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ABSTRACT

Deep neural networks with millions of parameters may suffer from poor general-
izations due to overfitting. To mitigate the issue, we propose a new regularization
method that penalizes the predictive distribution between similar samples. In par-
ticular, we distill the predictive distribution between different samples of the same
label and augmented samples of the same source during training. In other words,
we regularize the dark knowledge (i.e., the knowledge on wrong predictions) of
a single network, i.e., a self-knowledge distillation technique, to force it output
more meaningful predictions. We demonstrate the effectiveness of the proposed
method via experiments on various image classification tasks: it improves not
only the generalization ability, but also the calibration accuracy of modern neural
networks.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-art performance on many machine learn-
ing applications, e.g., computer vision (He et al., 2016), natural language processing (Devlin et al.,
2019), and reinforcement learning (Silver et al., 2016). As the scale of training dataset increases,
the size of DNNs (i.e., the number of parameters) also scales up to handle such a large dataset effi-
ciently. However, networks with millions of parameters may incur overfitting and suffer from poor
generalizations (Pereyra et al., 2017; Zhang et al., 2017). To address the issue, many regularization
strategies have been investigated in the literature: early stopping, L1/L2-regularization (Nowlan &
Hinton, 1992), dropout (Srivastava et al., 2014), batch normalization (Sergey Ioffe, 2015) and data
augmentation (Cubuk et al., 2019)

Regularizing the predictive or output distribution of DNNs can be effective because it contains the
most succinct knowledge of the model. On this line, several strategies such as entropy maximiza-
tion (Pereyra et al., 2017) and angular-margin based methods (Chen et al., 2018; Zhang et al., 2019)
have been proposed in the literature. They can be also influential to solve related problems, e.g.,
network calibration (Guo et al., 2017), detection of out-of-distribution samples (Lee et al., 2018)
and exploration of the agent in reinforcement learning (Haarnoja et al., 2018). In this paper, we
focus on developing a new output regularizer for deep models utilizing the concept of dark knowl-
edge (Hinton et al., 2015), i.e., the knowledge on wrong predictions made by DNN. Its importance
has been first evidenced by the so-called knowledge distillation and investigated in many following
works (Romero et al., 2015; Zagoruyko & Komodakis, 2017; Srinivas & Fleuret, 2018; Ahn et al.,
2019).

While the related works (Furlanello et al., 2018; Hessam Bagherinezhad & Farhadi, 2018) use the
knowledge distillation (KD; Hinton et al. 2015) to transfer the dark knowledge learned by a teacher
network to a student network, we regularize the dark knowledge itself during training a single net-
work, i.e., self-knowledge distillation. Specifically, we propose a new regularization technique,
coined class-wise self-knowledge distillation (CS-KD) that matches or distills the predictive distri-
bution of DNNs between different samples of the same label (class-wise regularization) and aug-
mented samples of the same source (sample-wise regularization) as shown in Figure 1. One can
expect that the proposed regularization method forces DNNs to produce similar wrong predictions
if samples are of the same class, while the conventional cross-entropy loss does not consider such
consistency on the wrong predictions.
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(a) Class-wise regularization (b) Sample-wise regularization

Figure 1: Illustration of class-wise self-knowledge distillation (CS-KD). We match or distill the
output distribution of DNNs between (a) different samples with the same label and (b) augmented
samples of the same source.

We demonstrate the effectiveness of our regularization method using deep convolutional neural net-
works, such as ResNet (He et al., 2016) and DenseNet (Huang et al., 2017) trained for image clas-
sification tasks on various datasets including CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet1,
CUB-200-2011 (Wah et al., 2011), Stanford Dogs (Khosla et al., 2011), and MIT67 (Quattoni &
Torralba, 2009) datasets. We compare or combine our method with prior regularizers. In our exper-
iments, the top-1 error rates of our method are consistently smaller than those of prior output reg-
ularization methods such as angular-margin based methods (Chen et al., 2018; Zhang et al., 2019)
and entropy regularization (Dubey et al., 2018; Pereyra et al., 2017). In particular, the gain tends to
be larger in overall for the top-5 error rates and the expected calibration errors (Guo et al., 2017),
which confirms that our method indeed makes predictive distributions more meaningful. Moreover,
we investigate a variant of our method by combining it with other types of regularization method
for boosting performance, such as the mixup regularization (Zhang et al., 2018) and the original
KD method. We improve the top-1 error rate of mixup from 37.09% to 31.95% and that of KD
from 39.32% to 35.36% under ResNet (He et al., 2016) trained by the CUB-200-2011 dataset. Our
method is very simple to use, and would enjoy a broader usage in the future.

2 REGULARIZATION VIA SELF-KNOWLEDGE DISTILLATION

In this section, we introduce a new regularization technique, named class-wise self-knowledge dis-
tillation (CS-KD). Throughout this paper, we focus on fully-supervised or classification tasks, and
denote x ∈ X as an input and y ∈ Y = {1, ..., C} as its ground-truth label. Suppose that a softmax
classifier is used to model a posterior distribution, i.e., given the input x, the predictive distribution
is as follows:

P (y|x; θ, T ) = exp (fy (x; θ) / T )∑C
i=1 exp (fi (x; θ) / T )

,

where f = [fi] denotes the logit-vector of DNN, parameterized by θ and T > 0 is the temperature
scaling parameter.

2.1 CLASS-WISE REGULARIZATION

We first consider matching the predictive distributions on samples of the same class, which distills
their dark knowledge into the model itself. To this end, we propose a class-wise regularization
loss that enforces consistent predictive distributions in the same class. Formally, given input x and
another randomly sampled input x′ having the same label y, it is defined as follows:

Lcls(x,x′) := KL
(
P (y|x′; θ̃, T )

∥∥P (y|x; θ, T )) ,
where KL denotes the Kullback-Leibler (KL) divergence and θ̃ is a fixed copy of the parameters θ.
As suggested by (Takeru Miyato & Ishii, 2018), the gradient is not propagated through θ̃ to avoid

1https://tiny-imagenet.herokuapp.com/
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Algorithm 1 Class-wise self-knowledge distillation (CS-KD)

Initialize parameters θ.
while θ has not converged do

for (x, y) in a sampled batch do
gθ ← 0
Get another sample x′ randomly which has the same label y from the training set.
Generate xaug, x′

aug using data augmentation methods.
Compute gradient: gθ ← gθ +∇θLtot(x,xaug,x

′
aug)

end for
Update parameters θ using gradients gθ.

end while

the model collapsing issue. Similar to the knowledge distillation method (KD) by Hinton et al.
(2015), Lcls matches two predictions. While the original KD matches predictions of a sample from
two networks, we do predictions of different samples from a single network. Namely, our method
performs self-knowledge distillation.

2.2 SAMPLE-WISE REGULARIZATION

In addition to enforcing the intra-class consistency of predictive distributions, we apply this idea
to the single-sample scenario by augmenting the input data. For a given training sample x, the
proposed sample-wise regularization loss Lsam is defined as follows:

Lsam(x,xaug) := KL
(
P (y|x; θ̃, T )

∥∥P (y|xaug; θ, T )
)
,

where xaug is an augmented input that is modified by some data augmentation methods, e.g., re-
sizing, rotating, random cropping (Krizhevsky et al., 2009; Simonyan & Zisserman, 2015; Szegedy
et al., 2015), cutout (DeVries & Taylor, 2017), and auto-augmentation (Cubuk et al., 2019). In our
experiments, we use standard augmentation methods for ImageNet (i.e., flipping and random sized
cropping) because they make training more stable.

In summary, the total training loss Ltot is defined as a weighted sum of the two regularization terms
with cross-entropy loss as follows:

Ltot(x,xaug,x
′
aug) := −y · logP (y|xaug; θ, 1) + λclsLcls(xaug,x

′
aug) + λsamLsam(x,xaug),

where λcls and λsam are balancing weights for each regularization, respectively. Note that the first
term is the cross-entropy loss of softmax outputs with temperature T = 1. In other words, we not
only train the true label, but also regularize the wrong labels. The full training procedure with the
proposed loss Ltot is summarized in Algorithm 1.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. To demonstrate our method under general situations of data diversity, we consider various
image classification tasks including conventional classification and fine-grained classification tasks.
We use CIFAR-100 (Krizhevsky et al., 2009) and TinyImageNet2 datasets for conventional classifi-
cation tasks, and CUB-200-2011 (Wah et al., 2011), Stanford Dogs (Khosla et al., 2011), and MIT67
(Quattoni & Torralba, 2009) datasets for fine-grained classification tasks. Note that fine-grained im-
age classification tasks have visually similar classes and consist of fewer training samples per class
compared to conventional classification tasks. We sample 10% of the training dataset randomly as a
validation set for CIFAR-100 and TinyImageNet and report the test accuracy based on the validation
accuracy. For the fine-grained datasets, we report the best validation accuracy.

2https://tiny-imagenet.herokuapp.com/
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Table 1: Top-1 error rates (%) on various image classification tasks and model architectures. We
reported the mean and standard deviation over 3 runs with different random seed. Boldface values
in parentheses indicate relative error rate reductions from cross-entropy.

Dataset Method ResNet-18 DenseNet-121

CIFAR-100

Cross-entropy 25.82±0.26 23.54±0.27

AdaCos 25.72±0.49 24.22±0.34

Virtual-softmax 24.13±0.12 23.51±0.04

Maximum-entropy 23.53±0.24 23.02±0.31

CS-KD (ours) 22.74±0.14 (-11.9%) 22.66±0.24 (- 3.7%)

TinyImageNet

Cross-entropy 45.16±0.22 40.85±0.24

AdaCos 44.14±0.41 40.71±0.22

Virtual-softmax 43.88±0.31 42.92±1.56

Maximum-entropy 43.56±0.04 40.10±0.58

CS-KD (ours) 42.95±0.43 (- 4.9%) 39.65±0.58 (- 2.9%)

CUB-200-2011

Cross-entropy 46.00±1.43 42.30±0.44

AdaCos 35.47±0.07 30.84±0.38

Virtual-softmax 35.03±0.51 33.85±0.75

Maximum-entropy 39.86±1.11 37.51±0.71

CS-KD (ours) 33.50±0.31 (-27.2%) 30.79±0.36 (-27.2%)

Stanford Dogs

Cross-entropy 36.29±0.32 33.39±0.17

AdaCos 32.66±0.34 27.87±0.65

Virtual-softmax 31.48±0.16 30.55±0.72

Maximum-entropy 32.41±0.20 29.52±0.74

CS-KD (ours) 31.06±0.51 (-14.4%) 27.65±0.59 (-17.2%)

MIT67

Cross-entropy 44.75±0.80 41.79±0.19

AdaCos 42.66±0.43 40.25±0.68

Virtual-softmax 42.86±0.71 43.66±0.30

Maximum-entropy 43.36±1.62 43.48±1.30

CS-KD (ours) 40.77±1.05 (- 8.9%) 39.75±0.38 (- 4.9%)

Network architecture. We consider two state-of-the-art convolutional neural network architectures:
ResNet (He et al., 2016) and DenseNet (Huang et al., 2017). We use standard ResNet-18 with 64
filters and DenseNet-121 with growth rate of 32 for image size 224 × 224. For CIFAR-100 and
TinyImageNet, we modify the first convolutional layer3 with kernel size 3×3, strides 1 and padding
1, instead of the kernel size 7× 7, strides 2 and padding 3, for image size 32× 32.

Evaluation metric. For evaluation, we measure the following metrics:

• Top-1 / 5 error rate. Top-k error rate is the fraction of test samples for which the correct
label is amongst the top-k confidences. We measured top-1 and top-5 error rates to evaluate the
generalization performance of the models.

• Expected Calibration Error (ECE). ECE (Naeini et al., 2015; Guo et al., 2017) approximates
the difference in expectation between confidence and accuracy, by partitioning predictions into
M equally-spaced bins and taking a weighted average of bins’ difference of confidence and
accuracy, i.e., ECE =

∑M
m=1

|Bm|
n |acc(Bm) − conf(Bm)|, where n is the number of samples,

Bm is the set of samples whose confidence falls into the m-th interval, acc(Bm) is the accuracy
ofBm and conf(Bm) is the average confidence withinBm. We compare ECE values to evaluate
whether the model represents the true likelihood.
• Recall at k (R@k). Recall at k is the percentage of test samples that have at least one example

from the same class in k nearest neighbors on the feature space. To measure the distance between
two samples, we use L2-distance between their average-pooled features in the penultimate layer.
We compare the recall at 1 scores to evaluate intra-class variations of learned features.

3We used a reference implementation: https://github.com/kuangliu/pytorch-cifar.
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Table 2: Top-1 error rates (%) of compatibility experiments with mixup regularization on various
image classification tasks. We reported the mean and standard deviation over 3 runs with different
random seed, and the best results are indicated in bold.

Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

Cross-entropy 25.82±0.26 45.16±0.22 46.00±1.43 36.29±0.32 44.75±0.80

CS-KD (ours) 22.74±0.14 42.95±0.43 33.50±0.31 31.06±0.51 40.77±1.05

Mixup 23.28±0.17 43.03±0.37 37.09±0.27 32.54±0.04 41.67±1.05

Mixup + CS-KD (ours) 21.51±0.44 42.73±0.58 31.95±0.65 29.64±0.28 40.17±1.12

Table 3: Top-1 error rates (%) of compatibility experiments with knowledge distillation (KD) on
various image classification tasks. Teacher network is pre-trained on DenseNet-121 (large) by CS-
KD, and student network trained on ResNet-10 (small). We reported the mean and standard deviation
over 3 runs with different random seed, and the best results are indicated in bold.

Method CIFAR-100 TinyImageNet CUB-200-2011 Stanford Dogs MIT67

Cross-entropy 27.93±0.04 48.09±0.54 48.36±0.61 38.96±0.40 44.75±0.62

CS-KD (ours) 26.79±0.22 45.71±0.32 39.12±0.09 34.07±0.46 41.54±0.67

KD 26.77±0.22 44.63±0.10 39.32±0.65 34.23±0.42 38.63±0.11

KD + CS-KD (ours) 26.38±0.25 43.85±0.04 35.36±0.26 32.08±0.16 37.91±0.27

Hyper-parameters. All networks are trained from scratch and optimized by stochastic gradient
descent (SGD) with momentum 0.9, weight decay 0.0001 and an initial learning rate of 0.1. The
learning rate is divided by 10 after epochs 100 and 150 for all datasets and total epochs are 200. We
set batch size as 128 for conventional, and 32 for fine-grained classification tasks. We use standard
flips, random resized crops, 32 for conventional and 224 for fine-grained classification tasks, overall
experiments. Furthermore, we set T = 4, λcls = 1 for all experiments and λsam = 1 for experiments
on fine-grained classification tasks, and λsam = 0 on conventional classification tasks. To compute
expected calibration error (ECE), we set the number of bins M as 20.

Baselines. We compare our method with prior regularization methods such as the state-of-the-art
angular-margin based methods (Zhang et al., 2019; Chen et al., 2018) and entropy regularization
(Dubey et al., 2018; Pereyra et al., 2017). They also regularize predictive distributions as like ours.

• AdaCos (Zhang et al., 2019).4 AdaCos dynamically scales the cosine similarities between train-
ing samples and corresponding class center vectors to maximize angular-margin.

• Virtual-softmax (Chen et al., 2018). Virtual-softmax injects an additional virtual class to max-
imize angular-margin.

• Maximum-entropy (Dubey et al., 2018; Pereyra et al., 2017). Maximum-entropy is a typical
entropy regularization, which maximizes the entropy of the predictive distribution.

Note that AdaCos and Virtual-softmax regularize the predictive or output distribution of DNN to
learn feature representation by reducing intra-class variations and enlarging inter-class margins.

3.2 EXPERIMENTAL RESULTS

Comparison with output regularization methods. We measure the top-1 error rates of the pro-
posed method (denoted by CS-KD) by comparing with Virtual-softmax, AdaCos, and Maximum-
entropy on various image classification tasks. Table 1 shows that CS-KD outperforms other baselines
consistently. In particular, CS-KD improves the top-1 error rate of cross-entropy loss from 46.00%
to 33.50% in the CUB-200-2011 dataset, while the top-1 error rates of other baselines are even
worse than the cross-entropy loss (e.g., AdaCos in the CIFAR-100, Virtual-softmax in the MIT67,
and Maximum-entropy in the TinyImageNet and the MIT67 under DenseNet). The results imply
that our method is more effective and stable than other baselines.

4We used a reference implementation: https://github.com/4uiiurz1/pytorch-adacos
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(a) Cross-entropy (b) Virtual-softmax (c) AdaCos

(d) Maximum-entropy (e) Mixup (f) CS-KD (ours)

Figure 2: Visualization of features on the penultimate layer using t-SNE, from 10,000 number of
randomly chosen training samples of CIFAR-100. Note that 20 superclasses in CIFAR-100 are
drawn by 20 different colors. (a) Cross-entropy, (b) Virtual-softmax, (c) AdaCos, (d) Maximum-
entropy, (e) Mixup and (f) CS-KD (ours).

Compatibility with other types of regularization methods. We investigate orthogonal usage with
other types of regularization methods such as mixup (Zhang et al., 2018) and knowledge distillation
(KD). Mixup utilizes convex combinations of input pairs and corresponding label pairs for training.
We combine our method with mixup regularization by applying the class-wise regularization loss
Lcls to mixed inputs and mixed labels, instead of standard inputs and labels. Table 2 shows the
effectiveness of our method combined with mixup regularization. Interestingly, this simple idea sig-
nificantly improves the performances of fine-grained classification tasks. In particular, our method
improves the top-1 error rate of mixup regularization from 37.09% to 31.95%, where the top-1 error
rate of cross-entropy loss is 46.00% in the CUB-200-2011.

KD regularizes predictive distributions of student network to learn the dark knowledge of a teacher
network. We combine our method with KD to learn dark knowledge from the teacher and itself
simultaneously. Table 3 shows that the top-1 error rate under using our method solely is close to that
of KD, although ours do not use additional teacher networks. Besides, learning knowledge from a
teacher network improves the top-1 error rate of our method from 39.32% to 35.36% in the CUB-
200-2011 dataset. The results show a wide applicability of our method, compatible to use with other
regularization methods.

3.3 ANALYSIS OF FEATURE EMBEDDING AND CALIBRATION

One can expect that our method forces DNNs to produce meaningful predictions by reducing the
intra-class variations. To verify this, we analyze feature embedding and various evaluation metrics,
including the top-1, top-5 error, expected calibration error (Guo et al., 2017) and R@1. In Figure
2, we visualize feature embedding of the penultimate layer from ResNet-18 trained with various
regularization techniques by t-SNE (Maaten & Hinton, 2008) in the CIFAR-100 dataset. One can
note that intra-class variations are significantly decreased by our method (Figure 2f), while Virtual-
softmax (Figure 2b) and AdaCos (Figure 2c) only reduce the angular-margin. We also provide
quantitative analysis on the feature embedding by measuring the R@1 values, which are related
to intra-class variations. Note that the larger value of R@1 means the more reduced intra-class
variations on the feature embedding (Wengang Zhou, 2017). As shown in Table 4, R@1 values
can be significantly improved when ResNet-18 is trained with our methods. In particular, R@1 of
our method is 59.22% in the CUB-200-2011 dataset, while R@1 of Virtual-softmax and Adacos
are 55.56% and 54.86%, respectively. Moreover, Table 4 shows the top-5 error rates of our method
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significantly outperform other regularization methods. Figure 3 and Table 4 show that our method
enhances model calibration significantly, which also confirm that ours forces DNNs to produce more
meaningful predictions.

Table 4: Top-1 / 5 error, ECE, and Recall at 1 rates (%) of ResNet-18. The arrow on the right side
of the evaluation metric indicates ascending or descending order of the value. We reported the mean
and standard deviation over 3 runs with different random seed, and the best results are indicated in
bold.

Dataset Method Top-1 ↓ Top-5 ↓ ECE ↓ R@1 ↑

CIFAR-100

Cross-entropy 25.82±0.26 7.42±0.29 16.31±0.25 59.42±1.03

AdaCos 25.72±0.49 10.53±1.10 71.79±0.51 66.26±0.83

Virtual-softmax 24.13±0.12 8.89±0.26 7.11±0.72 67.40±0.25

Maximum-entropy 23.53±0.24 7.53±0.14 56.21±0.46 70.66±0.21

CS-KD (ours) 22.74±0.14 5.79±0.13 5.05±0.41 70.04±0.17

TinyImageNet

Cross-entropy 45.16±0.22 22.21±0.29 14.08±0.76 30.59±0.42

AdaCos 44.14±0.41 22.24±0.11 55.09±0.41 44.66±0.52

Virtual-softmax 43.88±0.31 24.15±0.17 4.60±0.67 44.69±0.58

Maximum-entropy 43.56±0.04 21.53±0.50 42.68±0.31 39.18±0.79

CS-KD (ours) 42.95±0.43 20.22±0.13 3.96±0.67 44.79±0.26

CUB-200-2011

Cross-entropy 46.00±1.43 22.30±0.68 18.39±0.76 33.92±1.70

AdaCos 35.47±0.07 15.24±0.66 63.39±0.06 54.86±0.24

Virtual-softmax 35.03±0.51 13.16±0.20 11.68±0.66 55.56±0.74

Maximum-entropy 39.86±1.11 19.80±1.21 50.52±1.20 48.66±2.10

CS-KD (ours) 33.50±0.31 13.06±0.35 5.17±0.33 59.22±0.97

Stanford Dogs

Cross-entropy 36.29±0.32 11.80±0.27 15.05±0.35 47.51±1.02

AdaCos 32.66±0.34 11.02±0.22 65.38±0.33 58.37±0.43

Virtual-softmax 31.48±0.16 8.64±0.21 7.91±0.38 59.71±0.56

Maximum-entropy 32.41±0.20 10.9±0.31 51.53±0.28 60.05±0.45

CS-KD (ours) 31.06±0.51 8.40±0.10 4.36±0.46 62.37±0.28

MIT67

Cross-entropy 44.75±0.80 19.25±0.53 17.99±0.72 31.42±1.00

AdaCos 42.66±0.43 19.05±2.33 54.00±0.52 42.39±1.91

Virtual-softmax 42.86±0.71 19.10±0.20 11.21±1.00 44.20±0.90

Maximum-entropy 43.36±1.62 20.47±0.90 42.41±1.74 38.06±3.32

CS-KD (ours) 40.77±1.05 17.64±0.16 8.12±1.13 44.73±2.09
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Figure 3: Reliability diagrams (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005)
which show accuracy as a function of confidence, for ResNet-18 trianed on CIFAR-100 using (a)
Cross-entropy, (b) Virtual-softmax, (c) AdaCos, and (d) Maximum-entropy. All methods are com-
pared with our proposed method, CS-KD.
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4 RELATED WORK

Regularization techniques. Numerous techniques have been introduced to prevent overfitting of
neural networks, including early stopping, weight decay, dropout (Srivastava et al., 2014), and batch
normalization (Sergey Ioffe, 2015). Alternatively, regularization methods for the output distribution
also have been explored: Szegedy et al. (2016) showed that label-smoothing, which is a mixture
of the ground-truth and the uniform distribution, improves generalization of neural networks. Sim-
ilarly, Pereyra et al. (2017) proposed penalizing low entropy output distributions, which improves
exploration in reinforcement learning and supervised learning. Zhang et al. (2018) proposed a pow-
erful data augmentation method called mixup, which works as a regularizer that can be utilized with
smaller weight decay. We remark that our method enjoys orthogonal usage with the prior meth-
ods, i.e., our methods can be combined with prior methods to further improve the generalization
performance.

Knowledge distillation. Knowledge distillation (Hinton et al., 2015) is an effective learning method
to transfer the knowledge from a powerful teacher model to a student. This pioneering work showed
that one can use softmax with temperature scaling to match soft targets for transferring dark knowl-
edge, which contains the information of non-target labels. There are numerous follow-up studies to
distill knowledge in the aforementioned teacher-student framework. FitNets (Romero et al., 2015)
tried to learn features of a thin deep network using a shallow one with linear transform. Similarly,
Zagoruyko & Komodakis (2017) introduced a transfer method that matches attention maps of the
intermediate features, and Ahn et al. (2019) tried to maximize the mutual information between inter-
mediate layers of teacher and student for enhanced performance. Srinivas & Fleuret (2018) proposed
a loss function for matching Jacobian of the networks output instead of the feature itself. We remark
that our method and knowledge distillation (Hinton et al., 2015) have a similar component, i.e., us-
ing a soft target distribution, but our method utilizes the soft target distribution from itself. We also
remark that joint usage of our method and the prior knowledge distillation methods is effective.

Margin-based softmax losses. There have been recent efforts toward boosting the recognition per-
formances via enlarging inter-class margins and reducing intra-class variation. Several approaches
utilized metric-based methods that measure similarities between features using Euclidean distances,
such as triplet (Weinberger & Saul, 2009) and contrastive loss (Chopra et al., 2005). To make the
model extract discriminative features, center loss (Wen et al., 2016) and range loss (Xiao Zhang &
Qiao, 2017) were proposed to minimize distances between samples belong to the same class. COCO
loss (Liu et al., 2017b) and NormFace (Feng Wang & Yuille, 2017) optimized cosine similarities, by
utilizing reformulations of softmax loss and metric learning with feature normalization. Similarly,
Yutong Zheng & Savvides (2018) applied ring loss for soft normalization which uses a convex norm
constraint. More recently, angular-margin based losses were proposed for further improvement. L-
softmax (Liu et al., 2016) and A-softmax (Liu et al., 2017a) combined angular margin constraints
with softmax loss to encourage the model to generate more discriminative features. CosFace (Wang
et al., 2018), AM-softmax (Feng Wang & Cheng, 2018) and ArcFace (Deng et al., 2019) introduced
angular margins for a similar purpose, by reformulating softmax loss. Different from L-Softmax
and A-Softmax, Virtual-softmax (Chen et al., 2018) encourages a large margin among classes via
injecting additional virtual negative class.

5 CONCLUSION

In this paper, we discover a simple regularization method to enhance generalization performance of
deep neural networks. We propose two regularization terms which penalizes the predictive distri-
bution between different samples of the same label and augmented samples of the same source by
minimizing the Kullback-Leibler divergence. We remark that our ideas regularize the dark knowl-
edge (i.e., the knowledge on wrong predictions) itself and encourage the model to produce more
meaningful predictions. Moreover, we demonstrate that our proposed method can be useful for the
generalization and calibration of neural networks. We think that the proposed regularization tech-
niques would enjoy a broader range of applications, e.g., deep reinforcement learning (Haarnoja
et al., 2018) and detection of out-of-distribution samples (Lee et al., 2018).
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