
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On Adversarial Robustness of Small vs Large Batch Training

Anonymous Authors1

Abstract
Large-batch training is known to incur poor gen-
eralization by Jastrzebski et al. (2017) as well as
poor adversarial robustness by Yao et al. (2018b).
Hessian-based analysis of large-batch training
by Yao et al. (2018b) concludes that adversarial
training as well as small-batch training leads to
lower Hessian spectrum. They combine adversar-
ial training and second order information to come
up with a new large-batch training algorithm to
obtain robust models with good generalization.
In this paper, we empirically observe that net-
works trained with constant learning rate to batch
size ratio as proposed by Jastrzebski et al. (2017)
not only have better generalization but also have
roughly constant adversarial robustness across all
batch sizes.

1. Introduction
Stochastic Gradient Descent (SGD) and its variant are the
current workhorse for training neural network models. Hy-
perparameters like learning rate, batch size and momen-
tum play an important role in SGD for obtaining a good
minimum which generalizes well. Smith et al. (2017) and
Hoffer et al. (2017) have tried to study and suggest clear
rules and relation between the hyperparameters. Goyal et al.
(2017) show that Imagenet can be trained quickly with a
nice relation only between learning rate and batch size in a
distributed setting.

But there seems to be a trade-off in generalization when
the network is trained with larger batches of training sam-
ples e.g. 512/1024 and above. Keskar et al. (2016) show
that large batch training lead to sharp minima which is bad
for generalization. They also propose a solution to handle
the sharp minima issue along with better generalization.
While Dinh et al. (2017) show that sharp minima on deeper
networks do also generalize well. In recent work by Jas-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

trzebski et al. (2017) have modelled SGD along with its
associated hyperparameters like learning rate and batch size.
They show that maintaining contant ratio between learn-
ing rate and batch size leads the gradient descent algorithm
to converge to a flatter minima and this results in better
generalization.

Neural networks recently have been able to give state-of-
the-art results for many classification tasks but the work of
Szegedy et al. (2013), Biggio et al. (2017) have exposed a
serious vulnerability in neural network-based models which
achieve state of the art results in various tasks like object
recognition, speech synthesis, etc. These models are known
to be vulnerable to small, pixel-wise changes that are almost
imperceptible to the human eye, but the networks grossly
misclassify the perturbed data. They obtain the small per-
turbation using box-constrained L-BFGS by maximizing
the prediction error of the given model. Goodfellow et al.
(2015) propose a quicker method based on gradients, the
Fast Gradient Sign Method (FGSM) to find such an adver-
sarial perturbation given by x′ = x+ ε sign (∇xJ(θ, x, y)),
where x is the input, y represents the targets, θ represents
the model parameters, and J(θ, x, y) is the cost used to train
the network. Subsequent work has introduced multi-step
variants of FGSM, notably, an iterative method by Kurakin
et al. (2017) and Projected Gradient Descent (PGD) by
Madry et al. (2018). On visual tasks, the adversarial pertur-
bation must come from a set of images that are perceptually
similar to a given image. Goodfellow et al. (2015) and
Madry et al. (2018) study adversarial perturbations from
the `∞-ball around the input x, namely, each pixel value is
perturbed by a quantity within [−ε,+ε].

A natural thing to do in term of obtaining an adversarial
robust network would be to include the perturbed samples
into the training process. This is referred to as Adversarial
training. Which is an expensive step and hence, normally
a mixed approach is taken where the network is trained to
a good accuracy with unperturbed samples and then for a
few epochs trained with perturbed samples. e.g. in Yao et al.
(2018b), they first train the networks for 100 epochs with
unperturbed samples and then 5-10 epochs with perturbed
samples.

Obtaining a naturally robust system without adversarial
training is a desirable property. This is also something which



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

On Adversarial Robustness of Small vs Large Batch Training

recent work by Sabour et al. (2017) have tried to address in
the architecture level without adversarial training. A recent
work by Schmidt et al. (2018) try to understand the notion
of adversarial generalization in terms of sample complexity
and claim that a much larger sample size would be needed
to achieve adversarial robustness. While Galloway et al.
(2018) observe that weight decay itself can give a robust
network which generalized better than robustness achieved
by adversarial training.

A given network can be made robust either by explicit regu-
larization like adversarial training, weight conditioning or
by implicit regularization through hyper-parameter tuning.
Our work could be viewed as understanding the influence of
hyper-parameters like learning rate, batch size, momentum
on the adversarial robustness of networks.

The recent work by Yao et al. (2018b) have shown that large
batch training leads to networks which are less adversarially
robust. They explain this by using the Hessian spectrum of
the parameter space of the network and show that large batch
training lead to convergence to points with high curvature.
Curvature is characterized by dominant eigenvalue of the
Hessian. They empirically notice a correlation between
adversarial robustness of networks to curvature. This they
observe with networks trained by a certain setting of hyper-
parameters.

Our paper tries to understand the natural robustness of net-
works obtained by SGD hyper-parameter setting. We moti-
vated by the works of Jastrzebski et al. (2017) and Yao et al.
(2018b) seek to understand the relation between the network
weights obtained by the setting of various hyper-parameters
in SGD and its associated FGSM/PGD adversarial robust-
ness. For this study we use MNIST, Fashion MNIST and
CIFAR10 datasets. To do comparison with existing work we
use M1 and C1 models from Yao et al. (2018b). We also use
the network given in Table 1 which we refer to as Standard
Convolutional Neural Network (StdCNN) and ResNet18 as
given in He et al. (2016) as part of the study.

Our Results

We make the following important observations.

• Training the models with a constant learning rate to
batch size ratio not only results in convergence to a flat-
ter minima but also ensures that adversarial robustness
does not degrade with increasing batch size.

• We show that the Hessian based analysis does not al-
ways explain the adversarial robustness in small vs
large batch training.

• We show that the there are models which when trained
with large batch size have higher Hessian spectrum
and also better adversarial accuracy compared to small
batch training.

• Adding momentum helps converge to a flatter minima
by lowering the Hessian spectrum. Larger momentum
values in most cases lead to a better robust model than
with smaller momentum values.

2. Comparison to Hessian Based Benchmark
of Yao et al. (2018b)

We first verify whether we get the same values as Yao et al.
(2018b). In Figures 9, 11 for MNIST and Figures 1, 15
for CIFAR10 we plot the generalization which is the test
accuracy and adversarial accuracy using FGSM attack on the
test with ε = 0.3 for MNIST and ε = 0.02 for CIFAR10. In
Figures 10, 12 for MNIST and Figures 14, 16 for CIFAR10
we plot the generalization which is the test accuracy and
adversarial accuracy using PGD attack on the test with ε =
0.3 for MNIST and ε = 0.02 for CIFAR10. Figure 13 for
MNIST and Figures 2 and 17 for CIFAR10 plot the topmost
eigenvalue of the Hessian wrt to model parameters. The
red lines in the figures were obtained by the exact training
setting as suggested by Yao et al. (2018a) which we refer to
as Benchmark in the plots. Refer to Appendix A for details
of their hyper-parameter setting. Apart from this we have
also trained the networks with fixed learning rate(LR) and
constant learning rate to batch size ratio(LR/BS) without
momentum. We plot these along with the Benchmark. The
detailed analysis of these plots will be done in Section 3. For
the Benchmark experiments we do observe similar values on
the generalization and Hessian spectrum values as shown by
Yao et al. (2018b). But for the adversarial robustness using
FGSM we observe the same trend - that the accuracy drops
with larger batch size. Our accuracy values are however
different.

We have performed the same experiments done for MNIST
on Fashion MNIST. Figures 18,3 plot the generalization,
FGSM accuracy for Fashion MNIST with ε = 0.3. Figures
19, 21 plot the generalization, PGD accuracy for Fashion
MNIST with ε = 0.3 and Figures 20, 4 for the top Hessian
eigen value.

Figures 9 and 1 show that as the batch size increases the test
accuracy does decrease and similarly the associated FGSM
test accuracy also drops. Refer to Figures 10 and 14 for
PGD results. Figures 13(top) and 2 do comfirm that with
increase in batch size the curvature increases.

However, we find that their observation that increased cur-
vature results in decrease in adversarial robustnes need not
hold.

2.1. Counter Example to the Hessian based analysis of
Yao et al. (2018b)

We now give examples of models which when trained with
large batch have higher Hessian spectrum and also higher



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

On Adversarial Robustness of Small vs Large Batch Training

Figure 1: Test Accuracy of C1 trained with CIFAR10 and
using FGSM attack with ε = 0.02. For LR,learning rate =
0.01. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 2: λθ1 : Top Eigen value of Hessian wrt to model
parameters of C1 trained with CIFAR10. For LR,learning
rate = 0.01. For LR/BS, ratio = 0.00015625. m=momentum.

adversarial robustness compared to small batch training.
For these experiments we use the networks given in Table1
trained on MNIST and Fashion MNIST. We train the net-
works with a fixed learning rate. We specifically observe
that in Figure 3 the FGSM accuracy increases with batch
size (the light blue line in te plots), similarly in Figure 21 the
PGD accuracy also increases. So this clearly indicates that
increasing Hessian spectrum alone does not totally explain
the change in adversarial robustness of the networks.

3. Role of Learning Rate and Batch Size ratio
Yao et al. (2018b) show that adversarial training of networks
as a method to lower Hessian spectrum. Jastrzebski et al.
(2017) have shown that by training a network with constant
learning rate to batch size ratio the network converges to a
flatter minima. We use their theory as motivation to investi-
gate the impact of learning rate and batch size on adversarial
robustness of networks.

We go about the investigation by considering various com-
binations of learning rate and batch size and analyse their
generalization, adversarial robustness and Hessian spec-
trum. We use the following hyperparameter settings for

Figure 3: Test Accuracy of StdCNN trained with Fash-
ion MNIST and using FGSM attack with ε = 0.3. For
LR, learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 4: λθ1 : Top Eigen value of Hessian wrt to model
parameters of StdCNN trained with Fashion MNIST. For
LR,learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

this purpose. They are fixed learning rate(light blue), con-
stant learning rate to batch size ratio(purple) and Benchmark
(red).

We use the above hyperparameter combinations to train mod-
els M1, StdCNN on MNIST and Fashion MNIST. Models
C1, ResNet18 were trained with the similar hyperparame-
ter combinations using CIFAR10 dataset. Figures 1 to 21
contain all the plots for all the models trained with various
hyperparameter setting. One major point to be noted here is
that the purple line whether its generalization, FGSM/PGD
accuracy or curvature of parameter space (top Hessian
eigenvalue) there is very little variation across all models
and datasets.

4. Effect of Momentum
We now analyse the role of momentum in the two setting we
used to compare with Benchmark. 1) Impact of momentum
with learning rate fixed and batch size changed (LR) and 2)
Impact of momentum with constant learning rate and batch
size ratio(LR/BS). Its clear from all the Hessian eigenvalue



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

On Adversarial Robustness of Small vs Large Batch Training

plots in Figures 26, 6, 30, 35, 8, 39 that momentum irrespec-
tive of whether its used with fixed learning rate or constant
learning rate to batch size ratio will in most cases converge
to a lower Hessian spectrum.

4.1. Effect of Momentum on LR

In the finer analysis of impact of momentum with fixed learn-
ing rate we plot training schedules with momentum values
set to 0, 0.2, 0.5 and 0.9 for the models M1 and StdCNN for
MNIST and models C1 and ResNet18 for CIFAR10. Figure
22 and 5 show the generalization trend and as expected with
larger momentum there is better generalization. This in turn
leads to better FGSM adversarial robustness as seen in 22
and 24 for MNIST and 5 and 28 for CIFAR10. For PGD
robustness plots refer to 23 and 25 for MNIST and 27 and
29 for CIFAR10. Similarly in Figures 26, 6 and 30 its seen
that the curvature reduces with larger momentum.

Figure 5: Test Accuracy of C1 trained with CIFAR10 and
using FGSM attack with ε = 0.02. For LR,learning rate =
0.01. m=momentum.

Figure 6: λθ1 : Top Eigen value of Hessian with varying
momentum of C1 trained with CIFAR10. For LR,learning
rate = 0.01. m=momentum.

4.2. Effect of Momentum on LR/BS

In the finer analysis of impact of momentum with constant
learning rate and batch size ratio we plot training schedules
with momentum values set to 0 and 0.9 for the models M1

and StdCNN for MNIST and models C1 and ResNet18 for
CIFAR10. In Figures 35, 8 and 39 show that in most cases
the curvature reduces with larger momentum, but as com-
pared to fixed learning rate training there is no significant
role of momentum with constant learning rate and batch size
ratio. As the mild change in curvature or generalization does
not always convert into better generalization or adversarial
robustness as seen in 31, 33, 7, 37 for FGSM attack or 32,
34, 36, 38 for PGD attack.

Figure 7: Test Accuracy of C1 trained with CIFAR10 and
using FGSM attack with ε = 0.02. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 8: λθ1 : Top Eigen value of Hessian with varying
momentum of C1 trained with CIFAR10. For LR/BS, ratio
= 0.00015625. m=momentum.

5. Conclusion
We show how the modelling of SGD by Jastrzebski et al.
(2017) and the Hessian spectrum can help understand the
weight space and its adversarial properties. We also see
how momentum plays a role in reducing the spectrum of
the parameters irrespective of the ratio maintained between
learning rate and batch size. We believe the paper in its
current form tries to understand the role of hyper-parameters
and the resultant networks robustness without any perturbed
input which would be necessary to gauge the impact of
adversarial training on top of it. This could aid in adapting
the hyper-parameters for adversarial training.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

On Adversarial Robustness of Small vs Large Batch Training

References
Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndic,

N., Laskov, P., Giacinto, G., and Roli, F. Evasion
attacks against machine learning at test time. CoRR,
abs/1708.06131, 2017. URL http://arxiv.org/
abs/1708.06131.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y.
Sharp minima can generalize for deep nets. CoRR,
abs/1703.04933, 2017. URL http://arxiv.org/
abs/1703.04933.

Galloway, A., Tanay, T., and Taylor, G. W. Adversarial train-
ing versus weight decay. CoRR, abs/1804.03308, 2018.
URL http://arxiv.org/abs/1804.03308.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017. URL
http://arxiv.org/abs/1706.02677.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. CoRR, pp. 1731–1741, 2017.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A.,
Bengio, Y., and Storkey, A. J. Three factors influencing
minima in SGD. CoRR, abs/1711.04623, 2017. URL
http://arxiv.org/abs/1711.04623.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836, 2016. URL http://arxiv.org/
abs/1609.04836.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversar-
ial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2017.

Madry, A., Makelov, A. A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to ad-
versarial attacks. In International Conference on Learn-
ing Representations, 2018.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. CoRR, abs/1710.09829, 2017.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. CoRR, abs/1804.11285, 2018. URL http:
//arxiv.org/abs/1804.11285.

Smith, S. L., Kindermans, P., and Le, Q. V. Don’t de-
cay the learning rate, increase the batch size. CoRR,
abs/1711.00489, 2017. URL http://arxiv.org/
abs/1711.00489.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W.
Large batch size training of neural networks with ad-
versarial training and second-order information. CoRR,
abs/1810.01021, 2018a. URL http://arxiv.org/
abs/1810.01021.

Yao, Z., Gholami, A., Lei, Q., Keutzer, K., and Mahoney,
M. W. Hessian-based analysis of large batch training and
robustness to adversaries. CoRR, abs/1802.08241, 2018b.
URL http://arxiv.org/abs/1802.08241.

A. Details of Datasets and Model Parameters
All experiments performed on neural network-based models
were done using MNIST, Fashion MNIST and CIFAR10
datasets with appropriate augmentations applied to the
train/validation/test set.

The following settings were used for training the networks.
1) LR (Smith et al. (2017)) - where learning rate is fixed
to 0.01 and batch size is varied and training is done with
this fixed setting for 100 epochs, 2) LR/BS(Jastrzebski et al.
(2017)) - learning rate to batch size ratio is kept constant, we
set the ratio to 0.00015625 and train with this fixed setting
for 100 epochs, 3) setting as given by Yao et al. (2018b)
where the learning rate is set to 0.01 and momentum to 0.9,
and learning rate is decayed by half after every 5 epochs,
for a total of 100 epochs. In 1) and 2) we do not use weight
decay nor decay of learning rate. Hence, in 1) and 2) the
hyperparameters - learning rate, batch size and momentum
are fixed in the beginning of training with SGD and no
adaptive tuning is made to the setting during the training
of the networks. Any kind of weight decay or learning rate
tuning was done exactly as mentioned by Yao et al. (2018b)
for comparison purpose and the concerned plots are referred
to as Benchmark (red line).

Data sets MNIST dataset consists of 70, 000 images of
28× 28 size, divided into 10 classes. 55, 000 used for train-
ing, 5, 000 for validation and 10, 000 for testing. Fashion
MNIST dataset consists of 70, 000 images of 28× 28 size,

http://arxiv.org/abs/1708.06131
http://arxiv.org/abs/1708.06131
http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/1804.03308
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1711.04623
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1804.11285
http://arxiv.org/abs/1804.11285
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1810.01021
http://arxiv.org/abs/1810.01021
http://arxiv.org/abs/1802.08241


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

On Adversarial Robustness of Small vs Large Batch Training

divided into 10 classes. 55, 000 used for training, 5, 000 for
validation and 10, 000 for testing. CIFAR10 dataset consists
of 60, 000 images of 32× 32 size, divided into 10 classes.
40, 000 used for training, 10, 000 for validation and 10, 000
for testing.

Model Architectures For the MNIST and Fashion MNIST
based experiments we use the architectures M1 and StdCNN
as given in the Table 1.

For the CIFAR10 based experiments we use the models C1
as given in Table 1 and ResNet18 architecture as mentioned
in He et al. (2016). Input training data was augmented with
random cropping and random horizontal flips by default.

Architectures M1 used for MNIST and Fashion MNIST ex-
periments and C1 for CIFAR10 experiments are as given in
Yao et al. (2018b) which form the benchmark for compari-
son.

Table 1: Architectures used for experiments

Name Structure
StdCNN (MNIST) Conv(3,3,10) - Conv(3,3,10) - MP(2,2) -

Conv(3,3,20) - Conv(3,3,20) - MP(2,2) -
FC(50) - Dropout(0.5) - FC(10) - SM(10)

M1 (MNIST) Conv(5,5,20) - Conv(5,5,20) - FC(500) - SM(10)
C1 (CIFAR10) Conv(5,5,64) - MP(3,3) - BN - Conv(5,5,64) -

MP(3,3) - BN - FC(384) - FC(192) - SM(10)

B. Additional Plots for Section 2 and 3

Figure 9: Test Accuracy of M1 trained with MNIST and
using FGSM attack with ε = 0.3. For LR, learning rate =
0.01. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 10: Test Accuracy of M1 trained with MNIST and
using PGD attack with ε = 0.3. For LR, learning rate =
0.01. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 11: (left) Test Accuracy of StdCNN trained with
MNIST. (right) Test Accuracy of StdCNN using FGSM
attack with ε = 0.3. For LR, learning rate = 0.01. For
LR/BS, ratio = 0.00015625. m=momentum.

Figure 12: Test Accuracy of StdCNN trained with MNIST
and using PGD attack with ε = 0.3. For LR, learning rate =
0.01. For LR/BS, ratio = 0.00015625. m=momentum.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

On Adversarial Robustness of Small vs Large Batch Training

Figure 13: On MNIST, λθ1 : Top Eigen value of Hessian of
models, (top) M1 (bottom) StdCNN. For LR, learning rate
= 0.01. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 14: Test Accuracy of C1 trained with CIFAR10 and
using PGD attack with ε = 0.02. For LR, learning rate =
0.01. For LR/BS, ratio = 0.00015625. m=momentum.

Figure 15: Test Accuracy of ResNet18 trained with CI-
FAR10 and using FGSM attack with ε = 0.02. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 16: Test Accuracy of ResNet18 trained with CI-
FAR10 and using PGD attack with ε = 0.02. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 17: λθ1 : Top Eigen value of Hessian wrt to model
parameters of ResNet18 trained with CIFAR10. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

On Adversarial Robustness of Small vs Large Batch Training

Figure 18: Test Accuracy of M1 trained with Fashion
MNIST and using FGSM attack with ε = 0.3. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 19: Test Accuracy of M1 trained with Fashion
MNIST and using PGD attack with ε = 0.3. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 20: λθ1 : Top Eigen value of Hessian wrt to model
parameters of M1 trained with Fashion MNIST. For LR,
learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.

Figure 21: Test Accuracy of StdCNN trained with Fash-
ion MNIST and using PGD attack with ε = 0.3. For
LR, learning rate = 0.01. For LR/BS, ratio = 0.00015625.
m=momentum.



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

On Adversarial Robustness of Small vs Large Batch Training

C. Additional Plots for Section 4

Figure 22: Test Accuracy of M1 trained with MNIST and
using FGSM attack with ε = 0.3. For LR, learning rate =
0.01. m=momentum.

Figure 23: Test Accuracy of M1 trained with MNIST and
using PGD attack with ε = 0.3. For LR, learning rate =
0.01. m=momentum.

Figure 24: Test Accuracy of StdCNN trained with MNIST
and using FGSM attack with ε = 0.3. For LR, learning rate
= 0.01. m=momentum.

Figure 25: Test Accuracy of StdCNN trained with MNIST
and using FGSM attack with ε = 0.3. For LR, learning rate
= 0.01. m=momentum.

Figure 26: On MNIST, λθ1 : Top Eigen value of Hessian of
models trained with varying momentum, (top) M1 (bottom)
StdCNN. For LR, learning rate = 0.01. m=momentum.

Figure 27: Test Accuracy of C1 trained with CIFAR10 and
using PGD attack with ε = 0.02. For LR, learning rate =
0.01. m=momentum.



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

On Adversarial Robustness of Small vs Large Batch Training

Figure 28: Test Accuracy of ResNet18 trained with CI-
FAR10 and using FGSM attack with ε = 0.02. For LR,
learning rate = 0.01. m=momentum.

Figure 29: Test Accuracy of ResNet18 trained with CI-
FAR10 and using PGD attack with ε = 0.02. For LR,
learning rate = 0.01. m=momentum.

Figure 30: λθ1 : Top Eigen value of Hessian with varying
momentum of ResNet18 trained with CIFAR10. For LR,
learning rate = 0.01. m=momentum.

Figure 31: Test Accuracy of M1 trained with MNIST and
using FGSM attack with ε = 0.3. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 32: Test Accuracy of M1 trained with MNIST and
using PGD attack with ε = 0.3. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 33: Test Accuracy of StdCNN trained with MNIST
and using FGSM attack with ε = 0.3. For LR/BS, ratio =
0.00015625. m=momentum.



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On Adversarial Robustness of Small vs Large Batch Training

Figure 34: Test Accuracy of StdCNN trained with MNIST
and using PGD attack with ε = 0.3. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 35: On MNIST, λθ1 : Top Eigen value of Hessian
of models trained with varying momentum, (top) M1, (bot-
tom) StdCNN. For LR/BS, learning ratio = 0.00015625.
m=momentum.

Figure 36: Test Accuracy of C1 trained with CIFAR10
and using PGD attack with ε = 0.02. For LR/BS, ratio =
0.00015625. m=momentum.

Figure 37: Test Accuracy of ResNet18 trained with CI-
FAR10 and using FGSM attack with ε = 0.02. For LR/BS,
learning ratio = 0.00015625. m=momentum.

Figure 38: Test Accuracy of ResNet18 trained with CI-
FAR10 and using PGD attack with ε = 0.02. For LR/BS,
learning ratio = 0.00015625. m=momentum.



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

On Adversarial Robustness of Small vs Large Batch Training

Figure 39: λθ1 : Top Eigen value of Hessian with varying
momentum of ResNet18 trained with CIFAR10. For LR/BS,
ratio = 0.00015625. m=momentum.


