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Abstract

We propose a novel yet simple neural network architecture for topic modeling.1

The method is based on training an autoencoder structure where the bottleneck2

represents the space of the topics distributions and the decoder output represents3

the space of the word distribution over the topics. We also exploit an auxiliary4

decoder to prevent mode collapsing in our model. A key feature for an effective5

topic modeling method is having sparse topic and word distributions, where there6

is a trade-off between the sparsity level of topics and words. This feature is im-7

plemented in our model by an L-2 regularization and the model hyperparameters8

take care of the trade-off. We show in our experiments that our model achieves9

competitive results compared to the state-of-the-art deep models for topic model-10

ing, despite its simple architecture and training procedure. The New York Times11

and 20 Newsgroups datasets are used in the experiments.12

1 Introduction13

Topic models are among the key models in Natural Language Processing (NLP) that aim to represent14

a large body of text using only a few concepts or topics, on a completely unsupervised basis. Topic15

modeling has found its application in many different areas including bioinformatics [13], computer16

vision [5], recommendation systems [8, 15], etc. Latent semantic indexing (LSI) [4] and proba-17

biliestic latent semantic indexing (PLSI) [6] are among the oldest algorithms, but Latetnt Dirichlet18

Allocation (LDA) [3] is the most widely used algorithm for topic modeling and most of the success-19

ful algorithms in this area are variants of LDA. The main challenge in training the LDA model is20

its relatively complicated inference model, which makes finding the true posterior a hard task and21

therefore LDA-based topic modeling algorithms rely on approximating methods. There are many22

ways to approximate the inference in LDA, e.g. Mean field variational methods [2], variational in-23

ference [2], expectation propagation [10], collapsed Gibbs sampling [11], factorization inference [1]24

etc.25

With the advances in deep learning, there has been some efforts to implement LDA and its variants26

using neural networks. Recent variational autoencoding (VAE) [7, 12] model has paved the way for27

approximating posteriors using a black box neural network model. However, VAE works best with28

the posterior approximating distributions for which sampling can be done using reparameterization29

trick, e.g. Gaussian distribution. Therefore, successful deep models that use VAE framework to30

implement LDA either directly replace the Dirichlet distribution with a Gaussian distribution [9]31

or approxiate the Dirichlet using a combination of Gaussians [14]. On the other hand, imposing32

sparsity constraint, which is an important aspect of LDA and Dirichlet distribution, is not trivial in33

these models.34

In this work we propose a new deep topic modeling algorithm, based on training an autoencoder,35

which takes as its input the distribution of words in each document and represents the topics in its36
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bottleneck layer. Our model keeps the most important properties of LDA, while having a simple37

network structure and an easy training procedure. We maintain the sparsity property of the Dirichlet38

distribution by imposing an L-2 regularization on the softmax layers of the neural network. We also39

resolve the mode collapsing issue of the model by adding an auxiliary decoder network that makes40

the separation of the representations in the latent space easier.41

2 Model Description42

In this section we first briefly describe LDA and its properties and then explain our model and43

how it resembles the LDA properties without having the difficulties of dealing with the intractable44

posterior.45

2.1 Following LDA properties46

Let’s assume we have a set of D documents with vocabulary size N . Each document is represented47

by a vector x. Also there are K topics with different distributions over the words, denoted by β1 to48

βK . The LDA generative process is as follows:49

For each document x50

Draw topic distribution θ ∼ Dirichlet(α)51

For each word in the document52

Sample a topic z ∼Multinomial(θ)53

Sample a word in position n, wn ∼Multinomial(βz)54

Two important objectives that LDA implicitly tries to achieve and they make this model suitable for55

topic modelling are:56

• Distribution of the topics for each document is sparse, therefore each document can be57

represented by a few topics58

• Distribution of the words for each topic is sparse, therefore each topic can be represented59

by a few words.60

There is a trade-off between these two objectives. If a document is represented using only a few61

topics, then number of words with high probability in those topics should be large, and if topics62

are represented using only a few words then we need a large number of topics to cover the words63

in the document. The sparsity of the distributions is a property of the Dirichlet distribution that is64

controlled by its concentration parameters. Also, based on LDA, the distribution of the words in a65

document is a mixture of multinomials.66

In our model we follow the main principals of the LDA algorithm, i.e. sparse distributions for the67

topics and words and the final distribution of the words in a document is a mixture of multinomial.68

On the other hand, we try to avoid the difficulties of training the LDA model. Since our downstream69

task is finding topics in the documents, and not generating new documents, we do not need to70

learn the true posterior probability, or find ways to approximate it. Therefore we leave the latent71

representation unconstrained with regard to its distribution.72

We first encode the documents to the topic space Z using ftopic(x;φ), which is implemented by73

a neural network with parameter set φ. To make sure Z is a probability space we use a softmax74

layer at the last layer of this network. Also, K vectors, β1 to βK , with softmax activation represent75

the words distributions in the topics, each of them is a multinomial distribution. A mixture of76

multinomials, i.e. x̃ = fβ(z) =
K∑
k=1

zkβk, will be a reconstruction of the input vector x. We77

intentionally do not use a matrix multiplication notation so that we can explain the constraints on78

βk’s in a simpler and more explicit way.79

To make both topic and words distributions sparse, we impose an L-2 norm constraint on them.80

Maximizing the L-2 norm over a positive, sum-to-one vector, concentrates the probability mass over81

a few number of elements. This way we are keeping the most informative words of each topic,82

2



Auxiliary Decoder

Figure 1: Networks of the model

because sparsity means we are minimizing the entropy of the distributions, Therefore the objective83

of the algorithm will be as follows:84

min
φ,βk

D(x, x̃)− γ ‖ z ‖2 −η
K∑
k=1

‖ βk ‖2, (1)

where distance D is the cross entropy, and γ and η are hyperparameters of the model. The trade-off85

of the sparsity in topics and words distributions can be controlled by tuning γ and η.86

2.2 Mode Collapsing87

We observed that training the model using Eq. (1) causes mode collapsing, in the sense that only a88

very few topics will have meaningful words in them and the rest of the topics have high probability89

over some random words. Also, all the probability mass of the topics distribution for all of the90

documents are concentrated on those specific topics. In other words, all the documents are encoded91

to the same set of topics and the model cannot capture the variations in the documents. We believe92

this is due to the fact that fβ(z) is not a powerful function for backpropagating the error signal from93

the output to the previous layers of the network. To resolve this issue and produce a richer Z space,94

we attach an auxiliary decoder to the latent representation, which we call it fAUX(z;ϕ) and it is a95

neural network with parameter set ϕ. The output of this decoder, denoted by x̂, also reconstructs the96

input document. Our observations show that by adding this decoder we can separate the documents’97

representations in the latent space.98

In both topic and word level, instead of sampling, we consider z and βk’s (for all k ∈ {1, 2, ..,K})99

as a normalized typical set of the distribution z and βk’s. This is to avoid sampling from the multi-100

nomial distribution for which there is no easy way, e.g. reparameteraztion trick in [7] for Gaussian101

family, to backpropagate the error for training the neural networks. Therefore the overall objective102

of our model is:103

min
φ,ϕ,βk

D(x, x̃) + λD(x, x̂)− γ ‖ z ‖2 −η
K∑
k=1

‖ βk ‖2

s.t
N∑
n=1

βkn = 1 ∀k ∈ {1, 2, ...,K}
K∑
k=1

zk = 1,

(2)

where λ is another hyperparameter of the model that controls the role of the auxiliary decoder in104

training. Figure 1 shows the structure of the networks.105
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3 Experiments106

In this section we compare the performance of the proposed algorithm with LDA with collapsed107

Gibbs, and two deep models, i.e. Neural Variational Document Model (NVDM) and ProdLDA108

algorithms in [14, 9]. Although comparing different topic modeling results qualitatively is a hard109

task, we follow standard metrics for such comparisons. The comparison is made based on topic110

coherence (higher is better) and perplexity score (lower is better) of the results.111

3.1 New York Times112

This dataset consists of D = 8, 447 documents with vocabulary size N = 3, 012 words. We down-113

loaded the dataset from this git repository https://github.com/moorissa/nmf_nyt.114

This dataset doesn’t need a preprocessing phase, as the common words and stop words has already115

been removed from it. We try performing topic modeling using 25 and 50 topics for this dataset (CG116

in the tables mean Collapsed Gibbs and the best results are indicated by bold symbols).117

Number of Topics LDA with CG ProdLDA NVDM Our Model
25 0.26 0.30 0.25 0.32
50 0.23 0.30 0.21 0.29

Table 1: Topic Coherence for the New York Times dataset

Number of Topics LDA with CG ProdLDA NVDM Our Model
25 781 910 842 762
50 770 930 892 751

Table 2: Perplexity for the New York Times dataset

In this experiment, for K = 25 topics the value of hyperparameters are: λ = 0.1, γ = 0.1, and118

η = 0.001. For K = 50 topics these values are: λ = 0.1, γ = 0.05, and η = 0.001.119

3.2 20 Newsgroups120

The 20 Newsgroups has D = 11, 000 training documents. We follow the same preprocessing in121

[14], tokenization, removing some of the non UTF-8 characters and English stop word removal.122

These are all done using scikit-learn package. After this preprocessing the vocabulary size is123

N = 2, 000. For this dataset we try training the models with 50 and 200 topics.124

Number of Topics LDA with CG ProdLDA NVDM Our Model
50 0.18 0.23 0.10 0.25

200 0.14 0.19 0.08 0.18

Table 3: Topic Coherence for the 20 Newsgroups dataset

Number of Topics LDA with CG ProdLDA NVDM Our Model
50 737 1180 830 795

200 690 1139 842 806

Table 4: Perplexity for the 20 Newsgroups dataset

In this experiment, for K = 50 topics the value of hyperparameters are: λ = 0.5, γ = 0.1, and125

η = 0.001. For K = 200 topics these values are: λ = 0.4, γ = 0.01, and η = 0.001.126

We can see that for both datasets, our algorithm achieves competetive results with some of the state-127

of-the-art deep models for topic modeling. ProdLDA shows better performance in term of the topic128

coherence when the number of topics gets large. However, for lower number of topics our model129

outperforms all othe algorithms. We can also see that our results is better than ProdLDA in terms of130

perplexity for both datasets, although LDA with collapsed Gibbs yilelds the best results for the 20131

Newsgroups dataset. Some random topics and the 10 highest probable words in them are shows in132

tables 5 and 6 in appendix.133
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A Some results173

Here we present some randomly selected topics with their top 10 words with the highest probabilities174

for the two datasets.175

New York Times176

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
building police percent preseident military

city man price executive plane
build kill market chief flight
open arrest rate director fly
house officer rise name mission
project pfficial fall vice attack

site fire sale chairman airline
street charge share company security
space shoot report agency air
home death increase management pilot

Table 5: Topc 10 words in randomly selected topics

20 Newsgroups177

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
windows jews goverment space game

card israel people station team
drive israeli federal moon games

monitor law american orbit play
pc anti political launch win

drivers jewish civil nasa season
disk arab war shuttle players

mouse religious society developed hit
mac killed national object baseball

printer muslim majority lunar league

Table 6: Topc 10 words in randomly selected topics
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