in Neural Information Processing
Systems, 2014.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. DRAW: A Recurrent
Neural Network For Image Generation. In International Conference on Machine Learning ICML, 2015.

W Hackbusch and S Kühn. A New Scheme for the Tensor Representation. Journal of Fourier Analysis and
Applications, 15(5):706–722, 2009.

Thomas Hofmann. Probabilistic latent semantic analysis. Morgan Kaufmann Publishers Inc., July 1999.

Furong Huang, Niranjan U N, Ioakeim Perros, Robert Chen, Jimeng Sun, and Anima Anandkumar. Scalable
Latent Tree Model and its Application to Health Analytics. In NIPS Machine Learning for Healthcare
Workshop, 2015.

14

Under review as a conference paper at ICLR 2017

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross B Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding. CoRR
abs/1202.2745, cs.CV, 2014.

Taesup Kim and Yoshua Bengio. Deep Directed Generative Models with Energy-Based Probability Estimation.
arXiv.org, June 2016.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International Conference
on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Conference on
Learning Representations, 2014.

Diederik P Kingma, Danilo J Rezende, Shakir Mohamed, and Max Welling. Semi-Supervised Learning with
Deep Generative Models. In Advances in Neural Information Processing Systems, 2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Improving Variational Inference with Inverse Autore-
gressive Flow. In Advances in Neural Information Processing Systems, June 2016.

Yan LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May 2015.

Fei-Fei Li and Pietro Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. Computer
Vision and Pattern Recognition, 2:524–531, 2005.

Roderick J A Little and Donald B Rubin. Statistical analysis with missing data (2nd edition). John Wiley &
Sons, Inc., September 2002.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary Deep Generative
Models. In International Conference on Machine Learning ICML, May 2016.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial Autoen-
coders. arXiv.org, November 2015.

Raphaël Mourad, Christine Sinoquet, Nevin Lianwen Zhang, Tengfei Liu, and Philippe Leray. A Survey on
Latent Tree Models and Applications. J. Artif. Intell. Res. (), cs.LG:157–203, 2013.

Andrew Y Ng and Michael I Jordan. On Discriminative vs. Generative Classifiers: A comparison of logistic
regression and naive Bayes. In Advances in Neural Information Processing Systems NIPS, Deep Learning
Workshop, 2002.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context Encoders:
Feature Learning by Inpainting. In Computer Vision and Pattern Recognition CVPR, May 2016.

F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Prettenhofer, R Weiss,
V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot, and E Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research (), 12:2825–2830, 2011.

Robert Peharz, Bernhard C Geiger, and Franz Pernkopf. Greedy Part-Wise Learning of Sum-Product Networks.
In Machine Learning and Knowledge Discovery in Databases, pages 612–627. Springer Berlin Heidelberg,
Berlin, Heidelberg, September 2013.

Hoifung Poon and Pedro Domingos. Sum-Product Networks: A New Deep Architecture. In Uncertainty in
Artificail Intelligence, 2011.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep Convo-
lutional Generative Adversarial Networks. In International Conference on Learning Representations ICLR,
2016.

Amirmohammad Rooshenas and Daniel Lowd. Learning Sum-Product Networks with Direct and Indirect
Variable Interactions. ICML, 2014.

Dan Rosenbaum and Yair Weiss. The return of the gating network: combining generative models and discrim-
inative training in natural image priors. In Advances in Neural Information Processing Systems. Hebrew
University of Jerusalem, MIT Press, 2015.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, December 1976.

15

Under review as a conference paper at ICLR 2017

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
Techniques for Training GANs. In Advances in Neural Information Processing Systems, 2016.

Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open questions.
Foundations and Trends R© in Theoretical Computer Science, 5(3–4):207–388, March 2010.

Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised Learning
using Nonequilibrium Thermodynamics. Internation Conference on Machine Learning, 2015.

Le Song, Mariya Ishteva, Ankur P Parikh, Eric P Xing, and Haesun Park. Hierarchical Tensor Decomposition
of Latent Tree Graphical Models. ICML, pages 334–342, 2013.

Jost Tobias Springenberg. Unsupervised and Semi-supervised Learning with Categorical Generative Adversar-
ial Networks. In International Conference on Learning Representations, 2016.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace: Closing the Gap to Human-
Level Performance in Face Verification. In Computer Vision and Pattern Recognition CVPR. IEEE Com-
puter Society, June 2014.

Lucas Theis and Matthias Bethge. Generative Image Modeling Using Spatial LSTMs. In Advances in Neural
Information Processing Systems, 2015.

Dustin Tran, Rajesh Ranganath, and David M Blei. The Variational Gaussian Process. In International Con-
ference on Learning Representations ICLR, 2016.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural Networks. In Inter-
national Conference on Machine Learning, 2016.

Xiaogang Wang and Eric Grimson. Spatial Latent Dirichlet Allocation. Advances in Neural Information
Processing Systems, 2007.

Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks. In European
Conference on Computer Vision. Springer International Publishing, 2014.

Nevin Lianwen Zhang. Hierarchical Latent Class Models for Cluster Analysis. Journal of Machine Learning
Research (), pages 697–723, 2004.

Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole image restoration.
ICCV, pages 479–486, 2011.

16

Under review as a conference paper at ICLR 2017

hidden	layer
1x1	conv

input
coordinates

global
pooling

dense
(output)

M Z Z
�i = 1[j=di]

conv(i, z) =
⌦
az,i, �i

↵

pool(z) =
QN

i=1 conv(i, z)

Ad1,...,dN
= ha, pool(:)i

�i

Figure 6: The decoding algorithm of the CP decomposition represented by an Arithmetic Circuit.

A BACKGROUND ON TENSOR DECOMPOSITIONS AND CONVOLUTIONAL
ARITHMETIC CIRCUITS

We begin by establishing the minimal background in the field of tensor analysis required for following our
work. A tensor is best thought of as a multi-dimensional array Ad1,...,dN ∈ R, where ∀i ∈ [N], di ∈ [Mi].
The number of indexing entries in the array, which are also called modes, is referred to as the order of the
tensor. The number of values an index of a particular mode can take is referred to as the dimension of the mode.
The tensor A ∈ RM1⊗...⊗MN mentioned above is thus of order N with dimension Mi in its i-th mode. For
our purposes we typically assume that M1 = . . . = MN = M , and simply denote it as A ∈ (RM)⊗N .

The fundamental operator in tensor analysis is the tensor product. The tensor product operator, denoted by ⊗,
is a generalization of outer product of vectors (1-ordered vectors) to any pair of tensors. Specifically, letA and
B be tensors of order P and Q respectively, then the tensor product A⊗ B results in a tensor of order P +Q,
defined by: (A⊗ B)d1,...,dP+Q = Ad1,...,dP · BdP+1,...,dP+Q .

The main concept from tensor analysis we use in our work is that of tensor decompositions. The most straight-
forward and common tensor decomposition format is the rank-1 decomposition, also known as a CANDE-
COMP/PARAFAC decomposition, or in short, a CP decomposition. The CP decomposition is a natural exten-
sion of low-rank matrix decomposition to general tensors, both built upon the concept of a linear combination
of rank-1 elements. Similarly to matrices, tensors of the form v(1) ⊗ · · · ⊗ v(N), where v(i) ∈ RMi are
non-zero vectors, are regarded as N -ordered rank-1 tensors, thus the rank-Z CP decomposition of a tensor A
is naturally defined by:

A =

Z∑
z=1

aza
z,1 ⊗ · · · ⊗ az,N

⇒ Ad1,...,dN =

Z∑
z=1

az

N∏
i=1

az,idi (7)

where {az,i ∈ RMi}N,Zi=1,z=1 and a ∈ RZ are the parameters of the decomposition. As mentioned above,
for N = 2 it is equivalent to low-order matrix factorization. It is simple to show that any tensor A can be
represented by the CP decomposition for some Z, where the minimal such Z is known as its tensor rank.

Another decomposition we will use in this paper is of a hierarchical nature and known as the Hierarchical
Tucker decomposition (Hackbusch and Kühn, 2009), which we will refer to as HT decomposition. While the
CP decomposition combines vectors into higher order tensors in a single step, the HT decomposition does that
more gradually, combining vectors into matrices, these matrices into 4th ordered tensors and so on recursively
in a hierarchically fashion. Specifically, the following describes the recursive formula of the HT decomposition2

2 More precisely, we use a special case of the canonical HT decomposition as presented in Hackbusch and
Kühn (2009). In the terminology of the latter, the matrices Al,j,γ are diagonal and equal to diag(al,j,γ) (using
the notations from eq. 8).

17

Under review as a conference paper at ICLR 2017

for a tensor A ∈ (RM)⊗N where N = 2L, i.e. N is a power of two3:

φ1,j,γ =

r0∑
α=1

a1,j,γ
α a0,2j−1,α ⊗ a0,2j,α

· · ·

φl,j,γ =

rl−1∑
α=1

al,j,γα φl−1,2j−1,α︸ ︷︷ ︸
order 2l−1

⊗φl−1,2j,α︸ ︷︷ ︸
order 2l−1

· · ·

φL−1,j,γ =

rL−2∑
α=1

aL−1,j,γ
α φL−2,2j−1,α︸ ︷︷ ︸

order N
4

⊗φL−2,2j,α︸ ︷︷ ︸
order N

4

A =

rL−1∑
α=1

aLα φ
L−1,1,α︸ ︷︷ ︸
order N

2

⊗φL−1,2,α︸ ︷︷ ︸
order N

2

(8)

where the parameters of the decomposition are the vectors {al,j,γ∈Rrl−1}l∈{0,...,L−1},j∈[N/2l],γ∈[rl]
and the

top level vector aL ∈ RrL−1 , and the scalars r0, . . . , rL−1 ∈ N are referred to as the ranks of the decompo-
sition. Similar to the CP decomposition, any tensor can be represented by an HT decomposition. Moreover,
any given CP decomposition can be converted to an HT decomposition by only a polynomial increase in the
number of parameters.

The relationship between tensor decomposition and networks arises from the simple observation that through
decomposition one can tradeoff storage complexity with computation where the type of computation consists
of sums and products. Specifically, tensor decompositions could be seen as a mapping, that takes a tensor of
exponential size and converts it into a polynomially sized representation, coupled with a decoding algorithm
of polynomial runtime complexity to retrieve the original entries of tensor – essentially trading off space com-
plexity for computational complexity. Examining the decoding algorithms for the CP and HT decompositions,
i.e. eq. 7 and eq. 8, respectively, reveal a shared framework for representing these algorithms via computation
graphs of products and weighted sums, also known as Arithmetic Circuits (Shpilka and Yehudayoff, 2010) or
Sum-Product Networks (Poon and Domingos, 2011). More specifically, these circuits take as inputN indicator
vectors δ1, . . . , δN , representing the coordinates (d1, . . . , dN), where δi = 1[j=di], and output the value of
Ad1,...,dN . In the case of the CP decomposition, the matching decoding circuit is defined by eq. 9 below:

az,idi =

M∑
d=1

az,id δid ⇒ Ad1,...,dN =

Z∑
z=1

az

N∏
i=1

M∑
d=1

az,id δid (9)

The above formula is better represented by the network illustrated in fig. 6, beginning with an input layer of√
N ×

√
N M -dimensional indicator vectors arranged in a 3D array, followed by a 1 × 1 conv operator, a

global product pooling layer, and ends with a dense linear layer outputtingAd1,...,dN . The conv operator is not
unlike the standard convolutional layer of ConvNets, with the sole difference being that it may operate without
coefficient sharing, i.e. the filters that generate feature maps by sliding across the previous layer may have
different coefficients at different spatial locations. This is often referred to in the deep learning community as
a locally-connected operator (Taigman et al., 2014). Similarly to the CP decomposition, retrieving the entries
of a tensor from its HT decomposition can be computed by the circuit represented in fig. 7, where instead of
a single pair of conv and pooling layers there are log2 N such pairs, with pooling windows of size 2. Though
the canonical HT decomposition dictates size 2 pooling windows, any pooling structure used in practice still
results in a valid HT decomposition.

Arithmetic Circuits constructed from the above conv and product pooling layers are called Convolutional Arith-
metic Circuits, or ConvACs for short, first suggested by Cohen et al. (2016a) as a theoretical framework for
studying standard convolutional networks, sharing many of the defining traits of the latter, most noteworthy,
the locality, sharing and pooling properties of ConvNets. Unlike general circuits, the structure of the network
is determined solely by two parameters, the number of channels of each conv layer and the size of pooling
windows, which indirectly controls the depth of the network.

3The requirement for N to be a power of two is solely for simplifying the definition of the HT decomposi-
tion. More generally, instead of defining it through a complete binary tree describing the order of operations,
the canonical decomposition can use any balanced binary tree.

18

Under review as a conference paper at ICLR 2017

hidden	layer	0

r0

1x1	conv
input

coordinates

M r0�i = 1[j=di]

conv(j, �) =
⌦
a0,j,� , �j

↵

pool0(j, �) =
Y

j02{2j�1,2j}
conv0(j

0, z)

hidden	layer	L-1
(L=log₂N)

1x1	conv pooling
dense
(output)

rL-1 rL-1

poolL�1(�)=
Y

j02{1,2}
convL�1(j

0, �)

pooling

Ad1,...,dN
=

⌦
aL, poolL�1(:)

↵

�i

Figure 7: The decoding algorithm of the HT decomposition represented by an Arithmetic Circuit.

B THE UNIVERSALITY OF TENSORIAL MIXTURE MODELS

In this section we prove the universality property of TMMs, as discussed in sec. 3. We begin by taking note
from functional analysis and define a new property called PDF total set, which is similar in concept to a total
set, followed by proving that this property is invariant under the cartesian product of functions, which entails
the universality of TMMs as a corollary.
Definition 1. Let F be a set of PDFs over Rs. F is PDF total iff for any PDF h(x) over Rs and for all ε > 0

there exists M ∈ N, {f1(x), . . . , fM (x)} ⊂ F and w ∈ 4M−1 s.t.
∥∥∥h(x)−

∑M
i=1 wifi(x)

∥∥∥
1
< ε. In

other words, a set is a PDF total set if its convex span is a dense set under L1 norm.

Claim 2. Let F be a set of PDFs over Rs and let F⊗N = {
∏N
i=1 fi(x)|∀i, fi(x) ∈ F} be a set of PDFs over

the product space (Rs)N . If F is a PDF total set then F⊗N is PDF total set.

Proof. If F is the set of Gaussian PDFs over Rs with diagonal covariance matrices, which is known to be a
PDF total set, then F⊗N is the set of Gaussian PDFs over (Rs)N with diagonal covariance matrices and the
claim is trivially true.

Otherwise, let h(x1, . . . ,xN) be a PDF over (Rs)N and let ε > 0. From the above, there exists K ∈ N,
w ∈ 4M1−1 and a set of diagonal Gaussians {gij(x)}i∈[M1],j∈[N] s.t.∥∥∥∥∥g(x)−

M1∑
i=1

wi

N∏
j=1

gij(xj)

∥∥∥∥∥
1

<
ε

2
(10)

Additionally, since F is a PDF total set then there exists M2 ∈ N, {fk(x)}k∈[M2] ⊂ F and {wij ∈
4M2−1}i∈[M1],j∈[N] s.t. for all i ∈ [M1], j ∈ [N] it holds that

∥∥∥gij(x)−
∑M2
k=1 wijkfk(x)

∥∥∥
1
< ε

2N
,

from which it is trivially proven using a telescopic sum and the triangle inequality that:∥∥∥∥∥
M1∑
i=1

wi

N∏
j=1

gij(x)−
M1∑
i=1

wi

N∏
j=1

M2∑
k=1

wijkfk(xj)

∥∥∥∥∥
1

<
ε

2
(11)

From eq. 10, eq. 11 the triangle inequality it holds that:∥∥∥∥∥∥g(x)−
M2∑

k1,...,kN=1

Ak1,...,kN

N∏
j=1

fkj (xj)

∥∥∥∥∥∥
1

< ε

where Ak1,...,kN =
∑M1
i=1 wi

∏N
j=1 wijkj which holds

∑M2
k1,...,kN=1Ak1,...,kN = 1. Taking M = MN

2 ,
{
∏N
j=1 fkj (xj)}k1∈[M2],...,kN∈[M2] ⊂ F⊗N and w = vec(A) completes the proof.

Corollary 2. Let F be a PDF total set of PDFs over Rs, then the family of TMMs with mixture components
from F can approximate any PDF over (Rs)N arbitrarily well, given arbitrarily many components.

C OVERVIEW ON THE EXPRESSIVE CAPACITY OF CONVOLUTIONAL
ARITHMETIC CIRCUITS AND ITS AFFECT ON TENSORIAL MIXTURE
MODELS

The expressiveness of ConvACs has been extensively studied, and specifically the non-generative variants of
our models, named CP-model and HT-model respectively. In Cohen et al. (2016a) it was shown that ConvACs

19

Under review as a conference paper at ICLR 2017

posses the property known as complete depth efficiency. Namely, almost all functions4 realized by an HT-model
of polynomial size, for them to be realized (or approximated) by a CP-model, require it to be of exponential size.
In other words, the expressiveness borne out of depth is exponentially stronger than a shallow network, almost
always. It is worth noting that in the followup paper (Cohen and Shashua, 2016a), the authors have shown that
the same result does not hold for standard ConvNets – while there are specific instances where depth efficiency
holds, it is not complete, i.e. there is a non-zero probability that a function realized by a polynomially sized
deep ConvNet can also be realized by a polynomially sized shallow ConvNet. Despite the additional simplex
constraints put on the parameters, complete depth efficiency does hold for the generative ConvACs of our work,
proof of which can be found in app. D, which shows the advantage of the deeper GHT-model over the shallow
GCP-model. Additionally, this illustrates how the two factors controlling the architecture – number of channels
and size of pooling windows – control the expressive capacity of the GHT-model. While the above shows
why the deeper GHT-model is preferred over the shallow GCP-model, there is still the question of whether a
polynomially sized GHT-model is sufficient for describing the complexities of natural data. Though a complete
and definite answer is unknown as of yet, there are some strong theoretical evidence that it might. One aspect
of being sufficient for modeling natural data is the ability of the model to describe the dependency structures
typically found in the data. In Cohen and Shashua (2016b), the authors studied the separation rank – a measure
of correlation, which for a given input partition, measures how far a function is from being separable – and
found that a polynomially sized HT-model is capable of exponential separation rank for interleaved partitions,
i.e. that it can model high correlations in local areas in the input. Additionally, for non-contiguous partitions,
the separation rank can be at most polynomial, i.e. it can only model a limited correlation between far away
areas in the input. These two results combined suggest that the HT-model, and thus also our GHT-model, is
especially fit for modeling the type of correlations typically found in natural images and audio, even if it is only
of polynomial size. Finally, from an empirical perspective, convolutional hierarchical structures have shown
great success on multitude of different domains and tasks. Our models leverage these structures, taking them
to a probabilistic setting, which leads us to believe that they will be able to effectively model distributions in
practice – a belief we verify by experiments.

D PROOF FOR THE DEPTH EFFICIENCY OF GENERATIVE CONVOLUTIONAL
ARITHMETIC CIRCUITS

In this section we prove that the depth efficiency property of ConvACs proved in Cohen et al. (2016a) applies
also to the Generative ConvACs we have introduced in sec. 3.2. More specifically, we prove the following
theorem, which is the generative analog of theorem 1 from (Cohen et al., 2016a):
Theorem 1. Let Ay be a tensor of order N and dimension M in each mode, generated by the recursive
formulas in eq. 8, under the simplex constraints introduced in sec. 3.2. Define r := min{r0,M}, and consider
the space of all possible configurations for the parameters of the decomposition – {al,j,γ ∈ 4rl−1−1}l,j,γ .
In this space, the generated tensorAy will have CP-rank of at least rN/2 almost everywhere (w.r.t. the product
measure of simplex spaces). Put differently, the configurations for which the CP-rank of Ay is less than rN/2

form a set of measure zero. The exact same result holds if we constrain the composition to be “shared”, i.e. set
al,j,γ ≡ al,γ and consider the space of {al,γ ∈ 4rl−1−1}l,γ configurations.

The only differences between ConvACs and their generative counter-parts are the simplex constraints applied
to the parameters of the models, which necessitate a careful treatment to the measure theoretical arguments of
the original proof. More specifically, while the k-dimensional simplex4k is a subset of the k+ 1-dimensional
space Rk+1, it has a zero measure with respect to the Lebesgue measure over Rk+1. The standard method
to define a measure over 4k is by the Lebesgue measure over Rk of its projection to that space, i.e. let
λ : Rk → R be the Lebesgue measure over Rk, p : Rk+1 → Rk, p(x) = (x1, . . . , xk)T be a projection,
and A ⊂ 4k be a subset of the simplex, then the latter’s measure is defined as λ(p(A)). Notice that p(4k)
has a positive measure, and moreover that p is invertible over the set p(4k), and that its inverse is given by
p−1(x1, . . . , xk) = (x1, . . . , xk, 1 −

∑k
i=1 xi). In our case, the parameter space is the cartesian product

of several simplex spaces of different dimensions, for each of them the measure is defined as above, and the
measure over their cartesian product is uniquely defined by the product measure. Though standard, the choice
of the projection function p above could be seen as a limitation, however, the set of zero measure sets in 4k
is identical for any reasonable choice of a projection π (e.g. all polynomial mappings). More specifically, for
any projection π : Rk+1 → Rk that is invertible over π(4k), π−1 is differentiable, and the Jacobian of π−1

is bounded over π(4k), then a subset A ⊂ 4k is of measure zero w.r.t. the projection π iff it is of measure
zero w.r.t. p (as defined above). This implies that if we sample the weights of the generative decomposition
(eq. 8 with simplex constraints) by a continuous distribution, a property that holds with probability 1 under the
standard parameterization (projection p), will hold with probability 1 under any reasonable parameterization.

4”Almost all functions” in this context means, that for any continuous distribution over the parameters of
the HT-model, with probability one the following statement is true for a function realized by an HT-model with
sampled parameters.

20

Under review as a conference paper at ICLR 2017

We now state and prove a lemma that will be needed for our proof of theorem 1.

Lemma 1. Let M,N,K ∈ N, 1 ≤ r ≤ min{M,N} and a polynomial mapping A : RK → RM×N (i.e.
for every i ∈ [M], j ∈ [N] then Aij : Rk → R is a polynomial function). If there exists a point x ∈ RK s.t.
rank (A(x)) ≥ r, then the set {x ∈ RK |rank (A(x)) < r} has zero measure.

Proof. Remember that rank (A(x)) ≥ r iff there exits a non-zero r × r minor of A(x), which is polynomial
in the entries of A(x), and so it is polynomial in x as well. Let c =

(
M
r

)
·
(
N
r

)
be the number of minors in A,

denote the minors by {fi(x)}ci=1, and define the polynomial function f(x) =
∑c
i=1 fi(x)2. It thus holds that

f(x) = 0 iff for all i ∈ [c] it holds that fi(x) = 0, i.e. f(x) = 0 iff rank (A(x)) < r.

Now, f(x) is a polynomial in the entries of x, and so it either vanishes on a set of zero measure, or it is the
zero polynomial (see Caron and Traynor (2005) for proof). Since we assumed that there exists x ∈ RK s.t.
rank(A(x)) ≥ r, the latter option is not possible.

Following the work of Cohen et al. (2016a), our main proof relies on following notations and facts:

• We denote by [A] the matricization of an N -order tensor A (for simplicity, N is assumed to be
even), where rows and columns correspond to odd and even modes, respectively. Specifically, if
A ∈ RM1×···MN , the matrix [A] has M1 ·M3 · . . . ·MN−1 rows and M2 ·M4 · . . . ·MN columns,
rearranging the entries of the tensor such that Ad1,...,dN is stored in row index 1 +

∑N/2
i=1(d2i−1 −

1)
∏N/2
j=i+1 M2j−1 and column index 1 +

∑N/2
i=1(d2i − 1)

∏N/2
j=i+1 M2j . Additionally, the matriciza-

tion is a linear operator, i.e. for all scalars α1, α2 and tensors A1,A2 with the order and dimensions
in every mode, it holds that [α1A1 + α2A2] = α1[A1] + α2[A2].

• The relation between the Kronecker product (denoted by �) and the tensor product (denoted by ⊗)
is given by [A⊗ B] = [A]� [B].

• For any two matrices A and B, it holds that rank (A�B) = rank (A) · rank (B).

• Let Z be the CP-rank of A, then it holds that rank ([A]) ≤ Z (see (Cohen et al., 2016a) for proof).

Proof of theorem 1. Stemming from the above stated facts, to show that the CP-rank of Ay is at least rN/2, it
is sufficient to examine its matricization [Ay] and prove that rank ([Ay]) ≥ r

N/2.

Notice from the construction of [Ay], according to the recursive formula of the HT-decomposition, that
its entires are polynomial in the parameters of the decomposition, its dimensions are MN/2 each and that
1 ≤ r

N/2 ≤ M
N/2. In accordance with the discussion on the measure of simplex spaces, for each vector

parameter al,j,γ ∈ 4rl−1−1, we instead examine its projection ãl,j,γ = p(al,j,γ) ∈ Rrl−1−1, and notice that
p−1(ãl,j,γ) is a polynomial mapping5 w.r.t. ãl,j,γ . Thus, [Ay] is a polynomial mapping w.r.t. the projected
parameters {ãl,j,γ}l,j,γ , and using lemma 1 it is sufficient to show that there exists a set of parameters for
which rank ([Ay]) ≥ rN/2.

Denoting for convenience φL,1,1 := Ay and rL = 1, we will construct by induction over l = 1, ..., L a
set of parameters, {al,j,γ}l,j,γ , for which the ranks of the matrices {[φl,j,γ]}j∈[N/2l],γ∈[rl]

are at least r2l/2,
while enforcing the simplex constraints on the parameters. More so, we’ll construct these parameters s.t.
al,j,γ = al,γ , thus proving both the ”unshared” and ”shared” cases.

For the case l = 1 we have:

φ1,j,γ =

r0∑
α=1

a1,j,γ
α a0,2j−1,α ⊗ a0,2j,α

and let a1,j,γ
α =

1α≤r
r

and a0,j,α
i = 1α=i for all i, j, γ and α ≤ M , and a0,j,α

i = 1i=1 for all i and α > M ,
and so

[φ1,j,γ]i,j =

{
1/r i = j ∧ i ≤ r
0 Otherwise

which means rank
(
[φ1,j,γ]

)
= r, while preserving the simplex constraints, which proves our inductive hy-

pothesis for l = 1.

5As we mentioned earlier, p is invertible only over p(4k), for which its inverse is given by
p−1(x1, . . . , xk) = (x1, . . . , xk, 1 −

∑k
i=1 xi). However, to simplified the proof and notations, we use p−1

as defined here over the entire range Rk−1, even where it does not serve as the inverse of p.

21

Under review as a conference paper at ICLR 2017

Assume now that rank
(

[φl−1,j′,γ′]
)
≥ r2l−1/2 for all j′ ∈ [N/2l−1] and γ′ ∈ [rl−1]. For some specific choice

of j ∈ [N/2l] and γ ∈ [rl] we have:

φl,j,γ =

rl−1∑
α=1

al,j,γα φl−1,2j−1,α ⊗ φl−1,2j,α

=⇒ [φl,j,γ] =

rl−1∑
α=1

al,j,γα [φl−1,2j−1,α]� [φl−1,2j,α]

Denote Mα := [φl−1,2j−1,α] � [φl−1,2j,α] for α = 1, ..., rl−1. By our inductive assumption, and by the
general property rank (A�B) = rank (A) · rank (B), we have that the ranks of all matricesMα are at least
r

2l−1/2 · r2l−1/2 = r
2l/2. Writing [φl,j,γ] =

∑rl−1
α=1 a

l,j,γ
α ·Mα, and noticing that {Mα} do not depend on

al,j,γ , we simply pick al,j,γα = 1α=1, and thus φl,j,γ = M1, which is of rank r2l/2. This completes the proof
of the theorem.

From the perspective of TMMs, theorem 1 leads to the following corollary:

Corollary 3. Assume the mixing componentsM = {fi(x) ∈ L2(R2)∩L1(Rs)}Mi=1 are square integrable6

probability density functions, which form a linearly independent set. Consider a deep GHT-model of polynomial
size whose parameters are drawn at random by some continuous distribution. Then, with probability 1, the
distribution realized by this network requires an exponential size in order to be realized (or approximated w.r.t.
the L2 distance) by the shallow GCP-model. The claim holds regardless of whether the parameters of the deep
GHT-model are shared or not.

Proof. Given a coefficient tensorA, the CP-rank ofA is a lower bound on the number of channels (denoted by
Z in the body of the article) required to represent that tensor by the ConvAC following the CP decomposition
as introduced in sec. 2. Additionally, since the mixing components are linearly independent, their products
{
∏N
i=1 fi(xi)|fi ∈ M} are linearly independent as well, which entails that any distribution representable

by the TMM with mixing components M has a unique coefficient tensor A. From theorem 1, the set of
parameters of a polynomial GHT-model with a coefficient tensor of a polynomial CP-rank, the requirement for
a polynomial GCP-model realizing that distribution exactly, forms a set of measure zero.

It is left to prove, that not only is it impossible to exactly represent a distribution with an exponential coeffi-
cient tensor by a GCP-model, it is also impossible to approximate it. This follows directly from lemma 7 in
appendix B of Cohen et al. (2016a), as our case meets the requirement of that lemma.

E PROOF FOR THE OPTIMALITY OF MARGINALIZED BAYES PREDICTOR

In this section we give short proofs for the claims from sec. 5, on the optimality of the marginalized Bayes
predictor under missing-at-random (MAR) distribution, when the missingness mechanism is unknown, as well
as the general case when we do not add additional assumptions. In addition, we will also present a counter ex-
ample proving data imputation results lead to suboptimal classification performance. We begin by introducing
several notations that augment the notations already introduced in the body of the article.

Given a specific mask realization m ∈ {0, 1}s, we use the following notations to denote partial assignments
to the random vector X . For the observed indices of X , i.e. the indices for which mi = 1, we denote a partial
assignment by X \m = xo, where xo ∈ Rdo is a vector of length do equal to the number of observed indices.
Similarly, we denote by X ∩ m = xm a partial assignment to the missing indices according to m, where
xm ∈ Rdm is a vector of length dm equal to the number of missing indices. As an example of the notation,
for given realizations x ∈ Rs and m ∈ {0, 1}s, we defined in sec. 5 the event o(x,m), which using current
notation is marked by the partial assignment X \m = xo where xo matches the observed values of the vector
x according to m.

With the above notations in place, we move on to prove claim 1, which describes the general solution to the
optimal prediction rule given both the data and missingness distributions, and without adding any additional
assumptions.

6It is important to note that most commonly used distribution functions are square integrable, e.g. most
members of the exponential family such as the Gaussian distribution.

22

Under review as a conference paper at ICLR 2017

Proof of claim 1. Fix an arbitrary prediction rule h. We will show that L(h∗) ≤ L(h), where L is the expected
0-1 loss.

1− L(h)=E(x,m,y)∼(X ,M,Y)[1h(x�m)=y]

=
∑

m∈{0,1}s

∑
y∈[k]

∫
Rs
P(M=m,X=x,Y=y)1h(x�m)=ydx

=
∑

m∈{0,1}s

∑
y∈[k]

∫
Rdo

∫
Rdm
P(M=m,X\m=xo,X∩m=xm,Y=y)1h(x⊗m)=ydxodxm

=1

∑
m∈{0,1}s

∑
y∈[k]

∫
Rdo

1h(x�m)=ydxo

∫
Rdm
P(M=m,X\m=xo,X∩m=xm,Y=y)dxm

=2

∑
m∈{0,1}s

∑
y∈[k]

∫
Rdo

1h(x�m)=yP(M=m,X\m=xo,Y=y)dxo

=3

∑
m∈{0,1}s

∫
Rdo
P(X\m=xo)

∑
y∈[k]

1h(x�m)=yP(Y=y|X\m=xo)P(M=m|X\m=xo,Y=y)dxo

≤4

∑
m∈{0,1}s

∫
Rdo
P(X\m=xo)

∑
y∈[k]

1h∗(x�m)=yP(Y=y|X\m=xo)P(M=m|X\m=xo,Y=y)dxo

=1− L(h∗)

Where (1) is because the output of h(x �m) is independent of the missing values, (2) by marginalization,
(3) by conditional probability definition and (4) because by definition h∗(x �m) maximizes the expression
P(Y=y|X\m=xo)P(M=m|X\m=xo,Y=y) w.r.t. the possible values of y for fixed vectors m and xo.
Finally, by replacing integrals with sums, the proof holds exactly the same when instances (X) are discrete.

We now continue and prove corollary 1, a direct implication of claim 1 which shows that in the MAR setting,
the missingness distribution can be ignored, and the optimal prediction rule is given by the marginalized Bayes
predictor.

Proof of corollary 1. Using the same notation as in the previous proof, and denoting by xo the partial vector
containing the observed values of x�m, the following holds:

P(M=m|o(x,m),Y=y) := P(M=m|X\m=xo,Y=y)

=

∫
Rdm
P(M=m,X ∩m=xm|X\m=xo,Y=y)dxm

=

∫
Rdm
P(X∩m=xm|X\m=xo,Y=y) · P(M=m|X∩m=xm,X\m=xo,Y=y)dxm

=1

∫
Rdm
P(X∩m=xm|X\m=xo,Y=y) · P(M=m|X∩m=xm,X\m=xo)dxm

=2

∫
Rdm
P(X∩m=xm|X\m=xo,Y=y) · P(M=m|X\m=xo)dxm

=P(M=m|X\m=xo)

∫
Rdm
P(X∩m=xm|X\m=xo,Y=y)dxm

=P(M=m|o(x,m))

Where (1) is due to the independence assumption of the events Y = y andM = m conditioned on X = x,
while noting that (X \m = xo) ∧ (X ∩m = xm) is a complete assignment of X . (2) is due to the MAR
assumption, i.e. that for a given m and xo it holds for all xm ∈ Rdm :

P(M=m|X\m=xo,X∩m=xm) = P(M=m|X\m=xo)

We have shown that P(M=m|o(x,m),Y = y) does not depend on y, and thus does not affect the optimal
prediction rule in claim 1. It may therefore be dropped, and we obtain the marginalized Bayes predictor.

Having proved that in the MAR setting, classification through marginalization leads to optimal performance,
we now move on to show that the same is not true for classification through data-imputation. Though there are
many methods to perform data-imputation, i.e. to complete missing values given the observed ones, all of these
methods can be seen as the solution of the following optimization problem, or more typically its approximation:

g(x�m) = argmax
x′∈Rs∧∀i:mi=1→x′i=xi

P(X = x′)

23

Under review as a conference paper at ICLR 2017

X1 X2 Y Weight Probability (ε = 10−4)

0 0 0 1− ε 16.665%
0 1 0 1 16.667%
1 0 0 1− ε 16.665%
1 1 0 1 16.667%
0 0 1 0 0.000%
0 1 1 1 + ε 16.668%
1 0 1 0 0.000%
1 1 1 1 + ε 16.668%

Table 2: Data distribution over the space X × Y = {0, 1}2 × {0, 1} that serves as the example for
the sub-optimality of classification through data-imputation (proof of claim 3).

Where g(x�m) is the most likely completion of x�m. When data-imputation is carried out for classification
purposes, one is often interested in data-imputation conditioned on a given class Y = y, i.e.:

g(x�m; y) = argmax
x′∈Rs∧∀i:mi=1→x′i=xi

P(X = x′|Y = y)

Given a classifier h : Rs → [K] and an instance x with missing values according to m, classification through
data-imputation is simply the result of applying h on the output of g. When h is the optimal classifier for
complete data, i.e. the Bayes predictor, we end up with one of the following prediction rules:

Unconditional: h(x�m) = argmax
y

P(Y = y|X = g(x�m))

Conditional: h(x�m) = argmax
y

P(Y = y|X = g(x�m; y))

Claim 3. There exists a data distribution D and MAR missingness distribution Q s.t. the accuracy of classi-
fication through data-imputation is almost half the accuracy of the optimal marginalized Bayes predictor, with
an absolute gap of more than 33 percentage points.

Proof. For simplicity, we will give an example for a discrete distribution over the binary set
X ×Y = {0, 1}2 × {0, 1}. Let 1> ε> 0 be some small positive number, and we defineD according to table 2,
where each triplet (x1, x2, y) ∈ X×Y is assigned a positive weight, which through normalization defines a
distribution over X×Y . The missingness distribution Q is defined s.t. PQ(M1 = 1,M2 = 0|X = x) = 1 for
all x ∈ X , i.e. X1 is always observed andX2 is always missing, which is a trivial MAR distribution. Given the
above data distribution D, we can easily calculate the exact accuracy of the optimal data-imputation classifier
and the marginalized Bayes predictor under the missingness distribution Q, as well as the standard Bayes pre-
dictor under full-observability. First notice that whether we apply conditional or unconditional data-imputation,
and whether X1 is equal to 0 or 1, the completion will always be X2 = 1 and the predicted class will always
be Y = 1. Since the data-imputation classifiers always predict the same class Y = 1 regardless of their input,
the probability of success is simply the probability P (Y = 1) = 1+ε

3
(for ε = 10−4 it equals approximately

33.337%). Similarly, the marginalized Bayes predictor always predicts Y = 0 regardless of its input, and so
its probability of success is P (Y = 0) = 2−ε

3
(for ε = 10−4 it equals approximately 66.663%), which is

almost double the accuracy achieved by the data-imputation classifier. Additionally, notice that the marginal-
ized Bayes predictor achieves almost the same accuracy as the Bayes predictor under full-observability, which
equals exactly 2

3
.

F DETAILED DESCRIPTION OF THE EXPERIMENTS

Experiments are meaningful only if they could be reproduced by other proficient individuals. Providing suf-
ficient details to enable others to replicate our results is the goal of this section. We hope to accomplish this
by making our code public, as well as documenting our experiments to a sufficient degree allowing for their
reproduction from scratch. Our complete implementation of the models presented in this paper, as well as our
modifications to other open-source projects and scripts used in the process of conducting our experiments, are
available at our Github repository: https://github.com/HUJI-Deep/TMM. We additionally wish to
invite readers to contact the authors, if they deem the following details insufficient in their process to reproduce
our results.

F.1 DESCRIPTION OF METHODS

In the following we give concise descriptions of each classification method we have used in our experiments.
The results of the experiment on MP-DBM (Goodfellow et al., 2013) were taken directly from the paper and

24

https://github.com/HUJI-Deep/TMM

Under review as a conference paper at ICLR 2017

were not conducted by us, hence we do not cover it in this section. We direct the reader to that article for exact
details on how to reproduce their results.

F.1.1 ROBUST LINEAR CLASSIFIER

In Dekel and Shamir (2008), binary linear classifiers were trained by formulating their optimization as a quadric
program under the constraint that some of its features could be deleted, i.e. their original value was changed
to zero. While the original source code was never published, the authors have kindly agreed to share with us
their code, which we used to reproduced their results, but on larger datasets. The algorithm has only a couple
hyper-parameters, which were chosen by a grid-search through a cross-validation process. For details on the
exact protocol for testing binary classifiers on missing data, please see sec. F.2.1.

F.1.2 K-NEAREST NEIGHBORS

K-Nearest Neighbors (KNN) is a classical machine learning algorithm used for both regression and classifica-
tion tasks. Its underlying mechanism is finding the k nearest examples (called neighbors) from the training set,
(x1, y1), . . . , (xk, yk) ∈ S, according to some metric function d(·, ·) : X × X → R+, after which a summa-
rizing function f is applied to the targets of the k nearest neighbors to produce the output y∗ = f(y1, . . . , yk).
When KNN is used for classification, f is typically the majority voting function, returning the class found in
most of the k nearest neighbors.

In our experiments we use KNN for classification with missing data, where the training set consists of complete
examples with no missing data, but at classification time the inputs have missing values. Given an input
with missing values x �m and an example x′ from the training set, we use a modified Euclidean distance
metric, where we compare the distance only against the non-missing coordinates of x, i.e. the metric is defined
by d(x′,x �m) =

∑
i:mi=1 (x′i − xi)

2. Through a process of cross-validation we have chosen k = 5 for all
of our experiments. Our implementation of KNN is based on the popular scikit-learn python library (Pedregosa
et al., 2011).

F.1.3 CONVOLUTIONAL NEURAL NETWORKS

The most widespread and successful discriminative method nowadays are Convolutional Neural Net-
works (ConvNets). Standard ConvNets are represented by a computational graph consisted of different kinds
of nodes, called layers, with a convolutional-like operators applied to their inputs, followed by a non-linear
point-wise activation function, e.g. max(0, x) known as ReLU.

For our experiments on MNIST, both with and without missing data, we have used the LeNeT ConvNet ar-
chitecture (LeCun et al., 1998) that is bundled with Caffe (Jia et al., 2014), trained for 20,000 iterations using
SGD with 0.9 momentum and 0.01 base learning rate, which remained constant for 10,000 iterations, followed
by a linear decrease to 0.001 for another 5,000 iterations, followed by a linear decrease to 0 learning rate for
the remaining 5,000 iterations. The model also used l2-regularization (also known as weight decay), which
was chosen through cross-validation for each experiment separately. No other modifications were made to the
model or its training procedure.

For our experiments on NORB, we have used an ensemble of 3 ConvNets, each using the following architecture:
5×5 convolution with 128 output channels, 3×3 max pooling with stride 2, ReLU activation, 5×5 convolution
with 128 output channels, ReLU activation, dropout layer with probability 0.5, 3×3 average pooling with
stride 2, 5×5 convolution with 256 output channels, ReLU activation, dropout layer with probability 0.5,
3×3 average pooling with stride 2, fully-connected layer with 768 output channels, ReLU activation, dropout
layer with probability 0.5, and ends with fully-connected layer with 5 output channels. The stereo images
were represented as a two-channel input image when fed to the network. During training we have used data
augmentation consisting of randomly scaling and rotation transforms. The networks were trained for 40,000
iterations using SGD with 0.99 momentum and 0.001 base learning rate, which remained constant for 30,000
iterations, followed by a linear decrease to 0.0001 for 6000 iterations, followed by a linear decrease to 0 learning
rate for the remaining 4,000 iterations. The model also used 0.0001 weight decay for additional regularization.

When ConvNets were trained on images containing missing values, we passed the network the original image
with missing values zeroed out, and an additional binary image as a separate channel, containing 1 for missing
values at the same spatial position, and 0 otherwise – this missing data format is sometimes known as flag
data imputation. Other formats for representing missing values were tested (e.g. just using zeros for missing
values), however, the above scheme performed significantly better than other formats. In our experiments, we
assumed that the training set was complete and missing values were only present in the test set. In order to
design ConvNets that are robust against specific missingness distributions, we have simulated missing values
during training, sampling a different mask of missing values for each image in each mini-batch. As covered
in sec. 6, the results of training ConvNets directly on simulated missingness distributions resulted in classifiers

25

Under review as a conference paper at ICLR 2017

which were biased towards the specific distribution used in training, and performed worse on other distributions
compared to ConvNets trained on the same distribution.

In addition to training ConvNets directly on missing data, we have also used them as the classifier for testing
different data imputation methods, as describe in the next section.

F.1.4 CLASSIFICATION THROUGH DATA IMPUTATION

The most common method for handling missing data, while leveraging available discriminative classifiers, is
through the application of data imputation – an algorithm for the completion of missing values – and then
passing the results to a classifier trained on uncorrupted dataset. We have tested five different types of data
imputation algorithms:

• Zero data imputation: replacing every missing value by zero.

• Mean data imputation: replacing every missing value by the mean value computed over the dataset.

• Generative data imputation: training a generative model and using it to complete the missing values
by finding the most likely instance that coincides with the observed values, i.e. solving the following

g(x�m) = argmax
x′∈Rs∧∀i,mi=1→x′i=xi

P (X = x′)

We have tested the following generative models:

– Generative Stochastic Networks (GSN) (Bengio et al., 2014): We have used their original
source code from https://github.com/yaoli/GSN, and trained their example model
on MNIST for 1000 epochs. Whereas in the original article they have tested completing only
the left or right side of a given image, we have modified their code to support general masks.
Our modified implementation can be found at https://github.com/HUJI-Deep/GSN.

– Non-linear Independent Components Estimation (NICE) (Dinh et al., 2014): We have used their
original source code from https://github.com/laurent-dinh/nice, and trained it
on MNIST using their example code without changes. Similarly to our modification to the GSN
code, here too we have adapted their code to support general masks over the input. Additionally,
their original inpainting code required 110,000 iterations, which we have reduced to just 8,000
iterations, since the effect on classification accuracy was marginal. For the NORB dataset, we
have used their CIFAR10 example, with lower learning rate of 10−4. Our modified code can be
found at https://github.com/HUJI-Deep/nice.

– Diffusion Probabilistic Models (DPM) (Sohl-Dickstein et al., 2015): We have user
their original source code from https://github.com/Sohl-Dickstein/
Diffusion-Probabilistic-Models, and trained it on MNIST using their
example code without changes. Similarly to our modifications to GSN, we have
add support for a general mask of missing values, but other than that kept the rest
of the parameters for inpainting unchanged. For NORB we have used the same
model as MNIST. We have tried using their CIFAR10 example for NORB, how-
ever, it produced exceptions during training. Our modified code can be found at
https://github.com/HUJI-Deep/Diffusion-Probabilistic-Models.

F.1.5 TENSORIAL MIXTURE MODELS

For a complete theoretical description of our model please see the body of the article. Our models were
implemented by performing all intermediate computations in log-space, using numerically aware operations. In
practiced, that meant our models were realized by the SimNets architecture (Cohen and Shashua, 2014; Cohen
et al., 2016b), which consists of Similarity layers representing gaussian distributions, MEX layers representing
weighted sums performed on log-space input and outputs, as well as standard pooling operations. The learned
parameters of the MEX layers are called offsets, which represents the weights of the weighted sum, but saved in
log-space. The parameters of the MEX layers can be optionally shared between spatial regions, or alternatively
left with no parameter sharing at all. Additionally, when used to implement our generative models, the offsets
are normalized to have a soft-max (i.e., log

(∑
i exp(xi)

)
) of zero.

The network architectures we have tested in this article, consists of M different Gaussian mixture components
with diagonal covariance matrices, over non-overlapping patches of the input of size 2× 2, which were imple-
mented by a similarity layer as specified by the SimNets architecture, but with an added gaussian normalization
term.

We first describe the architectures used for the MNIST dataset. For the GCP-model, we used M = 800, and
following the similarity layer is a 1 × 1 MEX layer with no parameter sharing over spatial regions and 10
output channels. The model ends with a global sum pooling operation, followed by another 1 × 1 MEX layer

26

https://github.com/yaoli/GSN
https://github.com/HUJI-Deep/GSN
https://github.com/laurent-dinh/nice
https://github.com/HUJI-Deep/nice
https://github.com/Sohl-Dickstein/Diffusion-Probabilistic-Models
https://github.com/Sohl-Dickstein/Diffusion-Probabilistic-Models
https://github.com/HUJI-Deep/Diffusion-Probabilistic-Models

Under review as a conference paper at ICLR 2017

with 10 outputs, one for each class. The GHT-model starts with the similarity layer with M = 32, followed
by a sequence of four pairs of 1 × 1 MEX layer followed by 2 × 2 sum pooling layer, and after the pairs and
additional 1 × 1 MEX layer lowering the outputs of the model to 10 outputs as the number of classes. The
number of output channels for each MEX layer are as follows 64-128-256-512-10. All the MEX layers in this
network do not use parameter sharing, except the first MEX layer, which uses a repeated sharing pattern of
2 × 2 offsets, that analogous to a 2 × 2 convolution layer with stride 2. Both models were trained with the
losses described in sec. 4, using the Adam SGD variant for optimizing the parameters, with a base learning
rate of 0.03, and β1 = β2 = 0.9. The models were trained for 25,000 iterations, where the learning rate was
dropped by 0.1 after 20,000 iterations.

For the NORB dataset, we have trained only the GHT-model with M = 128 for the similarity layer. The MEX
layers use the same parameter sharing scheme as the one for MNIST, and the number of output channels for
each MEX layer are as follows: 256-256-256-512-5. Training was identical to the MNIST models, with the
exception of using 40,000 iterations instead of just 25,000. Additionally, we have used an ensemble of 4 models
trained separately, each trained using a different generative loss weight (see below for more information). We
have also used the same data augmentation methods (scaling and rotation) which were used in training the
ConvNets for NORB used in this article.

The standard L2 weight regularization (sometimes known as weight decay) did not work well on our mod-
els, which lead us to adapt it to better fit to log-space weights, by minimizing λ

∑
i (exp (xi))

2 instead of
λ||x||2 = λ

∑
i x

2
i , where the parameter λ was chosen through cross-validation. Additionally, since even

with large values of λ our model was still overfitting, we have added another form of regularization in the form
of random marginalization layers. A random marginalization layer, is similar in concept to dropout, but instead
of zeroing activations completely in random, it choses spatial locations at random, and then zero out the activa-
tions at those locations for all the channels. Under our model, zeroing all the activations in a layer at a specific
location, is equivalent to marginalizing over all the inputs for the receptive field for that respective location.
We have used random marginalization layers in between all our layers during training, where the probability
for zeroing out activations was chosen through cross-validation for each layer separately. Though it might raise
concern that random marginalization layers could lead to biased results toward the missingness distributions
we have tested it on, in practice the addition of those layers only helped improve our results under cases where
only few pixels where missing.

Finally, we wish to discuss a few optimization tricks which had a minor effects compared to the above, but were
nevertheless very useful in achieving slightly better results. First, instead of optimizing directly the objective
defined by eq. 4, we add smoothing parameter β between the two terms, as follows:

Θ∗ = argmin
Θ
−
|S|∑
i=1

log
eNΘ(X(i);Y (i))∑K
y=1 e

NΘ(X(i);y)
− β

|S|∑
i=1

log

K∑
y=1

eNΘ(X(i);y)

setting β too low diminish the generative capabilities of our models, while setting it too high diminish the
discriminative performance. Through cross-validation, we decided on the value β = 0.01 for the models
trained on MNIST, while for NORB we have used a different value of β for each of the models, ranging in
{0.01, 0.1, 0.5, 1}. Second, we found that performance increased if we normalized activations before applying
the 1 × 1 MEX operations. Specifically, we calculate the soft-max over the channels for each spatial location
which we call the activation norm, and then subtract it from every respective activation. After applying the
MEX operation, we add back the activation norm. Though might not be obvious at first, subtracting a constant
from the input of a MEX operation and adding it to its output is equivalent does not change the mathematical
operation. However, it does resolve the numerical issue of adding very large activations to very small offsets,
which might result in a loss of precision. Finally, we are applying our model in different translations of the input
and then average the class predictions. Since our model can marginalize over inputs, we do not need to crop
the original image, and instead mask the unknown parts after translation as missing. Applying a similar trick
to standard ConvNets on MNIST does not seem to improve their results. We believe this method is especially
fit to our model, is because it does not have a natural treatment of overlapping patches like ConvNets do, and
because it is able to marginalize over missing pixels easily, not limiting it just to crop translation as is typically
done.

F.2 DESCRIPTION OF EXPERIMENTS

In this section we will give a detailed description of the protocol we have used during our experiments.

F.2.1 BINARY DIGIT CLASSIFICATION WITH FEATURE DELETION MISSING DATA

This experiment focuses on the binary classification problem derived from MNIST, by limiting the number of
classes to two different digits at a time. We use the same non-zero feature deletion distribution as suggested by
Globerson and Roweis (2006), i.e. for a given image we uniformly sample a set of N non-zero pixels from the

27

Under review as a conference paper at ICLR 2017

Figure 8: Generated digits samples from the GHT-model trained on the MNIST dataset.

image (if the image has less than N non-zero pixels then they are non-zero pixels are chosen), and replace their
values with zeros. This type of missingness distribution falls under the MNAR type defined in sec.5.

We test values of N in {0, 25, 50, 75, 100, 125, 150}. For a given value of N , we train a separate classifier
on each digit pair classifier on a randomly picked subset of the dataset containing 300 images per digit (600
total). During training we use a fixed validation set with 1000 images per digit. After picking the best classifier
according to the validation set, the classifier is tested against a test set with a 1000 images per digits with a
randomly chosen missing values according to the value of N . This experiment is repeated 10 times for each
digit pair, each time using a different subset for the training set, and a new corrupted test set. After conducting
all the different experiments, all the accuracies are averaged for each value of N , which are reported in table 1.

F.2.2 MULTI-CLASS DIGIT CLASSIFICATION WITH MAR MISSING DATA

This experiment focuses on the complete multi-class digit classification of the MNIST dataset, in the presence
of missing data according to different missingness distributions. Under this setting, only the test set contains
missing values, whereas the training set does not. We test two kinds of missingness distributions, which both
fall under the MAR type defined in sec.5. The first kind, which we call i.i.d. corruption, each pixel is missing
with a fixed probability p. the second kind, which we call missing rectangles corruption, The positions of N
rectangles of widthW or chosen uniformly in the picture, where the rectangles can overlap one another. During
the training stage, the models to be tested are not to be biased toward the specific missingness distributions we
have chosen, and during the test stage, the same classifier is tested against all types of missingness distributions,
and without supplying it with the parameters or type of the missingness distribution it is tested against. This
rule prevent the use of ConvNets trained on simulated missingness distributions. To demonstrate that the latter
lead to biased classifiers, we have conducted a separate experiment just for ConvNets, where the previous rule is
ignored, and we train a separate ConvNet classifier on each type and parameter of the missingness distributions
we have used. We then tested each of those ConvNets on all other missingness distributions, the results of
which are in fig. 5, which confirmed our hypothesis.

G IMAGE GENERATION AND NETWORK VISUALIZATION

Following the graphical model perspective of our models allows us to not only generate random instances from
the distribution, but to also generate the most likely patches for each neuron in the network, effectively explain-
ing its role in the classification process. We remind the reader that every neuron in the network corresponds to a
possible assignment of a latent variable in the graphical model. By looking for the most likely assignments for
each of its child nodes in the graphical tree model, we can generate a patch that describes that neuron. Unlike
similar suggested methods to visualize neural networks (Zeiler and Fergus, 2014), often relying on brute-force
search or on solving some optimization problem to find the most likely image, our method emerges naturally
from the probabilistic interpretation of our model.

In fig. 8, we can see conditional samples generates for each digit, while in fig. 9 we can see a visualization of the
top-level layers of network, where each small patch matches a different neuron in the network. The common
wisdom of how ConvNets work is by assuming that simple low-level features are composed together to create
more and more complex features, where each subsequent layer denotes features of higher abstraction – the
visualization of our network clearly demonstrate this hypothesis to be true for our case, showing small strokes
iteratively being composed into complete digits.

28

Under review as a conference paper at ICLR 2017

Figure 9: Visualization of the GHT-model. Each of the images above visualize a different layer of the
model and consists of several samples generated from latent variables at different spatial locations
conditioned on randomly selected channels. The leftmost image shows samples taken from the 5th
layer which consists of just a single latent variable with 512 channels. The center image shows
samples taken from the 4th layer, which consists of 2× 2 grid of latent variables with 256 channels
each. The image is divided to 4 quadrants, each contains samples taken from the respective latent
variable at that position. The rightmost image shows samples from the 3rd layer, which consists
of 4 × 4 grid of latent variables with 128 channels, and the image is similarly spatial divided into
different areas matching the latent variables of the layer.

H RAW RESULTS OF EXPERIMENTS

For both presentational and page layout reasons we have chosen to present most of results in the form of charts
in the body or the article. Considering that exact results are important for both reproducibility as well as future
comparisons to our work, we provide below the raw results of our experiments in the form of detailed tables.
For completeness, some of the tables we did include in the body of the article are duplicated to here as well.

N = 0 25 50 75 100 125 150

LP-Based 97.9 97.5 96.4 94.1 89.2 80.9 70.2
GHT-model 98.5 98.2 97.8 96.5 93.9 87.1 76.3

Table 3: Blind classification with missing data on the binary MNIST dataset with feature deletion
noise according to Globerson and Roweis (2006), averaged over all pairs of digits.

p = 0 0.25 0.50 0.75 0.90 0.95 0.99

KNN 96.8 96.7 96.2 94.4 86.4 71.7 29.2
Zero † 99.2 97.3 88.2 58.6 28.7 19.5 12.6
Mean † 99.2 98.4 90.9 52.4 21.1 15.6 10.9
GSN † 99.2 97.4 88.5 51.8 17.7 12.6 10.1
NICE † 99.2 98.9 97.9 82.6 36.3 20.2 11.7
DPM † 99.2 99.0 98.2 89.4 47.7 25.7 12.7

MP-DBM * 99.0 98.0 97.0 92.0 35.0 18.0 13.0
GCP-model 96.6 96.4 95.7 92.2 79.8 66.5 31.2
GHT-model 99.0 99.0 98.7 97.7 90.5 76.0 33.0

Table 4: Blind classification with missing data on the multi-class MNIST dataset, generated accord-
ing to i.i.d. corruption with probability p for each pixel. (*) Accuracies are estimated from the
plot presented in Goodfellow et al. (2013). (†) Data imputation algorithms followed by a standard
ConvNet.

29

Under review as a conference paper at ICLR 2017

(N,W) = (1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)

KNN 96.6 94.0 87.1 95.9 90.3 76.7 95.0 86.1 65.0
Zero † 93.0 74.9 47.6 86.2 56.2 31.2 78.6 44.2 22.6
Mean † 97.9 89.9 67.8 95.8 74.1 42.0 91.8 60.0 27.4
GSN † 97.4 86.8 56.8 94.2 64.3 31.8 88.9 46.4 21.8
NICE † 98.5 93.2 74.9 97.7 81.3 52.3 95.7 69.1 38.0
DPM † 97.2 87.0 64.0 94.4 73.2 44.6 91.4 61.8 33.2

GCP-model 96.0 93.1 85.0 95.1 88.7 73.3 94.5 83.7 62.4
GHT-model 98.6 97.3 91.2 98.3 93.7 79.1 98.0 89.6 67.2

Table 5: Blind classification with missing data on the multi-class MNIST dataset, generated accord-
ing to missing rectangles corruption withN missing rectangles, each of width and hight equal toW .
(†) Data imputation algorithms followed by a standard ConvNet.

p = 0 0.25 0.50 0.75 0.90 0.95 0.99

KNN 81.3 81.0 80.8 80.4 78.0 74.4 55.6
Zero † 96.8 19.3 19.7 20.0 20.0 20.0 19.7
Mean † 96.8 66.8 49.7 35.5 30.2 24.2 20.1
NICE † 96.8 95.8 91.5 70.7 30.9 22.9 20.5
DPM † 96.8 88.8 60.2 28.2 21.3 20.9 20.6

GHT-model 96.7 96.6 94.9 84.0 67.9 58.1 41.2

Table 6: Blind classification with missing data on the multi-class NORB dataset, generated accord-
ing to i.i.d. corruption with probability p for each pixel. (†) Data imputation algorithms followed by
a standard ConvNet.

(N,W) = (1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)

KNN 81.2 81.0 81.0 81.1 80.4 79.8 80.5 78.4 75.3
Zero † 35.9 28.1 25.1 25.7 22.6 20.9 22.4 20.5 19.8
Mean † 81.9 73.0 66.6 63.2 49.6 41.9 45.7 32.5 25.9
NICE † 96.1 95.3 93.7 92.1 81.4 67.4 73.8 46.4 33.0
DPM † 90.1 81.9 74.2 65.9 46.0 34.3 37.7 24.2 20.9

GHT-model 96.5 96.3 95.9 95.5 93.7 91.2 92.3 86.0 79.4

Table 7: Blind classification with missing data on the multi-class NORB dataset, generated accord-
ing to missing rectangles corruption withN missing rectangles, each of width and hight equal toW .
(†) Data imputation algorithms followed by a standard ConvNet.

ptrain

ptest
0.25 0.50 0.75 0.90 0.95 0.99

0.25 98.9 97.8 78.9 32.4 17.6 11.0
0.50 99.1 98.6 94.6 68.1 37.9 12.9
0.75 98.9 98.7 97.2 83.9 56.4 16.7
0.90 97.6 97.5 96.7 89.0 71.0 21.3
0.95 95.7 95.6 94.8 88.3 74.0 30.5
0.99 87.3 86.7 85.0 78.2 66.2 31.3

i.i.d. (rand) 98.7 98.4 97.0 87.6 70.6 29.6
rects (rand) 98.2 95.7 83.2 54.7 35.8 17.5

Table 8: We compare ConvNets on the MNIST dataset, trained on i.i.d. corruption with probability
ptrain while tested on i.i.d. corruption with probability ptest. Additionally, we trained ConvNets
on either i.i.d. or missing rectangles corruption distributions with random corruption parameters
sampled for each batch of training samples, while testing on i.i.d. corruption with the fixed parameter
ptest.

30

Under review as a conference paper at ICLR 2017

train
test (N,W)=(1,8) (1,12) (1,16) (2,8) (2,12) (2,16) (3,8) (3,12) (3,16)

rects (fixed) 98.7 97.7 93.1 98.6 94.7 82.0 98.2 90.5 70.5
rects (rand) 99.0 97.6 92.3 98.4 94.6 80.1 98.0 90.0 66.9
i.i.d. (rand) 97.8 94.8 83.4 96.8 88.6 64.5 96.1 80.6 49.5

Table 9: We compare ConvNets on the MNIST dataset, train and tested on the same (fixed) missing
rectangles distribution, against ConvNets trained on randomly chosen missingness distributions from
either the missing rectangles or i.i.d. corruption distributions.

31

	Introduction
	Preliminaries
	Tensorial Mixture Models
	Special Cases
	Decomposing the Priors Tensor
	Comparison to Sum-Product Networks

	Classification and Learning with TMMs
	Classification with Missing Data through Marginalization
	Efficient Marginalization with TMMs

	Experiments
	Image Classification with Missing Data

	Summary
	Background on Tensor Decompositions and Convolutional Arithmetic Circuits
	The Universality of Tensorial Mixture Models
	Overview on the Expressive Capacity of Convolutional Arithmetic Circuits and Its Affect on Tensorial Mixture Models
	Proof for the Depth Efficiency of Generative Convolutional Arithmetic Circuits
	Proof for the Optimality of Marginalized Bayes Predictor
	Detailed Description of the Experiments
	Description of Methods
	Robust Linear Classifier
	K-Nearest Neighbors
	Convolutional Neural Networks
	Classification Through Data Imputation
	Tensorial Mixture Models

	Description of Experiments
	Binary Digit Classification with Feature Deletion Missing Data
	Multi-class Digit Classification with MAR Missing Data

	Image Generation and Network Visualization
	Raw Results of Experiments

