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ABSTRACT

Teaching a computer to read a document and answer general questions pertaining
to the document is a challenging yet unsolved problem. In this paper, we describe
a novel neural network architecture called the Reasoning Network (ReasoNet) for
machine comprehension tasks. ReasoNets make use of multiple turns to effectively
exploit and then reason over the relation among queries, documents, and answers.
Different from previous approaches using a fixed number of turns during inference,
ReasoNets introduce a termination state to relax this constraint on the reasoning
depth. With the use of reinforcement learning, ReasoNets can dynamically deter-
mine whether to continue the comprehension process after digesting intermediate
results, or to terminate reading when it concludes that existing information is ade-
quate to produce an answer. ReasoNets have achieved state-of-the-art performance
in machine comprehension datasets, including unstructured CNN and Daily Mail
datasets, and a structured Graph Reachability dataset.

1 INTRODUCTION

Teaching machines to read, process, and comprehend natural language documents is a coveted goal
for artificial intelligence (Bottou, 2014; Richardson et al., 2013; Hermann et al., 2015). Genuine
reading comprehension is extremely challenging, since effective comprehension involves thorough
understanding of documents and performing sophisticated inference. Toward solving this machine
reading comprehension problem, in recent years, several work has collected various datasets, in the
form of question, passage, and answer, to test machine on answering a question based on the provided
passage (Richardson et al., 2013; Hermann et al., 2015; Hill et al., 2016; Rajpurkar et al., 2016).
Some large-scale cloze-style datasets (Hermann et al., 2015; Hill et al., 2016) have gained significant
attention along with powerful deep learning models.

Recent approaches on cloze-style datasets can be separated into two categories: single-turn and multi-
turn reasoning. Single turn reasoning models utilize attention mechanisms (Bahdanau et al., 2015)
with deep learning models to emphasize specific parts of the document which are relevant to the query.
These attention models subsequently calculate the relevance between a query and the corresponding
weighted representations of document subunits (e.g. sentences or words) to score target candidates
(Hill et al., 2016; Hermann et al., 2015; Kadlec et al., 2016). However, considering the sophistication
of the problem, after a single-turn comprehension, readers often revisit some specific passage or the
question to grasp a better understanding of the problem. With this motivation, recent advances in
reading comprehension have made use of multiple turns to infer the relation between query, document
and answer (Hill et al., 2016; Dhingra et al., 2016; Trischler et al., 2016; Sordoni et al., 2016). By
repeatedly processing the document and question after digesting intermediate information, multi-turn
reasoning can generally produce a better answer and all existing work has demonstrated its superior
performance consistently.

Existing multi-turn models have a fixed number of hops or iterations in their inference, i.e., with pre-
determined reasoning depth, without regard to the complexity of each individual query or document.
However, when a human reads a document with a question in mind, we often decide whether we want
to stop reading if we believe the observed information is adequate already to answer the question,
or continue reading after digesting intermediate information until we can answer the question with
confidence. This behavior generally varies from document to document, or question to question
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because it is related to the sophistication of the document or the difficulty of the question. Meanwhile,
the analysis in Chen et al. (2016) also illustrates the huge variations in the difficulty level with respect
to questions in the CNN/Daily Mail datasets (Hermann et al., 2015). For a significant part of the
datasets, this analysis shows that the problem cannot be solved without appropriate reasoning on both
its query and document.

With this motivation, we propose a novel neural network architecture called Reasoning Network
(ReasoNet). ReasoNets try to mimic the inference process of human readers. With a question in mind,
ReasoNets read a document repeatedly, each time focusing on different parts of the document until a
satisfying answer is found or formed. This reminds us of a Chinese proverb: “The meaning of a book
will become clear if you read it hundreds of times.”. Moreover, unlike previous approaches using
fixed number of hops or iterations, ReasoNets introduce a termination state in the inference. This state
can decide whether to continue the inference to next turn after digesting intermediate information, or
to terminate the whole inference when it concludes that existing information is sufficient to yield an
answer. This number of turns in the inference is dynamically modeled by both the document and the
query, and can be learned automatically according to the difficulty of the problem.

One of the significant challenges ReasoNets face is how to design an efficient training method, since
the termination state is discrete and not connected to the final output. This prohibits canonical back-
propagation method being directly applied to train ReasoNets. Inspired by Williams (1992); Mnih
et al. (2014), we tackle this challenge by proposing a novel deep reinforcement learning method called
Contrastive Reward (CR) to successfully train ReasoNets. Unlike traditional reinforcement learning
optimization methods using a global variable to capture rewards, CR utilizes an instance-based reward
baseline assignment. Experiments show the superiority of CR in both training speed and accuracy.
Finally, by accounting for a dynamic termination state during inference and applying proposed
deep reinforcement learning optimization method, ReasoNets achieve the state-of-the-art results
in machine comprehension datasets when the paper is first publicly available in arXiv1, including
unstructured CNN and Daily Mail datasets, and a proposed structured Graph Reachability dataset.

This paper is organized as follows. In Section 2, we review and compare recent work on machine
reading comprehension tasks. In Section 3, we introduce our proposed ReasoNet model architecture
and training objectives. Section 4 presents the experimental setting and results on unstructured and
structured machine reading comprehension tasks .

2 RELATED WORK

Recently, with large-scale datasets available and the impressive advance of various statistical models,
machine reading comprehension tasks have attracted much attention. Here we mainly focus on the
related work in cloze-style datasets (Hermann et al., 2015; Hill et al., 2016). Based on how they
perform the inference, we can classify their models into two categories: single-turn and multi-turn
reasoning.

Single-turn reasoning Single turn reasoning models utilize an attention mechanism to emphasis
some sections of a document which are relevant to a query. This can be thought of as treating
some parts unimportant while focusing on other important ones to find the most probable answer.
Hermann et al. (2015) propose the attentive reader and the impatient reader models using neural
networks with an attention over passages to predict candidates. Hill et al. (2016) use attention over
window-based memory, which encodes a window of words around entity candidates, by leveraging an
end-to-end memory network (Sukhbaatar et al., 2015). Meanwhile, given the same entity candidate
can appear multiple times in a passage, Kadlec et al. (2016) propose the attention-sum reader to sum
up all the attention scores for the same entity. This score captures the relevance between a query
and a candidate. Chen et al. (2016) propose using a bilinear term similarity function to calculate
attention scores with pretrained word embedding. Trischler et al. (2016) propose the EpiReader
which uses two neural network structures: one extracts candidates using the attention-sum reader; the
other reranks candidates based on a bilinear term similarity score calculated from query and passage
representations.

Multi-turn reasoning For complex passages and complex queries, human readers often revisit the
given document in order to perform deeper inference after reading a document. Several recent studies

1https://arxiv.org/abs/1609.05284
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Algorithm 1: Stochastic Inference in a ReasoNet
Input :Memory M ; Initial state s1; Step t = 1; Maximum Step Tmax
Output :Termination Step T , Answer aT

1 Sample tt from the distribution p(·|ftg(st; θtg));
2 if tt is false, go to Step 3; otherwise Step 6;
3 Generate attention vector xt = fatt(st,M ; θx);
4 Update internal state st+1 = RNN(st, xt; θs);
5 Set t = t+ 1; if t < Tmax go to Step 1; otherwise Step 6;
6 Generate answer at ∼ p(·|fa(st; θa));
7 Return T = t and aT = at;

try to simulate this revisit by combining the information in the query with the new information
digested from previous iterations (Hill et al., 2016; Dhingra et al., 2016; Sordoni et al., 2016;
Weissenborn, 2016; Kumar et al., 2016). Hill et al. (2016) use multiple hops memory network to
augment the query with new information from the previous hop. Gated Attention reader (Dhingra
et al., 2016) is an extension of the attention-sum reader with multiple iterations by pushing the query
encoding into an attention-based gate in each iteration. Iterative Alternative (IA) reader (Sordoni
et al., 2016) produces a new query glimpse and document glimpse in each iteration and utilizes
them alternatively in the next iteration. Cui et al. (2016) further propose to extend the query-specific
attention to both query-to-document attention and document-to-query attention, which is built from
the intermediate results in the query-specific attention. By reading documents and enriching the query
in an iterative fashion, multi-turn reasoning has demonstrated their superior performance consistently.

Our proposed approach explores the idea of using both attention-sum to aggregate candidate attention
scores and multiple turns to attain a better reasoning capability. Unlike previous approaches using
fixed number of hops or iterations, motivated by Nogueira & Cho (2016); Mnih et al. (2014), we
propose a termination module in the inference. The termination module can decide whether to
continue to infer the next turn after digesting intermediate information, or to terminate the whole
inference process when it concludes existing information is sufficient to yield an answer. The number
of turns in the inference is dynamically modeled by both a document and a query, and is generally
related to the complexity of the document and the query.

3 REASONING NETWORKS

ReasoNets are devised to mimic the inference process of human readers. ReasoNets read a document
repeatedly, with attention on different parts each time until a satisfying answer is found. As shown in
Figure 1, a ReasoNet is composed of the following components:

Internal State: The internal state is denoted as S which is a vector representation of the question
state. Typically, the initial state s1 is the last-word vector representation of query by an RNN. The
t-th time step of the internal state is represented by st. The sequence of internal state is modeled by
an RNN: st+1 = RNN(st, xt; θs);

Memory: The external memory is denoted asM . It is a list of word vectors,M = {mi}i=1..D, where
mi is a fixed dimensional vector. In machine comprehensive tasks, mi is the vector representation of
each word in the doc by a bidirectional-RNN.

Attention: Attention vector xt is generated based on the current internal state st and the external
memory M : xt = fatt(st,M ; θx);

Termination Gate: Termination gate generates a stochastic random variable according to the current
internal state; tt ∼ p(·|ftg(st; θtg))). tt is a binary random variable. If tt is true, the ReasoNet stops,
and the answer module executes at time step t; otherwise the ReasoNet generates an attention vector
xt+1, and feed into the state network to update the next internal state st+1.

Answer: The action of answer module is triggered when the termination gate variable is true:
at ∼ p(·|fa(st; θa)).
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Figure 1: A ReasoNet Architecture.

In Algorithm 1, we describe the stochastic inference process of a ReasoNet. The process can be
considered as a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998) in
the reinforcement learning (RL) literature. The state sequence s1:T is hidden and dynamic, controlled
by an RNN sequence model. The ReasoNet performs an answer action aT at the T -th step, which
implies that the termination gate variables t1:T = (t1 = 0, t2 = 0, ..., tT−1 = 0, tT = 1). The
ReasoNet learns a stochastic policy π((tt, at)|st; θ) with parameters θ to get a distribution over
termination actions, to continue reading or to stop, and over answer actions if the model decides to
stop at the current step. The termination step T varies from instance to instance.

The parameters θ of the ReasoNet are given by the parameters of the embedding matrices W ,
attention network θx, the state RNN network θs, the answer action network θa, and the termination
gate network θtg . The parameters θ = {W, θx, θs, θa, θtg} are trained by maximizing the total expect
reward. The expected reward for an instance is defined as:

J(θ) = Eπ(t1:T ,aT ;θ)

[
T∑
t=1

rt

]

The reward can only be received at the final termination step when an answer action aT is performed.
We define rT = 1 if tT = 1 and the answer is correct, and rT = 0 otherwise. The rewards on
intermediate steps are zeros, {rt = 0}t=1...T−1. J can be maximized by directly applying gradient
based optimization methods. The gradient of J is given by:

∇θJ(θ) = Eπ(t1:T ,aT ;θ) [∇θlogπ(t1:T , aT ; θ)rT ]

We apply the REINFORCE algorithm (Williams, 1992) to compute∇θJ(θ):

Eπ(t1:T ,aT ;θ) [∇θlogπ(t1:T , aT ; θ)rT ] =
∑

(t1:T ,aT )∈A†

π(t1:T , aT ; θ) [∇θlogπ(t1:T , aT ; θ)(rT − bT )]

where A† is all the possible episodes, T, t1:T , aT and rT are the termination step, termination action,
answer action, and reward, respectively, for the (t1:T , aT ) episode. bT is called the reward baseline in
the RL literature to lower variance (Sutton, 1984). It is common to select bT = Eπ [rT ] (Sutton et al.,
1999), and can be updated via an online moving average approach : bT = λbT + (1− λ)rT .

However, we empirically find that above approach leads to slow convergence in training ReasoNets.
Intuitively, the average baselines {bT ;T = 1..Tmax} are global variables independent of instances.
It is hard for these baselines to capture the dynamic termination behavior of ReasoNets. In other
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words, ReasoNets may stop at different time steps for different instances. The adoption of a global
variable without considering the dynamic variance in each instance is inappropriate. To resolve this
weakness in traditional methods and account for the dynamic characteristic of ReasoNets, we propose
an instance-based baseline method called “Contrastive Reward” (CR) to calculate∇θJ(θ). The basic
idea of CR is to utilize an instance-based baseline assignment. We will elaborate its implementation
details in Section 3.1. Empirical results show that the proposed reward schema has produced better
results compared to the baseline approach.

3.1 TRAINING DETAILS

In the machine reading comprehension tasks, a training dataset can be simplified as a collection of
triplets of query q, passage p, and answer a. Say 〈qn, pn, an〉 is the n-th training instance.

The first step is to extract memory M from pn by mapping each symbolic in the passage to a
contextual representation given by the concatenation of forward and backward RNN hidden states,
i.e., mk = [−→pnk,←−pn|pn|−k+1], and extract initial state s1 from qn by assigning s1 = [−→qn|qn|,←−qn1].
Given M and s1 for the n-th training instance, a ReasoNet executes |A†| episodes, where all possible
episodes A† can be enumerated by setting a maximum step. Each episode generates actions and a
reward from the last step: 〈(t1:T , aT ), rT 〉(t1:T ,aT )∈A† .

Therefore, the gradient of J can be rewritten as:

∇θJ(θ) =
∑

(t1:T ,aT )∈A†

π(t1:T , aT ; θ) [∇θlogπ(t1:T , aT ; θ)(rT − b)]

where the baseline b =
∑

(t1:T ,aT )∈A† π(t1:T , aT ; θ)rT is the average reward on the |A†| episodes
for the n-th training instance. It allows different baselines for different training instances. This can
be beneficial since the complexity of training instances varies significantly. Since the sum of the
proposed rewards over |A†| episodes is zero,

∑
(t1:T ,aT )∈A† π(t1:T , aT ; θ)(rT − b) = 0, we call it

Contrastive Reward in this work. In experiments, we empirically find using ( rTb − 1) in replace of
(rT − b) can lead to a faster convergence. Therefore, we adopt this approach to train ReasoNets in
the experiments.

4 EXPERIMENTS

4.1 CNN AND DAILY MAIL DATASETS

We evaluate the performance of ReasoNets on CNN and Daily Mail datasets.2 The detailed settings
of the ReasoNet model are as follows.

Vocab Size: For training our ReasoNet, we keep the most frequent |V | = 101k words (not including
584 entities and 1 placeholder marker) in the CNN dataset, and |V | = 151k words (not including
530 entities and 1 placeholder marker) in the Daily Mail dataset.

Embedding Layer: We choose word embedding size d = 300, and use the 300 dimensional
pretrained Glove word embeddings (Pennington et al., 2014) for initialization. We also apply dropout
with probability 0.2 to the embedding layer.

Bi-GRU Encoder: We apply bi-directional GRU for encoding query and passage into vector repre-
sentations. We set the number of hidden units to be 256 and 384 for the CNN and Daily Mail datasets,
respectively. The recurrent weights of GRUs are initialized with random orthogonal matrices. The
other weights in GRU cell are initialized from a uniform distribution between −0.01 and 0.01. We
use a shared GRU model for both query and passage.

Memory and Attention: The memory of the ReasoNet on CNN and Daily Mail dataset is
composed of query memory and passage memory. M = (Mquery,Mdoc), where Mquery and
Mdoc are extracted from query bidirectional-GRU encoder and passage bidirectional-GRU en-
coder respectively. We choose projected cosine similarity function as the attention module.

2The CNN and Daily Mail datasets are available at https://github.com/deepmind/rc-data
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Query: passenger @placeholder , 36 , died at the scene

Passage: ( @entity0 ) what was supposed to be a fantasy sports car ride at 
@entity3 turned deadly when a @entity4 crashed into a guardrail . the crash 
took place sunday at the @entity8 , which bills itself as a chance to drive your 
dream car on a racetrack . the @entity4 's passenger , 36 - year - old @entity14 
of @entity15 , @entity16 , died at the scene , @entity13 said . the driver of the 
@entity4 , 24 - year - old @entity18 of @entity19 , @entity16 , lost control of 
the vehicle , the @entity13 said . he was hospitalized with minor injuries . 
@entity24 , which operates the @entity8 at @entity3 , released a statement 
sunday night about the crash . " on behalf of everyone in the organization , it is 
with a very heavy heart that we extend our deepest sympathies to those 
involved in today 's tragic accident in @entity36 , " the company said . @entity24 
also operates the @entity3 -- a chance to drive or ride in @entity39 race cars 
named for the winningest driver in the sport 's history . @entity0 's @entity43 
and @entity44 contributed to this report .

Answer: @entity14

Step
Termination 

Probability

Attention 

Sum

1 0.0011 0.4916

2 0.5747 0.5486

3 0.9178 0.5577

Step 3

11 1

11233

3 1

22

Step 1 Step 2

Figure 2: Results of a test example 69e1f777e41bf67d5a22b7c69ae76f0ae873cf43.story from the CNN dataset.
The numbers next to the underline bars indicate the rank of the attention scores. The corresponding termination
probability and the sum of attention scores for the answer entity are shown in the table on the right.

The attention score adoct,i on memory mdoc
i given the state st is computed as follows: adoct,i =

softmaxi=1,...,|Mdoc|γ cos(W
doc
1 mdoc

i ,W doc
2 st), where γ is set to 10. W doc

1 and W doc
2 are weight

vectors associated with mdoc
i and st, respectively, and are joint trained in the ReasoNet. Thus,

attention vector on passage is given by xdoct =
∑|M |
i at,im

doc
i . The final attention vector is the

concatenation of the query attention vector and the passage attention vector xt = (xqueryt , xdoct ). The
attention module is parameterized by θx = (W query

1 ,W query
2 ,W doc

1 ,W doc
2 );

Internal State Controller: We choose GRU model as the internal state controller. The number of
hidden units in the GRU state controller is 256 for CNN and 384 for Daily Mail. The initial state
of the GRU controller is set to be the last-word of the query representation by a bidirectional-GRU
encoder.

Termination Module: We adopt a logistical regression to model the termination variable at each
time step : ftg(st; θtg) = sigmoid(Wtgst + btg); θtg = (Wtg, btg)

Answer Module: We apply a linear projection from GRU outputs and make predictions on the entity
candidates. Following the settings in AS Reader (Kadlec et al., 2016), we sum up scores from the
same candidate and make a prediction. Thus, AS Reader can be viewed as a special case of ReasoNets
with Tmax = 1.

Other Details: The maximum reasoning step, Tmax is set to 5 in experiments on both CNN and Daily
Mail datasets. We use ADAM optimizer (Kingma & Ba, 2015) for parameter optimization with an
initial learning rate of 0.0005, β1 = 0.9 and β2 = 0.999; The absolute value of gradient on each
parameter is clipped within 0.001. The batch size is 64 for both CNN and Daily Mail datasets. For
each batch of the CNN and Daily Mail datasets we randomly reshuffle the assignment of named
entities (Hermann et al., 2015). This forces the model to treat the named entities as semantically
meaningless labels. In the prediction of test cases, we randomly reshuffle named entities up to 4
times, and report the averaged answer. Models are trained on GTX TitanX 12GB. It takes 7 hours
per epoch to train on the Daily Mail dataset and 3 hours per epoch to train on the CNN dataset. The
models are usually converged within 6 epochs on both CNN and Daily Mail datasets.

Table 1 shows the performance of all the existing single model baselines and our proposed ReasoNet.
By capturing multi-turn reasoning and learning to stop reading a paragraph, we have achieved the
state-of-the-art results in both CNN and Daily Mail datasets. To further understand the inference
process of the ReasoNet, Figure 2 shows a test example of the CNN dataset. The model initially
focuses on wrong entities with low termination probability. In the second and third steps, the model
focuses on the right clue with higher termination probability. Interestingly, we also find that query
attention focuses on the placeholder token throughout all the steps.
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Table 1: The performance of Reasoning Network on CNN and Daily Mail dataset.

CNN Daily Mail

valid test valid test
Deep LSTM Reader (Hermann et al., 2015) 55.0 57.0 63.3 62.2
Attentive Reader (Hermann et al., 2015) 61.6 63.0 70.5 69.0
MemNets (Hill et al., 2016) 63.4 66.8 - -
AS Reader (Kadlec et al., 2016) 68.6 69.5 75.0 73.9
Stanford AR (Chen et al., 2016) 72.2 72.4 76.9 75.8
DER Network (Kobayashi et al., 2016) 71.3 72.9 - -
Iterative Attention Reader (Sordoni et al., 2016) 72.6 73.3 - -
EpiReader (Trischler et al., 2016) 73.4 74.0 - -
GA Reader (Dhingra et al., 2016) 73.0 73.8 76.7 75.7
AoA Reader (Cui et al., 2016) 73.1 74.4 - -
ReasoNet 72.9 74.7 77.6 76.6

Table 2: Reachability statistics of the Graph Reachability dataset.

Small Graph Large Graph

Reachable Step No Reach 1–3 4–6 7–9 No Reach 1–3 4–6 7–13
Train (%) 44.16 42.06 13.51 0.27 49.02 25.57 21.92 3.49
Test (%) 45.00 41.35 13.44 0.21 49.27 25.46 21.74 3.53

4.2 GRAPH REACHABILITY TASK

Recent analysis and results (Chen et al., 2016) on the cloze-style machine comprehension tasks have
suggested some simple models without multi-turn reasoning can achieve reasonable performance.
Based on these results, we construct a synthetic structured Graph Reachability dataset3 to evaluate
longer range machine inference and reasoning capability, since we expect ReasoNets have the
capability to handle long range relationships.

We generate two synthetic datasets: a small graph dataset and a large graph dataset. In the small
graph dataset, it contains 500K small graphs, where each graph contains 9 nodes, and 16 direct edges
to randomly connect pairs of nodes. The large graph dataset contains 500K graphs, where each graph
contains 18 nodes, and 32 random direct edges. Duplicated edges are removed. Table 2 shows the
graph reachability statistics on the two datasets.

In Table 3, we show examples of a small graph and a large graph in the synthetic dataset. Both graph
and query are represented by a sequence of symbols. In the experiment, we use a 100-dimensional
embedding vector for each symbol, and bidirectional-LSTM with 128 and 256 cells for query and
graph embedding in the small and the large graph datasets, respectively. The last states of bidirectional-
LSTM on query are concatenated to be the initial internal state s1 = [−→q |q|,←−q 1] in the ReasoNet.
Another bidirectional-LSTM on graph description maps each symbol gi to a contextual representation
given by the concatenation of forward and backward LSTM hidden states mi = [−→g i,←−g |g|−i+1]. The
final answer is either “Yes” or “No” and hence logistical regression is used as the answer module:
at = σ(Wast + ba); θa = (Wa, ba). We apply another logistical regression as the termination gate
module: tt = σ(Wtgst + btg). The maximum reasoning step Tmax is set to 15 and 25 for the small
graph and large graph dataset, respectively.

We denote “ReasoNet” as the standard ReasoNet with termination gate, as described in Section
3.1. To study the effectiveness of the termination gate in ReasoNets, we remove the termination
gate and use the prediction from the last state, â = aTmax (Tmax is the maximum reasoning step),
denoted as “ReasoNet-Last”. To study the effectiveness of multi-turn reasoning, we choose
“ReasoNet-Tmax = 2”, which only has single-turn reasoning. We compare ReasoNets with a two
layer deep LSTM model (Hermann et al., 2015) with 128 hidden units, denoted as “Deep LSTM
Reader”, as a baseline. Table 4 shows the performance of these models on the graph reachabil-
ity dataset. Deep LSTM Reader achieves 90.92% and 71.55% accuracy in the small and large

3The dataset is available at https://github.com/MSRDL/graph_reachability_dataset
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Table 3: Small and large random graph in the Graph Reachability dataset. Note that “A → B”
represents an edge connected from A to B and the # symbol is used as a delimiter between different
edges.

Small Graph Large Graph

Graph Description 0 → 0 # 0 → 2 # 1 → 2 # 2 → 1 # 0 → 17 # 1 → 3 # 1 → 14 # 1 → 6 #
3 → 2 # 3 → 3 # 3 → 6 # 3 → 7 # 2 → 11 # 2 → 13 # 2 → 15 # 3 → 7#
4 → 0 # 4 → 1 # 4 → 4 # 5 → 7 # 5 → 0 # 5 → 7 # 6 → 10 # 6 → 5#
6 → 0 # 6 → 1 # 7 → 0 # 7 → 15 # 7 → 7 # 8 → 11 # 8 → 7 #

10 → 9 # 10 → 6 # 10 → 7 # 12 → 1 #
12 → 12 # 12 → 6 # 13 → 11 # 14 → 17 #
14 → 14 # 15 → 10 # 16 → 2 # 17 → 4 #
17 → 7 #

Query 7 → 4 10 → 17
Answer No Yes

Table 4: The performance of Reasoning Network on the Graph Reachability dataset.

Small Graph Large Graph

ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC Accuracy
Deep LSTM Reader 0.9619 0.9565 0.9092 0.7988 0.7887 0.7155
ReasoNet-Tmax = 2 0.9638 0.9677 0.8961 0.8477 0.8388 0.7607
ReasoNet-Last 1 1 1 0.8836 0.8742 0.7895
ReasoNet 1 1 1 0.9988 0.9989 0.9821

graph dataset, respectively, which indicates the graph reachibility task is not trivial. The results of
ReasoNet-Tmax = 2 are comparable with the results of Deep LSTM Reader, since both Deep
LSTM Reader and ReasoNet-Tmax = 2 perform single-turn reasoning. The ReasoNet-Last
model achieves 100% accuracy on the small graph dataset, while the ReasoNet-Last model
achieves only 78.95% accuracy on the large graph dataset, as the task becomes more challeng-
ing. Meanwhile, the ReasoNet model converges faster than the ReasoNet-Last model. The
ReasoNet model converges in 20 epochs in the small graph dataset, and 40 epochs in the large graph
dataset, while the ReasoNet-Last model converges around 40 epochs in the small graph dataset,
and 70 epochs in the large graph dataset. The results suggest that the termination gate variable in the
ReasoNet is helpful when training with sophisticated examples, and makes models converge faster.
Both the ReasoNet and ReasoNet-Last models perform better than the ReasoNet-Tmax = 2
model, which demonstrates the importance of multi-turn reasoning.

To further understand the inference process in ReasoNets, Figures 3 and 4 show test examples of the
large graph dataset. In Figure 3, we can observe that the model does not make a firm prediction till
step 9. The highest attention word at each step shows the reasoning process of the model. Interestingly,
the model starts from the end node (17), traverses backward till finding the starting node (10) in step
9, and makes a firm termination prediction. On the other hand, in Figure 4, the model learns to stop
in step 2. In step 1, the model looks for neighbor nodes (12, 6, 16) to 4 and 9. Then, the model gives
up in step 2 and predict “No". All of these demonstrate the dynamic termination characteristic and
potential reasoning capability of ReasoNets.

We show the distribution of termination steps in ReasoNets on the test set in Appendix A. The
termination step is chosen with the maximum termination probability p(k) = tk

∏k−1
i=1 (1− ti),

where ti is the termination probability at step i.

5 CONCLUSION

In this paper, we propose ReasoNets that dynamically decide whether to continue or to terminate the
inference process in machine comprehension tasks. Using reinforcement learning with the proposed
contractive reward, our proposed model achieves the start-of-the-art results in machine comprehension
datasets, including unstructured CNN and Daily Mail datasets, and a proposed structured Graph
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Step 1

Step 2

Step 0

Step 3

Step 4, 
5, 7

Step 6, 
8

Step 9

Step Termination Probability Prediction

1 1.00E-06 0.172

2 1.00E-06 0.625

3 1.00E-06 0.752

4 1.00E-06 0.202

5 1.00E-06 0.065

6 1.00E-06 0.041

7 2.30E-06 0.137

8 0.0017 0.136

9 0.49 0.761

10 0.99 0.927

Step 2

Step 3

Step 1

Step 4

Steps 5, 6, 8

Steps 7, 9

Step 10

Figure 3: An example of graph reachability result, given a query “10 → 17” (Answer: Yes). The red
circles highlight the nodes/edges which have the highest attention in each step. The corresponding termination
probability and prediction results are shown in the table. The model terminates at step 10.

1 -> 16 # 1 -> 12 # 1 -> 14 # 1 -> 7 # 2 -
> 17 # 3 -> 1 # 4 -> 0 # 4 -> 1 # 4 -> 12 
# 4 -> 6 # 6 -> 0 # 6 -> 3 # 6 -> 7 # 8 -> 
2 # 8 -> 4 # 8 -> 13 # 8 -> 14 # 9 -> 16 
# 10 -> 0 # 10 -> 6 # 11 -> 10 # 11 -> 2 
# 12 -> 2 # 13 -> 2 # 13 -> 6 # 14 -> 2 # 
14 -> 7 # 16 -> 13 # 16 -> 14 # 17 -> 0 

# 17 -> 13 # 

Step Termination Probability Prediction

1 1.40E-05 4.49E-04

2 0.999 1.40E-05

Step 1

Step 2

Step 2

Step 1 Step 1

Step 1

3

1

2

2 1

3

Step 2

Figure 4: An example of graph reachability result, given a query “4 → 9” (Answer: No). The numbers next
to the underline bars indicate the rank of the attention scores. The corresponding termination probability and
prediction results are shown in the table.

Reachability dataset. For future work, ReasoNets can be generalized to other tasks that requires
reasoning capability, such as question answering and knowledge graph inference.

ACKNOWLEDGMENTS

We thank Ming-Wei Chang, Li Deng, Lihong Li, and Xiaodong Liu for their thoughtful feedback and
discussions.

9



Under review as a conference paper at ICLR 2017

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. In Proceedings of the International Conference on Learning Representations, 2015.

Léon Bottou. From machine learning to machine reasoning. Machine Learning, 94(2):133–149, 2014.

Danqi Chen, Jason Bolton, and Christopher D Manning. A thorough examination of the CNN / Daily Mail
reading comprehension task. In ACL, 2016.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-over-attention neural
networks for reading comprehension. CoRR, abs/1607.04423, 2016.

Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and Ruslan Salakhutdinov. Gated-attention readers for text
comprehension. CoRR, abs/1606.01549, 2016.
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A THE TERMINATION STEP DISTRIBUTION IN REASONETS

In this section, we present the termination step distribution of ReasoNets. Figure 5 and Figure 6
show the termination step distribution of ReasoNets in the CNN dataset and the graph reachability
dataset, respectively. The distributions spread out across different steps and there are a large number
of instances that terminate in the last step. We study the correlation between the termination steps
and the complexity of test instances in Figure 7. We use Breadth-First Search (BFS) algorithm over
the target graph given the query to analyze the complexity of test instances. For example, BFS-Step
= 2 indicates that there are two intermediate nodes in the shortest reachability path. Test instances
with larger BFS-Steps are more challenging. We denote BFS-Step = −1 as there is no reachable path
for the given query. Figure 7 shows that test instances with larger BFS-Steps require more reasoning
steps.
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Figure 5: The termination step distribution of a ReasoNet (Tmax = 5) in the CNN dataset.
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(a) Small Graph
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Figure 6: Termination step distribution of ReasoNets in the graph reachability dataset, where Tmax is
set to 15 and 25 in the small graph and large graph dataset, respectively.
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(a) Small Graph
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Figure 7: The correlation between BFS steps and ReasoNet termination steps in the graph reachability
dataset, where Tmax is set to 15 and 25 in the small graph and large graph dataset, respectively, and
BFS-Step= −1 denotes unreachable cases. The value indicates the number of instances in each case.
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