
Published as a conference paper at ICLR 2020

LEARNING HEURISTICS FOR QUANTIFIED BOOLEAN
FORMULAS THROUGH REINFORCEMENT LEARNING

Gil Lederman
Electrical Engineering and Computer Sciences
University of California at Berkeley
gilled@eecs.berkeley.edu

Markus N. Rabe
Google Research
mrabe@google.com

Edward A. Lee
Electrical Engineering and Computer Sciences
University of California at Berkeley
eal@eecs.berkeley.edu

Sanjit A. Seshia
Electrical Engineering and Computer Sciences
University of California at Berkeley
sseshia@eecs.berkeley.edu

ABSTRACT

We demonstrate how to learn efficient heuristics for automated reasoning algorithms
for quantified Boolean formulas through deep reinforcement learning. We focus on
a backtracking search algorithm, which can already solve formulas of impressive
size - up to hundreds of thousands of variables. The main challenge is to find a
representation of these formulas that lends itself to making predictions in a scalable
way. For a family of challenging problems in 2QBF we learn a heuristic that solves
significantly more formulas compared to the existing handwritten heuristics.

1 INTRODUCTION

One of the most intriguing questions for artificial intelligence is: can (deep) learning be effectively
used for symbolic reasoning? The benefits of combining deductive reasoning with inductive learning
for automated reasoning and in formal methods for system design have been noted (e.g., see Seshia
(2015)). There is a whole spectrum of approaches to combine them: One extreme is to use learning
for predicting which of a small pool of algorithms (or heuristics) performs best, and run only that
one to solve the given problem (e.g. SATzilla (Xu et al., 2008)). This approach is clearly limited
by the availability of handwritten algorithms and heuristics (i.e. it can only solve problems for
which we have written at least one algorithm that can solve it). The other extreme is to analyze
formulas solely with deep learning approaches (Allamanis et al., 2016; Evans et al., 2018; Selsam
et al., 2018; Amizadeh et al., 2019). However, this approach shows poor scalability compared to the
state-of-the-art in the respective domains depsite the recent breakthroughs in deep learning. Instead
of relying entirely on deep learning or on the availability of good handwritten algorithms, we explore
the middle ground. We ask the question how to tightly combine deep learning with formal reasoning
algorithms with the goal to improve the state-of-the-art, i.e. to solve formulas that could not be solved
previously.

Existing formal reasoning tools work in a mechanical way: they only apply a small number of
carefully crafted operations and use heuristics to resolve the degrees of freedom in how to apply them.
We address the problem of automatically learning better heuristics for a given set of formulas. We
focus on the branching heuristic in modern backtracking search algorithms, as they are known to have
a high impact on the performance of the algorithm. We cast the problem to learn better branching
heuristics for backtracking search algorithms as a reinforcement learning problem: Initially, the
reinforcement learning environment randomly picks a formula from a given set of formulas, and
then runs the backtracking search algorithm on that formula. The actions that are controlled by the
learning agent are the branching decisions, i.e. pick a variable and assign it a value - everything else
is handled by the solver.

Challenges This reinforcement learning problem comes with several unique challenges:

1



Published as a conference paper at ICLR 2020

Representation: While learning algorithms for images and board-games usually rely on the grid-like
structure of the input and employ neural networks that match that structure (e.g. convolutional neural
networks). For formulas, however, there is no standard representation for learning algorithms.

It may seem reasonable to treat Boolean formulas as text and learn embeddings for formulas through
techniques such as word2vec (Mikolov et al., 2013), LSTMs, or tree RNNs. However, formulas in
formal reasoning tools typically consist of thousands of variables, which is much larger than the
text-fragments typically analyzed with neural networks. Further, unlike words in natural language,
individual variables in Boolean formulas are completely devoid of meaning. The meaning of variable
x in one formula is basically independent from variable x in a second formula. Hence, learning
embeddings for variables and sharing them between formulas would be futile.

Unbounded action space: An action consists of a choice of variable and value. While values will be
Boolean, the number of variables depends on the size of the input formula. Therefore, we have an
unbounded number of actions, which are further different for every formula.

Length of episodes: As we are dealing with a highly complex search problem, solver runs (= learning
episodes) can be very long—in fact, for many of the formulas we have never observed a terminating
run—and we observed a huge variance in the length of runs.

Performance: Our aim is to solve more formulas in less time. The use of neural networks incurs a
huge runtime overhead for each decision (the solver takes ≥10x fewer decisions per second). So the
decisions taken by the neural networks need to be dramatically better than the handcoded heuristic
decisions to outweigh their runtime cost.

Correctness: Reinforcement learning algorithms have shown to often find and exploit subtle im-
plementation errors in the environment, instead of solving the intended problem. While testing and
manual inspection of the results is a feasible approach for board games and Atari games, it is neither
possible nor sufficient in large-scale formal reasoning - a solver run is simply too large to inspect
manually and even tiny mistake can invalidate the result. In order to ensure correctness, we need an
environment with the ability to produce formal proofs, and check the proofs by an independent tool.

Quantified Boolean Formulas In this paper we focus on 2QBF, that is quantified Boolean formulas
of the form ∀X.∃Y.ϕ, where X and Y are sets of Boolean variables and ϕ is in conjunctive normal
form. 2QBFs are complex enough to serve as an interesting proxy for complex mathematical
reasoning tasks. Challenging applications such as program synthesis and the synthesis of controllers
and ranking functions have been encoded into 2QBFs Solar-Lezama et al. (2006); Faymonville et al.
(2017); Cook et al. (2013). However, the problem definition and also the syntactical structure of
2QBF is simple compared to more general settings, such as first-order or even higher-order logics.
This makes algorithms for 2QBF a good target for the study of neural architectures.

While our approach in principle works with most algorithms for QBF, we decided to demonstrate
its use in Incremental Determinization (Rabe & Seshia, 2016). We modified CADET, an open-
source implementation of Incremental Determinization that performed competitively in recent QBF
competitions (Pulina, 2016) and turned it into a reinforcement learning environment. The advantage
of CADET in the context of reinforcement learning is its ability to produce proofs (which most other
solvers do not), which ensures that the reinforcement learning cannot simply learn to exploit bugs in
the environment.

Graph Neural Networks We consider each constraint and each variable of a given formula as a
node in a graph. Whenever a variable occurs in a constraint, we draw an edge between their nodes.
We then use a Graph Neural Network (GNN) (Scarselli et al., 2009) to predict the quality of each
variable as a decision variable, and pick our next action accordingly. GNNs allow us to compute
an embedding for every variable, based on the occurrences of that variable in the given formula,
instead of learning an embedding that is shared across all formulas. Based on this embedding, we
then use a policy network to predict the quality of each variable (or literal), and choose the next action
accordingly. GNNs also allow us to scale to arbitrarily large formulas with a small and constant
number of parameters.

2



Published as a conference paper at ICLR 2020

Contributions This paper presents the successful integration of GNNs in a modern automated
reasoning algorithm in a reinforcement learning setup.1 Our approach balances the performance
penalty incured by the use of neural networks with the impact that improved heuristic decisions have
on the overall reasoning capabilities. The branching heuristic that we learn significantly improves
CADET’s reasoning capabilities on the test set of the benchmark, i.e. it solves more formulas within
the same resource constraints. This is a huge step towards replacing VSIDS, the dominant branching
heuristic in CDCL-based solvers for the last 20 years Moskewicz et al. (2001b); Eén & Sörensson
(2003); Biere et al. (2009); Lonsing & Biere (2010); Rabe & Seshia (2016).

We also study the generalization properties of our approach: We show that training a heuristic on
small and easy formulas helps us to solve much larger and harder formulas; generalization to formulas
from different benchmarks is still limited though. Further, we provide an open-source learning
environment for reasoning in quantified Boolean formulas. The environment includes the ability to
verify its own runs, and thereby ensures that the reinforcement learning agent does not only learn to
exploit implementation errors of the environment.

Structure: After a primer on Boolean logics in Section 2 we define the problem in Section 3, and
describe the network architecture in Section 4. We describe our experiments in Section 5, discuss
related work in Section 6 and present our conclusions in Section 7.

2 BOOLEAN LOGICS AND SEARCH ALGORITHMS

We start with describing propositional (i.e. quantifier-free) Boolean logic. Propositional Boolean logic
allows us to use the constants 0 (false) and 1 (true), variables, and the standard Boolean operators
like ∧ (“and”), ∨ (“or”), and ¬ (“not”).

A literal of variable v is either the variable itself or its negation ¬v. By l̄ we denote the logical
negation of literal l. We call a disjunction of literals a clause and say that a formula is in conjunctive
normal form (CNF), if it is a conjunction of clauses. For example, (x ∨ y) ∧ (¬x ∨ y) is in CNF.
It is well known that any Boolean formula can be transformed into CNF. It is less well known
that this increases the size only linearly, if we allow the transformation to introduce additional
variables (Tseitin, 1968). We thus assume that all formulas in this work are given in CNF.

DPLL and CDCL. The satisfiability problem of propositional Boolean logics (SAT) is to find a
satisfying assignment for a given Boolean formula or to determine that there is no such assignment.
SAT is the prototypical NP-complete problem and many other problems in NP can be easily reduced
to it. The first backtracking search algorithms for SAT are attributed to Davis, Putnam, Logemann,
and Loveland (DPLL) (Davis & Putnam, 1960; Davis et al., 1962). Backtracking search algorithms
gradually extend a partial assignment until it becomes a satisfying assignment, or until a conflict
is reached. A conflict is reached when the current partial assignment violates one of the clauses
and hence cannot be completed to a satisfying assignment. In case of a conflict, the search has to
backtrack and continue in a different part of the search tree.

Conflict-driven clause learning (CDCL) is a significant improvement over DPLL due to Marques-
Silva and Sakallah (Marques-Silva & Sakallah, 1997). CDCL combines backtracking search with
clause learning. While DPLL simply backtracks out of conflicts, CDCL “analyzes” the conflict by
performing a couple of resolution steps. Resolution is an operation that takes two existing clauses
(l1 ∨ · · · ∨ ln) and (l′1 ∨ · · · ∨ l′n) that contain a pair of complementary literals l1 = ¬l′1, and derives
the clause (l2 ∨ · · · ∨ ln ∨ l′2 ∨ · · · ∨ l′n). Conflict analysis adds new clauses over time, which cuts off
large parts of the search space and thereby speeds up the search process.

Since the introduction of CDCL in 1997, countless refinements of CDCL have been explored and
clever data structures improved its efficiency significantly (Moskewicz et al., 2001a; Eén & Sörensson,
2003; Goldberg & Novikov, 2007). Today, the top-performing SAT solvers, such as Lingeling (Biere,
2010), Crypominisat (Soos, 2014), Glucose (Audemard & Simon, 2014), and MapleSAT (Liang et al.,
2016), all rely on CDCL and they solve formulas with millions of variables for industrial applications
such as bounded model checking (Biere et al., 2003).

1An earlier version of this work was published on https://arxiv.org/abs/1807.08058

3

https://arxiv.org/abs/1807.08058


Published as a conference paper at ICLR 2020

Quantified Boolean Formulas. QBF extends propositional Boolean logic by quantifiers, which
are statements of the form “for all x” (∀x) and “there is an x” (∃x). The formula ∀x. ϕ is true if, and
only if, ϕ is true if x is replaced by 0 (false) and also if x is replaced by 1 (true). The semantics of ∃
arises from ∃x. ϕ = ¬∀x. ¬ϕ. We say that a QBF is in prenex normal form if all quantifiers are in
the beginning of the formula. W.l.o.g., we will only consider QBF that are in prenex normal form and
whose propositional part is in CNF. Further, we assume that for every variable in the formula there is
exactly one quantifier in the prefix. An example QBF in prenex CNF is ∀x. ∃y. (x ∨ y) ∧ (¬x ∨ y).

We focus on 2QBF, a subset of QBF that admits only one quantifier alternation. W.l.o.g. we can
assume that the quantifier prefix of formulas in 2QBF consists of a sequence of universal quantifiers
∀x1 . . . ∀xn, followed by a sequence of existential quantifiers ∃y1 . . . ∃ym. While 2QBF is less
powerful than QBF, we can encode many interesting applications from verification and synthesis,
e.g. program synthesis (Solar-Lezama et al., 2006; Alur et al., 2013). Solvers for (2)QBF typically
address the decision problem to determine the truth of a given formula (TQBF). After the success of
CDCL for SAT, CDCL-like algorithms have been explored for QBF as well (Giunchiglia et al., 2001;
Lonsing & Biere, 2010; Rabe & Seshia, 2016; Rabe et al., 2018). We focus on CADET, a solver that
implements Incremental Determinization a generalized CDCL backtracking search algorithm (Rabe
& Seshia, 2016; Rabe et al., 2018). Instead of considering only Booleans as values, the Incremental
Determinization algorithm assigns and propagates on the level of Skolem functions. For the purpose
of this work, however, we do not have to dive into the details of Incremental Determinization and can
consider it simply as some backtracking algorithm.

Correctness. Writing performant code is an error-prone task, and correctness is critical for many
applications of formal reasoning. Some automated reasoning tools hence have the ability to produce
proofs, which can be checked independently. CADET is one of the few QBF solvers that can produce
proofs without runtime overhead. We believe that the ability to verify results of solvers is particularly
crucial for learning applications, as it allows us to ensure that the reinforcement learning algorithm
does not simply exploit implementation error (bugs) in the environment.

3 PROBLEM DEFINITION

In this section, we first revisit reinforcement learning and explain how it maps to the setting of
logic solvers. In reinforcement learning, we consider an agent that interacts with an environment E
which is modeled as a Markov Decision Process (MDP) over discrete time steps and accumulates
reward. Formally, a MDP is a 4-tuple of states S, action space A, transition probabilities P and
reward function R. A policy is a mapping from states to probability distributions over the actions
π : S → dist(A). The goal of the agent is to maximize the expected (possibly discounted) reward
accumulated over the episode; formally J(π) = E [

∑∞
t=0 γ

trt|π].

In our setting, the environment E is the solver CADET (Rabe & Seshia, 2016). The environment is
deterministic except for the initial state, where a formula is chosen randomly from a distribution. At
each time step, the agent gets an observation, which consists of the formula and the solver state. Only
those variables that do not have a value yet are valid actions, and we assume that the observation
includes the set of available actions. The agent then selects one action from the subset of the available
variables. Formally, the space of actions is the set of all variables in all possible formulas in all solver
states, where at every state only a small finite number of them is available. Practically, the agent will
never see the effect of even a small part of these actions, and so it must generalize to unseen actions.
An episode is the result of the interaction of the agent with the environment. We consider an episode
to be complete, if the solver reaches a terminating state in the last step. As there are arbitrarily long
episodes, we want to abort them after some step limit (the decision limit) and consider these episodes
as incomplete.

3.1 BASELINES

While there are no competing learning approaches yet, human researchers and engineers have tried
many heuristics for selecting the next variable. VSIDS is the best known heuristic for the solver we
consider. It has been a dominant heuristic for SAT and several CDCL-based QBF algorithms for over
20 years now Moskewicz et al. (2001b); Eén & Sörensson (2003); Biere et al. (2009); Lonsing &
Biere (2010); Rabe & Seshia (2016). We therefore consider VSIDS as the main baseline. VSIDS

4



Published as a conference paper at ICLR 2020

A, v1, . . . ,vn, c1, . . . , cm

Encoder GNN

. . .emb. of v1 emb. of ¬vn

. . .Policy NN

sg

Policy NN

sg

qual. of v1 qual. of ¬vn

Softmax

probabilities ∈ R2n

Figure 1: Sketch of the architecture for a formula ϕ with n variables vi and m clauses. sg is the
global state of the solver, A is the adjacency matrix, and vi and ci are the variable and clause labels.

maintains an activity score per variable and always chooses the variable with the highest activity that
is still available. The activity reflects how often a variable recently occurred in conflict analysis. To
select a literal of the chosen variable, VSIDS uses the Jeroslow-Wang heuristic (Jeroslow & Wang,
1990), which selects the polarity of the variable that occurs more often, weighted by the size of
clauses they occur in. For reference, we also consider the Random heuristic, which chooses one of
the available actions uniformly at random.

4 THE NEURAL NETWORK ARCHITECTURE

Our model gets an observation, consisting of a formula and the state of the solver, and selects one of
the formula’s literals (= a variable and a Boolean value) as its action. The model has two components:
An encoder that produces an embedding for every literal, and a policy network that that rates the
quality of each literal based on its embedding. We give an overview of the architecture in Fig. 1,
describe the GNN in Subsection 4.1 and the policy network in Subsection 4.2.

4.1 A GNN ENCODER FOR BOOLEAN FORMULAS

In order to employ GNNs, we view the formula as a graph, where each clause and each literal
is a node (see Fig. 2. For each literal in each clause, we draw an edge between their nodes.

x

y (x ∨ y)

¬x (¬x ∨ y)

¬y

Figure 2: The bipartite graph
for (x ∨ y) ∧ (¬x ∨ y).

The resulting graph is bipartite and hence, we represent its edges as
an 2n ×m adjacency matrix A with values in {0, 1}, where 2n is
the number of literals and m is the number of clauses. This graph
structure determines the semantics of the formula except for the
quantification of variables (i.e. whether a variable is universally or
existentially quantified), which are provided as labels to the vari-
ables. For each variable v, the variable label v ∈ RλV , with λV = 7,
indicates whether the variable is universally or existentially quanti-
fied, whether it currently has a value assigned, and whether it was
selected as a decision variable already on the current search branch.
We use the variable label for both of its literals and by vl we denote
the label of the variable of l. For each clause c, the clause label c ∈ R is a single scalar (in {0, 1}),
indicating whether the clause was original or derived during conflict analysis.

While we are ultimately only interested in embeddings for literals, our GNN also computes embed-
dings for clauses as intermediate values. Literal embeddings have dimension δL = 16 and clause
embeddings have dimension δC = 64. The GNN computes the embeddings over τ rounds. We define

5



Published as a conference paper at ICLR 2020

the initial literal embedding as l0 = 0, and for each round 1 ≤ t ≤ τ , we define the literal embedding
lt ∈ RδL for every literal l and the clause embedding ct ∈ RδC for every clause c ∈ C as follows:

ct = ReLU
(∑

l∈cWL[v>l , l
>
t−1, l̄

>
t−1] + BL

)
, and lt = ReLU

(∑
c,l∈cWC [c>, c>t ] + BC

)
.

The trainable parameters of our model are indicated as bold capital letters. They consist of the
matrix WL of shape (2δL + λV , δC), the vector BL of dimension δC , the matrix WC of shape
(δC + λC , δL), and the vector BC of dimension δL.

Invariance properties. The meaning of a formula in CNF is invariant under permutations of its clauses
and of literals within each clause due to the commutativity of conjunction and disjunction. Our GNN
architecture is invariant under these reorderings, as both conjunctions and disjunctions are computed
through commutative operations (a sum), and, therefore, it cannot accidentally overspecialize to
the ordering of clauses or literals. Swapping the literals of a variable does not change the truth
of the formula either, and our GNN architecture respects that as well. The only place in our
architecture where we use the information of which literals belong to the same variable is in the input
to ct. Depending on which literal of a variable occurs in the clause we order its literal embeddings
differently. Lastly, note that variables are completely nameless in our representation.

4.2 POLICY NETWORK

The policy network predicts the quality of each literal based on the literal embedding and the
global solver state. The global solver state is a collection of λG = 5 values that include only the
essential parts of solver state that are not associated with any particular variable or clause. We
provide additional details in Appendix A. The policy network thus maps the final literal embedding
[v>l , l

>
τ , l̄

>
τ ] concatenated with the global solver state to a single numerical value indicating the

quality of the literal. The policy network thus has λV + 2δL + λG inputs, which are followed by two
fully-connected layers. The two hidden layers use the ReLU nonlinearity. We turn the predictions
of the policy network into action probabilities by a masked softmax. We mask all “illegal” actions,
effectively ignoring the embeddings of variables which are universal, or are assigned already.

Note that the policy network predicts a score for each literal independently. All information about the
graph that is relevant to the policy network must hence flow through the literal embedding. Since
we experimented with graph neural networks with few iterations this means that the quality of each
literal is decided locally. The rationale behind this design is that it is simple and efficient.

5 EXPERIMENTS

We conducted several experiments to examine whether we can improve the heuristics of the logic
solver CADET through our deep reinforcement learning approach. 2

Q1 Can we learn to predict good actions for a family of formulas?
Q2 How does the policy trained on short episodes generalize to long episodes?
Q3 How well does the learned policy generalize to formulas from a different family of formulas?
Q4 Does the improvement in the policy outweigh the additional computational effort? That is,

can we solve more formulas in less time with the learned policy?

5.1 DATA

In contrast to most other works in the area, we evaluate our approach over a benchmark that (1) has
been generated by a third party before the conception of this paper, and (2) is challenging to state-
of-the-art solvers in the area. We consider a set of formulas representing the search for reductions
between collections of first-order formulas generated by Jordan & Kaiser (2013), which we call
Reductions in the following. Reductions is interesting from the perspective of QBF solvers, as its
formulas are often part of the QBF competition. It consists of 4608 formulas of varying sizes and
with varying degrees of hardness. On average the formulas have 316 variables; the largest formulas
in the set have over 1600 variables and 12000 clauses. We filtered out 2573 formulas that are solved

2We provide the code and data of our experiments at https://github.com/lederg/learningqbf.

6

https://github.com/lederg/learningqbf


Published as a conference paper at ICLR 2020

0 20 40 60 80
100

101

102

103

solved formulas

de
ci

si
on

lim
it

Random
VSIDS
Learned

0 20 40 60 80 100 120
10−2

10−1

100

101

102

103

solved formulas

tim
e

lim
it

in
se

co
nd

s VSIDS
Learned

Figure 3: Two cactus plots showing how the number of solved formulas from the test set grows with
increasing resource bounds. Left: Comparing the number of formulas solved with growing decision
limit for Random, VSIDS, and our learned heuristic. Right: Comparing the number of formulas
solved with growing wall clock time. Lower and further to the right is better.

without any heuristic decisions. In order to enable us to answer question 2 (see above), we further set
aside a test set of 200 formulas, leaving us with a training set of 1835 formulas.

We additionally consider the 2QBF evaluation set of the annual competition of QBF solvers, QBFE-
VAL (Pulina, 2016). This will help us to study cross-benchmark generalization.

5.2 REWARDS AND TRAINING

We jointly train the encoder network and the policy network using REINFORCE (Williams, 1992).
For each batch we sample a formula from the training set, and generate b episodes by solving it
multiple times. In each episode we run CADET for up to 400 steps using the latest policy. Then we
assign rewards to the episodes and estimate the gradient. We apply standard techniques to improve
the training, including gradient clipping, normalization of rewards, and whitening of input data.

We assign a small negative reward of −10−4 for each decision to encourage the heuristic to solve
each formula in fewer steps. When a formula is solved successfully, we assign reward 1 to the last
decision. In this way, we effectively treat unfinished episodes (> 400 steps) as if they take 10000
steps, punishing them strongly.

5.3 RESULTS

We trained the model described in Section 4 on the Reductions training set. We denote the resulting
policy Learned and present the aggregate results in Figure 3 as a cactus plot, as usual for logic
solvers. The cactus plot in Figure 3 indicates how the number of solved formulas grows for increasing
decision limits on the test set of the Reductions formulas. In a cactus plot, we record one episode for
each formula and each heuristic. We then sort the runs of each heuristic by the number of decisions
taken in the episode and plot the series. When comparing heuristics, lower lines (or lines reaching
further to the right) are thus better, as they indicate that more formulas were solved in less time.

We see that for a decision limit of 400 (dashed line in Fig. 3, left), i.e. the decision limit during
training, Learned solved significantly more formulas than either of the baselines. The advantage of
Learned over VSIDS is about as large as VSIDS over purely random choices. This is remarkable for
the field and we can answer Q1 positively.

Figure 3 (left) also shows us that Learned performs well far beyond the decision limit of 400 steps
that was used during its training. Observing the vertical distance between the lines of Learned and
VSIDS, we can see that the advantage of Learned over VSIDS even grows exponentially with an
increasing decision limit. (Note that the axis indicating the number of decisions is log-scaled.) We
can thus answer Q2 positively.

A surprising fact is that small and shallow neural networks already achieved the best results. Our
best model uses τ = 1, which means that for judging the quality of each variable, it only looks at the
variable itself and the immediate neighbors (i.e. those variables it occurs together with in a constraint).

7



Published as a conference paper at ICLR 2020

The hyperparameters that resulted in the best model are δL = 16, δC = 64, and τ = 1, leading to a
model with merely 8353 parameters. The small size of our model was also helpful to achieve quick
inference times.

To answer Q3, we evaluated the learned heuristic also on our second data set of formulas from the
QBF solver competition QBFEVAL. Random solved 67 formulas, VSIDS solved 125 formulas, and
Learned solved 111 formulas. The policy trained on Reductions significantly improved over random
choices, but does not beat VSIDS. This is hardly surprising, as our learning approach specialized the
solver to a specific—different—distribution of formulas. Also it must be taken into account that the
solver CADET has been tuned to QBFEVAL over year, and hence may perform much stronger on
QBFEVAL than on the Reductions benchmark. We include further cross-benchmark generalization
studies in the Appendix.

To answer our last question, Q4, we compare the runtime of CADET in with our learned heuristic to
CADET with the standard VSIDS heuristic. In Fig. 3 (right) we see that for small time limits (up
to 10 seconds), VSIDS still solves more formulas than the learned heuristic. But, for higher time
limits, the learned heuristic starts to outperform VSIDS. For a time limit of 1 hour, we solved 120
formulas with the learned heuristic while only 110 formulas were solved with VSIDS (see right top
corner). Conversely, for solving 110 formulas the learned heuristic required a timeout of less than
12 minutes, while VSIDS took an hour. Furthermore, our learning and inference implementation
is written in Python and not particularly optimized. The NN agent is running in a different process
from CADET, and incurs an overhead per step for inter-process communication and context switches,
which is enormous compared to the pure C implementation of CADET using VSIDS. This overhead
could be easily reduced, and so we expect the advantage of our approach to grow.

6 RELATED WORK

Independent from our work, GNNs for Boolean logic have been explored in NeuroSAT (Selsam
et al., 2018), where the authors use it to solve the SAT problem directly. While using a similar neural
architecture, the network is not integrated in a state-of-the-art logic solver, and does not improve
the state of the art in performance. Selsam & Bjørner (2019) recently extended NeuroSAT to use its
predictions in a state-of-the-art SAT solver. In contrast to their work, we integrate GNNs much tigher
into the solver and train the heuristics directly through reinforcement learning. Thus allow deep
learning to take direct control of the solving process. Also, we focus on QBF instead of SAT, which
strongly affects the runtime tradeoffs between spending time on “thinking” about a better decision
versus executing many “stupid” decisions.

Amizadeh et al. (2019) suggest an architecture that solves circuit-SAT problems. Unlike NeuroSAT,
and similar to our approach, they train their model directly to find a satisfying assignment by using a
differentiable “soft” satisfiability score as their loss. However, like NeuroSAT, their approach aims to
solve the problem from scratch, without leveraging an existing solver, and so is difficult to scale to
state-of-the-art performance. They hence focus on small random problems. In contrast, our approach
improves the performance of a state-of-the-art algorithm. Furthermore, our learned heuristic applies
to SAT and UNSAT problems alike.

Yang et al. (2019) extended the NeuroSAT architecture to 2QBF problems. In contrast to our work,
they do not embed their GNN model in a modern DPLL solver, and instead try to predict good
counter-examples for a CEGAR solving approach. They focus on formulas with 18 variables, which
are trivial for state-of-the-art solvers. Chen & Yang (2019) showed that a pure GNN approach is
unable to solve Boolean formulas when they are unsatisfiable, which in our work is addressed by
combining GNNs with a logic reasoning engine.

Reinforcement learning has been applied to other logic reasoning tasks. Kaliszyk et al. (2018)
recently explored learning linear policies for tableaux-style theorem proving. Kurin et al. (2019)
follow a similar approach to ours for SAT solvers, but only evaluate on small synthetic formulas
and do not improve the overall performance of the underlying SAT solver. Kusumoto et al. (2018)
applied reinforcement learning to propositional logic in a setting similar to ours; just that we employ
the learning in existing strong solving algorithms, leading to much better scalability. Balunovic et al.
(2018) use deep reinforcement learning to improve the application of high-level strategies in SMT
solvers, but do not investigate a tighter integration of deep learning with logic solvers. Also other

8



Published as a conference paper at ICLR 2020

works on combinatorial search explored the use of GNNs (some trained with reinforcement learning)
for problems such as random SAT (Yolcu & Póczos, 2019), coloring graphs (Huang et al., 2019), and
MILP (Gasse et al., 2019).

Most previous approaches that applied neural networks to logical formulas used LSTMs or tree
models syntax-tree of formulas (Bowman et al., 2014; Irving et al., 2016; Allamanis et al., 2016;
Loos et al., 2017; Evans et al., 2018; Chvalovsky, 2019; Chen & Tian, 2018) or classical ML
models (Gauthier et al., 2017; Kaliszyk et al., 2018; Soos et al., 2019). Instead, we suggest a GNN
approach, based on a graph-view on formulas in CNF. Recent work suggests that GNNs appear to be a
good architecture for logics (Paliwal et al., 2019; Wang et al., 2017). Bansal et al. (2019); Huang et al.
(2018); Yang & Deng (2019) provide a learning environments around interactive theorem provers.

Other competitive QBF algorithms include expansion-based algorithms (Biere, 2004; Pigorsch &
Scholl, 2010), CEGAR-based algorithms (Janota & Marques-Silva, 2011; 2015; Rabe & Tentrup,
2015), circuit-based algorithms (Klieber, 2012; Tentrup, 2016; Janota, 2018a;b), and hybrids (Janota
et al., 2012; Tentrup, 2017). Recently, Janota (2018a) successfully explored the use of (classical)
machine learning techniques to address the generalization problem in QBF solvers.

7 CONCLUSIONS

We presented an approach to improve the heuristics of a backtracking search algorithm for Boolean
logic through deep reinforcement learning. Our approach brings together the best of two worlds:
The superior flexibility and performance of intuitive reasoning of neural networks, and the ability
to explain (prove) results in formal reasoning. The setting is new and challenging to reinforcement
learning; QBF is a very general, combinatorial problem class, featuring an unbounded input-size and
action space. We demonstrate that these problems can be overcome, and reduce the overall execution
time of a competitive QBF solver by a factor of 10 after training on similar formulas.

This work demonstrates the huge potential that lies in the tight integration of deep learning and
logical reasoning algorithms, and hence motivates more aggressive research efforts in the area.
Our experiments suggest two challenges that we want to highlight: (1) We used very small neural
networks, and—counterintuitively—larger neural networks were not able to improve over the small
ones in our experiments. (2) The performance overhead due to the use of neural networks is large;
however we think that with more engineering effort we could be significantly reduce this overhead.

Acknowledgements. This work was supported in part by National Science Foundation (NSF)
grants CNS-1836601, CNS-1446619, CNS-1739816, and CCF-1837132, by the iCyPhy center, and
by Berkeley Deep Drive. The second author was affiliated with UC Berkeley during the initial part of
this work.

REFERENCES

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning
continuous semantic representations of symbolic expressions. arXiv preprint arXiv:1611.01423,
2016.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Proceedings of the IEEE International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 1–17, October 2013.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-SAT: An
unsupervised differentiable approach. In ICLR, 2019.

Gilles Audemard and Laurent Simon. Glucose in the SAT 2014 competition. SAT COMPETITION
2014, pp. 31, 2014.

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

9

http://arxiv.org/abs/1607.06450


Published as a conference paper at ICLR 2020

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve SMT formulas.
In NeurIPS. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8233-learning-to-solve-smt-formulas.pdf.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. HOList:
An environment for machine learning of higher-order theorem proving. CoRR, abs/1904.03241,
2019. URL http://arxiv.org/abs/1904.03241.

Armin Biere. Resolve and expand. In International Conference on Theory and Applications of
Satisfiability Testing (SAT), pp. 59–70. Springer, 2004.

Armin Biere. Lingeling, plingeling, picosat and precosat at sat race 2010. FMV Report Series
Technical Report, 10(1), 2010.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu, et al. Bounded
model checking. Advances in computers, 58(11):117–148, 2003.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. IOS
press, 2009.

Samuel R Bowman, Christopher Potts, and Christopher D Manning. Recursive neural networks can
learn logical semantics. arXiv preprint arXiv:1406.1827, 2014.

Xinyun Chen and Yuandong Tian. Learning to progressively plan. CoRR, abs/1810.00337, 2018.
URL http://arxiv.org/abs/1810.00337.

Ziliang Chen and Zhanfu Yang. Graph neural reasoning may fail in certifying boolean unsatisfiability,
2019.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL
http://arxiv.org/abs/1412.3555.

Karel Chvalovsky. Top-down neural model for formulae. In ICLR, 2019.

Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M Wintersteiger. Ranking function
synthesis for bit-vector relations. Formal methods in system design, 43(1):93–120, 2013.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM (JACM), 7(3):201–215, 1960.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In International Conference on Theory
and Applications of Satisfiability Testing (SAT), pp. 502–518. Springer, 2003.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.

Peter Faymonville, Bernd Finkbeiner, Markus N Rabe, and Leander Tentrup. Encodings of bounded
synthesis. In International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 354–370. Springer, 2017.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. 2019.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning to reason with HOL4
tactics. EPiC Series in Computing, 46:125–143, 2017.

Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. QUBE: A system for decid-
ing quantified boolean formulas satisfiability. In International Joint Conference on Automated
Reasoning, pp. 364–369. Springer, 2001.

10

http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
http://arxiv.org/abs/1904.03241
http://arxiv.org/abs/1810.00337
http://arxiv.org/abs/1412.3555


Published as a conference paper at ICLR 2020

Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver. Discrete Applied
Mathematics, 155(12):1549–1561, 2007.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environment
for theorem proving. arXiv preprint arXiv:1806.00608, 2018.

Jiayi Huang, Mostofa Patwary, and Gregory Diamos. Coloring big graphs with AlphaGoZero. arXiv
preprint arXiv:1902.10162, 2019.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef
Urban. Deepmath-deep sequence models for premise selection. In NeurIPS, pp. 2235–2243, 2016.

Mikoláš Janota. Towards generalization in QBF solving via machine learning. In AAAI Conference
on Artificial Intelligence, 2018a.

Mikoláš Janota. Circuit-based search space pruning in QBF. In International Conference on Theory
and Applications of Satisfiability Testing (SAT). Springer, 2018b.

Mikoláš Janota and Joao Marques-Silva. Abstraction-based algorithm for 2QBF. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 230–244. Springer,
2011.

Mikolás Janota and Joao Marques-Silva. Solving QBF by clause selection. In IJCAI, pp. 325–331,
2015.

Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke. Solving QBF with
counterexample guided refinement. In International Conference on Theory and Applications of
Satisfiability Testing (SAT), pp. 114–128. Springer, 2012.

Robert G Jeroslow and Jinchang Wang. Solving propositional satisfiability problems. Annals of
mathematics and Artificial Intelligence, 1(1-4):167–187, 1990.

Charles Jordan and Łukasz Kaiser. Experiments with reduction finding. In International Conference
on Theory and Applications of Satisfiability Testing (SAT), pp. 192–207. Springer, 2013.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Mirek Olšák. Reinforcement learning of
theorem proving. arXiv preprint arXiv:1805.07563, 2018.

William Klieber. Ghostq QBF solver system description, 2012.

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Improving SAT solver heuristics
with graph networks and reinforcement learning. ArXiv, abs/1909.11830, 2019.

Mitsuru Kusumoto, Keisuke Yahata, and Masahiro Sakai. Automated theorem proving in intuitionistic
propositional logic by deep reinforcement learning. arXiv preprint arXiv:1811.00796, 2018.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based branching
heuristic for sat solvers. In International Conference on Theory and Applications of Satisfiability
Testing (SAT), pp. 123–140. Springer, 2016.

Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver. JSAT, 7(2-3):71–76,
2010.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

João P Marques-Silva and Karem A Sakallah. GRASP - A new search algorithm for satisfiability. In
Computer Aided Design, pp. 220–227. IEEE, 1997.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation
Conference, pp. 530–535. ACM, 2001a.

11



Published as a conference paper at ICLR 2020

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings DAC, pp. 530–535. ACM, 2001b. ISBN
1-58113-297-2. doi: 10.1145/378239.379017.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. CoRR, abs/1905.10006, 2019. URL
http://arxiv.org/abs/1905.10006.

Florian Pigorsch and Christoph Scholl. An AIG-based QBF-solver using SAT for preprocessing. In
Proceedings of the 47th Design Automation Conference, pp. 170–175. ACM, 2010.

Luca Pulina. The ninth QBF solvers evaluation-preliminary report. In QBF@ SAT, pp. 1–13, 2016.

Markus N Rabe and Sanjit A Seshia. Incremental determinization. In International Conference
on Theory and Applications of Satisfiability Testing (SAT), pp. 375–392. Springer International
Publishing, 2016.

Markus N Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In Formal Methods in
Computer-Aided Design (FMCAD), 2015, pp. 136–143. IEEE, 2015.

Markus N Rabe, Leander Tentrup, Cameron Rasmussen, and Sanjit A Seshia. Understanding and
extending incremental determinization for 2QBF. In International Conference on Computer Aided
Verification (accepted), 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. Trans. Neur. Netw., 20(1):61–80, January 2009. ISSN
1045-9227. doi: 10.1109/TNN.2008.2005605. URL http://dx.doi.org/10.1109/TNN.
2008.2005605.

Daniel Selsam and Nikolaj Bjørner. Neurocore: Guiding high-performance SAT solvers with
unsat-core predictions. CoRR, abs/1903.04671, 2019. URL http://arxiv.org/abs/1903.
04671.

Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura, and David L Dill.
Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Sanjit A. Seshia. Combining induction, deduction, and structure for verification and synthesis.
Proceedings of the IEEE, 103(11):2036–2051, 2015.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Combina-
torial sketching for finite programs. ACM Sigplan Notices, 41(11):404–415, 2006.

Mate Soos. Cryptominisat v4. SAT Competition, pp. 23, 2014.

Mate Soos, Raghav Kulkarni, and Kuldeep S. Meel. Crystalball: Gazing in the black box of sat
solving. In Proceedings of the International Conference on Theory and Applications of Satisfiability
Testing (SAT), 7 2019.

Leander Tentrup. Non-prenex QBF solving using abstraction. In International Conference on Theory
and Applications of Satisfiability Testing (SAT), pp. 393–401. Springer, 2016.

Leander Tentrup. On expansion and resolution in CEGAR based QBF solving. In International
Conference on Computer Aided Verification, pp. 475–494. Springer, 2017.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. Studies in constructive
mathematics and mathematical logic, 2(115-125):10–13, 1968.

Mingzhe Wang, Yihe Tang, J. J. Wang, and Jia Deng. Premise selection for theorem proving by deep
graph embedding. In NIPS, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

12

http://arxiv.org/abs/1905.10006
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1903.04671
http://arxiv.org/abs/1903.04671


Published as a conference paper at ICLR 2020

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. arXiv
preprint arXiv:1905.09381, 2019.

Zhanfu Yang, Fei Wang, Ziliang Chen, Guannan Wei, and Tiark Rompf. Graph neural reasoning for
2-quantified boolean formula solvers. arXiv preprint arXiv:1904.12084, 2019.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. 2019.

13



Published as a conference paper at ICLR 2020

A GLOBAL SOLVER STATE

1. Current decision level
2. Number of restarts
3. Restarts since last major restart
4. Conflicts until next restart
5. Ratio of variables that already have a Skolem function to total variables. Formula is solved

when this reaches 1.

B LITERAL LABELS

Here we describe the details of the variable labels presented to the neural network described in
Section 4. The vector v consists of the following 7 values:

y0 ∈ {0, 1} indicates whether the variable
is universally quantified,

y1 ∈ {0, 1} indicates whether the variable
is existentially quantified,

y2 ∈ {0, 1} indicates whether the variable
has a Skolem function already,

y3 ∈ {0, 1} indicates whether the variable
was assigned constant True,

y4 ∈ {0, 1} indicates whether the variable
was assigned constant False,

y5 ∈ {0, 1} indicates whether the variable
was decided positive,

y6 ∈ {0, 1} indicates whether the variable
was decided negative, and

C THE QDIMACS FILE FORMAT

QDIMACS is the standard representation of quantified Boolean formulas in prenex CNF. It consists of
a header “p cnf <num_variables> <num_clauses>” describing the number of variables
and the number of clauses in the formula. The lines following the header indicate the quantifiers.
Lines starting with ‘a’ introduce universally quantified variables and lines starting with ‘e’ introduce
existentially quantified variables. All lines except the header are terminated with 0; hence there
cannot be a variable named 0. Every line after the quantifiers describes a single clause (i.e. a
disjunction over variables and negated variables). Variables are indicated simply by an index; negated
variables are indicated by a negative index. Below give the QDIMACS representation of the formula
∀x. ∃y. (x ∨ y) ∧ (¬x ∨ y):

p c n f 2 2
a 1 0
e 2 0
1 2 0
−1 2 0

There is no way to assign variables strings as names. The reasoning behind this decision is that this
format is only meant to be used for the computational backend.

D HYPERPARAMETERS AND TRAINING DETAILS

We trained a model on the reduction problems training set for 10M steps on an AWS server of type
C5. We trained with the following hyperparameters, yet we note that training does not seem overly
sensitive:

• Literal embedding dimension: δL = 16

14



Published as a conference paper at ICLR 2020

0 100 200 300 400 500 600 700 800 900 1,000
100

101

102

103

solved formulas

de
ci

si
on

lim
it

Random
VSIDS
Words

Figure 4: A cactus plot describing how many formulas from the test set were solved within growing
decision limits on the Words test set. Lower and further to the right is better.

• Clause embedding dimension: δC = 64

• Learning rate: 0.0006 for the first 2m steps, then 0.0001

• Discount factor: γ = 0.99

• Gradient clipping: 2

• Number of iterations (size of graph convolution): 1

• Minimal number of timesteps per batch: 1200

E ADDITIONAL DATASETS AND EXPERIMENTS

While the set of Reductions-formulas we considered in the main part of the paper was created
independently from this paper and is therefore unlikely to be biased towards our approach, one may
ask if it is just a coincidence that our approach was able to learn a good heuristic for that particular
set of formulas. In this appendix we consider two additional sets of formulas that we call Boolean
and Words, and replicated the results from the main part. We show that we can learn a heuristic for a
given set/distribution of formulas that outperforms VSIDS by a significant margin.

Boolean is a set of formulas of random circuits. Starting from a fixed number (8) of Boolean inputs
to the circuit, individual AND-gates are added (with randomly chosen inputs with random polarity)
up to a certain randomized limit. This circuit is turned into a propositional Boolean formula using the
Tseitin transformation, and then a small fraction of random clauses is added to add some irregularities
to the circuit. (Up to this point, the process is performed by the fuzz-tester for SAT solvers, FuzzSAT,
available here http://fmv.jku.at/fuzzsat/.) To turn this kind of propositional formulas
into QBFs, we randomly selected 4 variables to be universally quantified. This resulted in a more or
less even split of true and false formulas. The formulas have 50.7 variables on average. In Figure 5
we see that training a model on these formulas (we call this model Boolean, like the data set) results
in significantly better performance than VSIDS. The advantage of the learned heuristic over VSIDS
and Random is smaller compared to the experiments on Reductions in the main part of the paper. We
conjecture that this is due to the fact that these formulas are much easier to begin with, which means
that there is not as much potential for improvement.

Words is a data set of random expressions over (signed) bitvectors. The top-level operator is a
comparison (=,≤,≥,<,>), and the two subexpressions of the comparison are arithmetic expressions.
The number of operators and leafs in each expression is 9, and all bitvectors have word size 8. The
expressions contain up to four bitvector variables, alternatingly assigned to be existentially and

15

http://fmv.jku.at/fuzzsat/


Published as a conference paper at ICLR 2020

0 100 200 300 400 500 600 700 800 900 1,000
100

101

102

103

solved formulas

de
ci

si
on

lim
it

Random
VSIDS
Boolean

Figure 5: A cactus plot describing how many formulas from the test set were solved within growing
decision limits on the Boolean test set. Lower and further to the right is better.

universally quantified. The formulas are simplified using the circuit synthesis tool ABC, and then
they are turned into CNF using the standard Tseitin transformation. The resulting formulas have 71.4
variables on average and are significantly harder for both Random and VSIDS. For example, the
first formula from the data set looks as follows: ∀z.∃x.((x− z) xor z) 6= z + 1, which results in a
QBF with 115 variables and 298 clauses. This statement happens to be true and is solved with just
9 decisions using the VSIDS heuristic. In Figure 4 we see that training a new model on the Words
dataset again results in significantly improved performance. (We named the model Words, after the
data set.)

We did not include the formula sets Boolean and Words in the main part, as they are generated by a
random process - in contrast to Reductions, which is generated with a concrete application in mind.
In the formal methods community, artificially generated sets of formulas are known to differ from
application formulas in non-obvious ways.

F ADDITIONAL EXPERIMENTS ON GENERALIZATION TO LARGER FORMULAS

An interesting observation that we made is that models trained on sets of small formulas generalize
well to larger formulas from similar distributions. To demonstrate this, we generated a set of larger
formulas, similar to the Words dataset. We call the new dataset Words30, and the only difference to
Words is that the expressions have size 30. The resulting formulas have 186.6 variables on average.
This time, instead of training a new model, we test the model trained on Words (from Figure 4) on
this new dataset.

In Figure 6, we see that the overall hardness (measured in the number of decisions needed to solve the
formulas) has increased a lot, but the relative performance of the heuristics is still very similar. This
shows that the heuristic learned on small formulas generalizes relatively well to much larger/harder
formulas.

In Fig. 3, we have already observed that the heuristic also generalizes well to much longer episodes
than those it was trained on. We believe that this is due to the “locality” of the decisions we force
the network to take: The graph neural network approach uses just one iteration, such that we force
the heuristics to take very local decisions. Not being able to optimize globally, the heuristics have to
learn local features that are helpful to solve a problem sooner rather than later. It seems plausible that
this behavior generalizes well to larger formulas (Fig. 6) or much longer episodes (Fig. 3).

16



Published as a conference paper at ICLR 2020

0 50 100 150 200 250 300 350 400 450 500 550 600
100

101

102

103

solved formulas

de
ci

si
on

lim
it

Random
VSIDS
Words

Figure 6: A cactus plot describing how many formulas were solved within growing decision limits
on the Words30 test set. Lower and further to the right is better. Note that unlike in the other plots,
the model Words was not trained on this distribution of formulas, but on the same Words dataset as
before.

G ENCODER VARIANTS AND HYPERPARAMETERS

The encoder described in Subsection 4.1 is by no means the only reasonable choice. In fact, the
graph representation described in Fig. 2 is not unique. One could just as well represent the formula
as a bipartite graph on variables and clauses, with two types of edges, one for each polarity. The
encoder then produces encodings of variables rather than literals, and the propagation along edges is
performed with two different learned parameter matrices, one for each edge type. The equations for
such an encoder are:

ct = ReLU

(∑
l∈c

WV [v>, v>t−1] + BV

)

vt = ReLU

(∑
c,v∈c

WC [c>, c>t ] + BC

)

Where WV is one of W+
V ,W

−
V (and similarly, WC ∈ {W+

C ,W
−
C }), depending on the polarity of the

occurence of v in c, with v as the variable’s label. Accordingly, we change the policy network to
produce two scores per variable embedding vτ , as the qualities of assigning this variable to positive
or negative polarity. In our experiments, this variant of the encoder achieved comparable results to
those of the literal-based encoder.

The hyperparameter τ controls the number of iterations within the GNN. Here too, there are several
variants of the encoder one could consider. The architecture described in Subsection 4.1, which
achieved the reported results, applies the same transformation for every iteration (the matrices WC ,
WL). We’ve also experimented with a variant that uses τ different learned transformations, one
per iteration, denoted W t

C ,W
t
L, for 1 ≤ t ≤ τ (intuitively, this allows the network to perform a

different computation in every iteration). It achieved comparable results, yet with roughly τ times
the number of parameters. A version with even more parameters gave the t′th transformation access
not only to the t− 1 embedding, but to all the 1, . . . , t− 1 previous embeddings, through residual
connections. This version also didn’t achieve significantly better results. To get results with more
than one iteration we had to add a normalization layer between every two iterations. We experimented
with both Layer Normalization (Ba et al., 2016) and a GRU cell (Chung et al., 2014), which gave

17



Published as a conference paper at ICLR 2020

0 10 20 30 40 50 60 70 80 90 100
100

101

102

103

solved formulas

de
ci

si
on

lim
it

Random
VSIDS

Zero iterations
Learned

With Activities

Figure 7: A cactus plot describing how many formulas were solved within growing decision limits on
the reduction test set with different models. VSIDS, Random, and Learned are same as left side of
Figure 3.

similar results. Adding a 2nd and 3rd iteration achieved only slightly better results when measuring
number of decisions to solve a formula, at the cost of more parameters, slower training, and more
importantly, slower inference at runtime. When measuring number of formulas solved in real time,
a single iteration achieved best results overall. However, given the large overhead of our agent
implementation, it is possible that an optimized in-process implementation could still benefit from
multiple iterations in the GNN.

It is interesting to point out that when we tested a model with zero iterations, that is, no GNN at all,
where the policy network gets to see only the variable labels from the solver, it achieved results that
were better than Random and clearly demonstrated learning, but worse than VSIDS, and considerably
less than the results for 1 iteration. That shows that at least the 1-hop neighborhood of a variable
contains information which is crucial, we cannot achieve comparable results without considering this
local topology of the graph.

Another interesting observation is that the model which achieved best results did not have access
to the variable VSIDS activity scores! Adding activity scores to the variable feature vectors in fact
slightly degraded performence. It learns faster, but converges to a lower average reward, and performs
slighly worse on the validation and test sets, especially on the harder problems. We hypothesize
that this is because the model learns to rely on the activity scores, and they will be quite different in
harder (longer) episodes, and outside the range it trained on. Furthermore, it shows that it is possible
to achieve a heuristic which performs better than VSIDS without even computing activities!

The results for the different variants can be seen in Figure 7.

18


	Introduction
	Boolean Logics and Search Algorithms
	Problem Definition
	Baselines

	The Neural Network Architecture
	A GNN Encoder for Boolean Formulas
	Policy Network

	Experiments
	Data
	Rewards and Training
	Results

	Related Work
	Conclusions
	Global Solver State
	Literal Labels
	The QDIMACS File Format
	Hyperparameters and Training Details
	Additional Datasets and Experiments
	Additional Experiments on Generalization to Larger Formulas
	Encoder variants and Hyperparameters

