
Meta-Inverse Reinforcement Learning with
Probabilistic Context Variables

Lantao Yu∗ , Tianhe Yu∗, Chelsea Finn, Stefano Ermon
Department of Computer Science, Stanford University

Stanford, CA 94305
{lantaoyu,tianheyu,cbfinn,ermon}@cs.stanford.edu

Abstract

Providing a suitable reward function to reinforcement learning can be difficult in
many real world applications. While inverse reinforcement learning (IRL) holds
promise for automatically learning reward functions from demonstrations, several
major challenges remain. First, existing IRL methods learn reward functions from
scratch, requiring large numbers of demonstrations to correctly infer the reward for
each task the agent may need to perform. Second, existing methods typically as-
sume homogeneous demonstrations for a single behavior or task, while in practice,
it might be easier to collect datasets of heterogeneous but related behaviors. To this
end, we propose a deep latent variable model that is capable of learning rewards
from demonstrations of distinct but related tasks in an unsupervised way. Criti-
cally, our model can infer rewards for new, structurally-similar tasks from a single
demonstration. Our experiments on multiple continuous control tasks demonstrate
the effectiveness of our approach compared to state-of-the-art imitation and inverse
reinforcement learning methods.

1 Introduction

While reinforcement learning (RL) has been successfully applied to a range of decision-making
and control tasks in the real world, it relies on a key assumption: having access to a well-defined
reward function that measures progress towards the completion of the task. Although it can be
straightforward to provide a high-level description of success conditions for a task, existing RL
algorithms usually require a more informative signal to expedite exploration and learn complex
behaviors in a reasonable time. While reward functions can be hand-specified, reward engineering
can require significant human effort. Moreover, for many real-world tasks, it can be challenging to
manually design reward functions that actually benefit RL training, and reward mis-specification can
hamper autonomous learning [2].

Learning from demonstrations [29] sidesteps the reward specification problem by instead learning
directly from expert demonstrations, which can be obtained through teleoperation [37] or from
humans experts [36]. Demonstrations can often be easier to provide than rewards, as humans
can complete many real-world tasks quite efficiently. Two major methodologies of learning from
demonstrations include imitation learning and inverse reinforcement learning. Imitation learning
is simple and often exhibits good performance [37, 15]. However, it lacks the ability to transfer
learned policies to new settings where the task specification remains the same but the underlying
environment dynamics change. As the reward function is often considered as the most succinct,
robust and transferable representation of a task [1, 11], the problem of inferring reward functions
from expert demonstrations, i.e. inverse RL (IRL) [22], is important to consider.

∗Equal contribution.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

ar
X

iv
:1

90
9.

09
31

4v
1

 [
cs

.L
G

]
 2

0
Se

p
20

19

While appealing, IRL still typically relies on large amounts of high-quality expert data, and it can
be prohibitively expensive to collect demonstrations that cover all kinds of variations in the wild
(e.g. opening all kinds of doors or navigating to all possible target positions). As a result, these
methods are data-inefficient, particularly when learning rewards for individual tasks in isolation,
starting from scratch. On the other hand, meta-learning [30, 4], also known as learning to learn, seeks
to exploit the structural similarity among a distribution of tasks and optimizes for rapid adaptation to
unknown settings with a limited amount of data. As the reward function is able to succinctly capture
the structure of a reinforcement learning task, e.g. the goal to achieve, it is promising to develop
methods that can quickly infer the structure of a new task, i.e. its reward, and train a policy to adapt
to it. Xu et al. [34] and Gleave and Habryka [12] have proposed approaches that combine IRL and
gradient-based meta-learning [9], which provide promising results on deriving generalizable reward
functions. However, they have been limited to tabular MDPs [34] or settings with provided task
distributions [12], which are challenging to gather in real-world applications.

The primary contribution of this paper is a new framework, termed Probabilistic Embeddings for
Meta-Inverse Reinforcement Learning (PEMIRL), which enables meta-learning of rewards from
unstructured multi-task demonstrations. In particular, PEMIRL combines and integrates ideas from
context-based meta-learning [5, 25], deep latent variable generative models [16], and maximum
entropy inverse RL [40, 39], into a unified graphical model that bridges the gap between few-shot
reward inference and learning from unstructured, heterogeneous demonstrations. PEMIRL can learn
robust reward functions that generalize to new tasks with a single demonstration on complex domains
with continuous state-action spaces, while meta-training on a set of unstructured demonstrations
without specified task groupings or labeling for each demonstration. Our experiment results on various
continuous control tasks including Point-Maze, Ant, Sweeper, and Sawyer Pusher demonstrate the
effectiveness and scalability of our method.

2 Preliminaries

Markov Decision Process (MDP). A discrete-time finite-horizon MDP is defined by a tuple
(T,S,A, P, r, η), where T is the time horizon; S is the state space; A is the action space;
P : S ×A× S → [0, 1] describes the (stochastic) transition process between states; r : S ×A → R
is a bounded reward function; η ∈ P(S) specifies the initial state distribution, where P(S) denotes
the set of probability distributions over the state space S. We use τ to denote a trajectory, i.e. a
sequence of state action pairs for one episode. We also use ρπ(st) and ρπ(st, at) to denote the state
and state-action marginal distribution encountered when executing a policy π(at|st).

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL). The maximum entropy
reinforcement learning (MaxEnt RL) objective is defined as:

max
π

T∑
t=1

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (1)

which augments the reward function with a causal entropy regularization term H(π) =
Eπ[− log π(a|s)]. Here α is an optional parameter to control the relative importance of reward
and entropy. For notational simplicity, without loss of generality, in the following we will assume
α = 1. Given some expert policy πE that is obtained by above MaxEnt RL procedure , the MaxEnt
IRL framework [40] aims to find a reward function that rationalizes the expert behaviors, which can
be interpreted as solving the following maximum likelihood estimation (MLE) problem:

pθ(τ) ∝

[
η(s1)

T∏
t=1

P (st+1|st, at)

]
exp

(
T∑
t=1

rθ(st, at)

)
= pθ(τ) (2)

argmin
θ

DKL(pπE(τ)||pθ(τ)) = argmax
θ

EpπE (τ) [log pθ(τ)] = Eτ∼πE

[
T∑
t=1

rθ(st, at)

]
− logZθ

Here, θ is the parameter of the reward function and Zθ is the partition function, i.e.
∫
pθ(τ)dτ , an

integral over all possible trajectories consistent with the environment dynamics. Zθ is intractable
to compute when the state-action spaces are large or continuous, or the environment dynamics are
unknown.

2

Finn et al. [7] and Fu et al. [11] proposed the adversarial IRL (AIRL) framework as an efficient
sampling-based approximation to MaxEnt IRL, which resembles Generative Adversarial Networks
[13]. Specially, in AIRL, there is a discriminator Dθ (a binary classifier) parametrized by θ and
an adaptive sampler πω (a policy) parametrized by ω. The discriminator takes a particular form:
Dθ(s, a) = exp(fθ(s, a))/(exp(fθ(s, a))+ πω(a|s)) , where fθ(s, a) is the learned reward function
and πω(a|s) is pre-computed as an input to the discriminator. The discriminator is trained to
distinguish between the trajectories sampled from the expert and the adaptive sampler; while the
adaptive sampler πω(a|s) is trained to maximize Eρπω [logDθ(s, a)− log(1−Dθ(s, a))], which is
equivalent to maximizing the following entropy regularized policy objective (with fθ(s, a) serving as
the reward function):

Eπω

[
T∑
t=1

log(Dθ(st, at))− log(1−Dθ(st, at))

]
= Eπω

[
T∑
t=1

fθ(st, at)− log πω(at|st)

]
(3)

Under certain conditions, it can be shown that the learned reward function will recover the ground-
truth reward up to a constant (Theorem C.1 in [11]).

3 Probabilistic Embeddings for Meta-Inverse Reinforcement Learning

3.1 Problem Statement

Before defining our meta-inverse reinforcement learning problem (Meta-IRL), we first define the
concept of optimal context-conditional policy.

We start by generalizing the notion of MDP with a probabilistic context variable denoted as m ∈M,
whereM is the (discrete or continuous) value space of m. For example, in a navigation task, the
context variables could represent different goal positions in the environment. Now, each component
of the MDP has an additional dependency on the context variable m. For example, by slightly
overloading the notation, the reward function is now defined as r : S ×A×M→ R. For simplicity,
the state space, action space, initial state distribution and transition dynamics are often assumed to be
independent of m [5, 9], which we will follow in this work. Intuitively, different m’s correspond to
different tasks with shared structures.

Given above definitions, the context-conditional trajectory distribution induced by a context-
conditional policy π : S ×M→ P(A) can be written as:

pπ(τ = {s1:T ,a1:T }|m) = η(s1)

T∏
t=1

π(at|st,m)P (st+1|st, at) (4)

Let p(m) denote the prior distribution of the latent context variable (which is a part of the problem
definition). With the conditional distribution defined above, the optimal entropy-regularized context-
conditional policy is defined as:

π∗ = argmax
π

Em∼p(m), (s1:T ,a1:T)∼pπ(·|m)

[
T∑
t=1

r(st, at,m)− log π(at|st,m)

]
(5)

Now, let us introduce the problem of Meta-IRL from heterogeneous multi-task demonstra-
tion data. Suppose there is some ground-truth reward function r(s, a,m) and a correspond-
ing expert policy πE(at|st,m) obtained by solving the optimization problem defined in Equa-
tion (5). Given a set of demonstrations i.i.d. sampled from the induced marginal distribution
pπE (τ) =

∫
M p(m)pπE (τ |m)dm, the goal is to meta-learn an inference model q(m|τ) and a

reward function f(s, a,m), such that given some new demonstration τE generated by sampling
m′ ∼ p(m), τE ∼ pπE (τ |m′), with m̂ being inferred as m̂ ∼ q(m|τE), the learned reward function
f(s, a, m̂) and the ground-truth reward r(s, a,m′) will induce the same set of optimal policies [23].

Critically, we assume no knowledge of the prior task distribution p(m), the latent context variable m
associated with each demonstration, nor the transition dynamics P (st+1|st, at) during meta-training.
Note that the entire supervision comes from the provided unstructured demonstrations, which means
we also do not assume further interactions with the experts as in Ross et al. [27].

3

3.2 Meta-IRL with Mutual Information Regularization over Context Variables

Under the framework of MaxEnt IRL, we first parametrize the context variable inference model
qψ(m|τ) and the reward function fθ(s, a,m) (where the input m is inferred by qψ), The induced
θ-parametrized trajectory distribution is given by:

pθ(τ = {s1:T ,a1:T }|m) =
1

Z(θ)

[
η(s1)

T∏
t=1

P (st+1|st, at)

]
exp

(
T∑
t=1

fθ(st, at,m)

)
(6)

where Z(θ) is the partition function, i.e., an integral over all possible trajectories. Without further
constraints over m, directly applying AIRL to learning the reward function (by augmenting each
component of AIRL with an additional context variable m inferred by qψ) could simply ignore m,
which is similar to the case of InfoGAIL [20]. Therefore, some connection between the reward
function and the latent context variable m need to be established. With MaxEnt IRL, a parametrized
reward function will induce a trajectory distribution. From the perspective of information theory, the
mutual information between the context variable m and the trajectories sampled from the reward
induced distribution will provide an ideal measure for such a connection.

Formally, the mutual information between two random variables m and τ under joint distribution
pθ(m, τ) = p(m)pθ(τ |m) is given by:

Ipθ (m; τ) = Em∼p(m),τ∼pθ(τ |m)[log pθ(m|τ)− log p(m)] (7)

where pθ(τ |m) is the conditional distribution (Equation (6)), and pθ(m|τ) is the corresponding
posterior distribution.

As we do not have access to the prior distribution p(m) and posterior distribution pθ(m|τ), directly
optimizing the mutual information in Equation (7) is intractable. Fortunately, we can leverage
qψ(m|τ) as a variational approximation to pθ(m|τ) to reason about the uncertainty over tasks, as well
as conduct approximate sampling from p(m) (we will elaborate this later in Section 3.3). Formally,
let pπE (τ) denote the expert trajectory distribution, we have the following desiderata:

Desideratum 1. Matching conditional distributions: Ep(m) [DKL(pπE (τ |m)||pθ(τ |m))] = 0

Desideratum 2. Matching posterior distributions: Epθ(τ)[DKL(pθ(m|τ)||qψ(m|τ))] = 0

The first desideratum will encourage the θ-induced conditional trajectory distribution to match the
empirical distribution implicitly defined by the expert demonstrations, which is equivalent to the MLE
objective in the MaxEnt IRL framework. Note that they also share the same marginal distribution
over the context variable p(m), which implies that matching the conditionals in Desideratum 1 will
also encourage the joint distributions, conditional distributions pπE (m|τ) and pθ(m|τ), and marginal
distributions over τ to be matched. The second desideratum will encourage the variational posterior
qψ(m|τ) to be a good approximation to pθ(m|τ) such that qψ(m|τ) can correctly infer the latent
context variable given a new expert demonstration sampled from a new task.

With the mutual information (Equation (7)) being the objective, and Desideratum 1 and 2 being the
constraints, the meta-inverse reinforcement learning with probabilistic context variables problem can
be interpreted as a constrained optimization problem, whose Lagrangian dual function is given by:

min
θ,ψ
−Ipθ (m; τ) + α · Ep(m) [DKL(pπE (τ |m)||pθ(τ |m))] + β · Epθ(τ)[DKL(pθ(m|τ)||qψ(m|τ))]

(8)

With the Lagrangian multipliers taking specific values (α = 1, β = 1) [38], the above Lagrangian
dual function can be rewritten as:

min
θ,ψ

Ep(m) [DKL(pπE (τ |m)||pθ(τ |m))] + Epθ(m,τ)
[
log

p(m)

pθ(m|τ)
+ log

pθ(m|τ)
qψ(m|τ)

]
≡max

θ,ψ
−Ep(m) [DKL(pπE (τ |m)||pθ(τ |m))] + Em∼p(m),τ∼pθ(τ |m)[log qψ(m|τ)] (9)

=max
θ,ψ
−Ep(m) [DKL(pπE (τ |m)||pθ(τ |m))] + Linfo(θ, ψ) (10)

Here the negative entropy term −Hp(m) = Epθ(m,τ)[log p(m)] = Ep(m)[log p(m)] is omitted (in
Eq. (9)) as it can be treated as a constant in the optimization procedure of parameters θ and ψ.

4

3.3 Achieving Tractability with Sampling-Based Gradient Estimation

Note that Equation (10) cannot be evaluated directly, as the first term requires estimating the KL
divergence between the empirical expert distribution and the energy-based trajectory distribution
pθ(τ |m) (induced by the θ-parametrized reward function), and the second term requires sampling
from it. For the purpose of optimizing the first term in Equation (10), as introduced in Section 2, we
can employ the adversarial reward learning framework [11] to construct an efficient sampling-based
approximation to the maximum likelihood objective. Note that different from the original AIRL
framework, now the adaptive sampler πω(a|s,m) is additionally conditioned on the context variable
m. Furthermore, we here introduce the following lemma, which will be helpful for deriving the
optimization of the second term in Equation (10).

Lemma 1. In context variable augmented Adversarial IRL (with the adaptive sampler being
πω(a|s,m) and the discriminator being Dθ(s, a,m) = exp(fθ(s,a,m))

exp(fθ(s,a,m))+πω(a|s,m)) , under deter-
ministic dynamics, when training the adaptive sampler πω with reward signal (logDθ− log(1−Dθ))
to optimality, the trajectory distribution induced by π∗ω corresponds to the maximum entropy trajectory
distribution with fθ(s, a,m) serving as the reward function:

pπ∗ω (τ |m) =
1

Zθ

[
η(s1)

T∏
t=1

P (st+1|st, at)

]
exp

(
T∑
t=1

fθ(st, at,m)

)
= pθ(τ |m)

Proof. See Appendix A.

Now we are ready to introduce how to approximately optimize the second term of the objective in
Equation (10) w.r.t. θ and ψ. First, we observe that the gradient of Linfo(θ, ψ) w.r.t. ψ is given by:

∂

∂ψ
Linfo(θ, ψ) = Em∼p(m),τ∼pθ(τ |m)

1

q(m|τ, ψ)
∂q(m|τ, ψ)

∂ψ
(11)

Thus to construct an estimate of the gradient in Equation (11), we need to obtain samples from the
θ-induced trajectory distribution pθ(τ |m). With Lemma 1, we know that when the adaptive sampler
πω in AIRL is trained to optimality, we can use π∗ω to construct samples, as the trajectory distribution
pπ∗ω (τ |m) matches the desired distribution pθ(τ |m).

Also note that the expectation in Equation (11) is also taken over the prior task distribution p(m). In
cases where we have access to the ground-truth prior distribution, we can directly sample m from
it and use pπ∗ω (τ |m) to construct a gradient estimation. For the most general case, where we do
not have access to p(m) but instead have expert demonstrations sampled from pπE (τ), we use the
following generative process:

τ ∼ pπE(τ),m ∼ qψ(m|τ) (12)

to synthesize latent context variables, which approximates the prior task distribution when θ and ψ
are trained to optimality.

To optimize Linfo(θ, ψ) w.r.t. θ, which is an important step of updating the reward function parameters
such that it encodes the information of the latent context variable, different from the optimization of
Equation (11), we cannot directly replace pθ(τ |m) with pπω (τ |m). The reason is that we can only
use the approximation of pθ to do inference (i.e. computing the value of an expectation). When we
want to optimize an expectation (Linfo(θ, ψ)) w.r.t. θ and the expectation is taken over pθ itself, we
cannot instead replace pθ with πω to do the sampling for estimating the expectation. In the following,
we discuss how to estimate the gradient of Linfo(θ, ψ) w.r.t. θ with empirical samples from πω .

Lemma 2. The gradient of Linfo(θ, ψ) w.r.t. θ can be estimated with:

Em∼p(m),τ∼pπ∗ω (τ |m)

[
log qψ(m|τ)

[
T∑
t=1

∂

∂θ
fθ(st, at,m)− Eτ ′∼pπ∗ω (τ |m)

T∑
t=1

∂

∂θ
fθ(s

′
t, a
′
t,m)

]]
When ω is trained to optimality, the estimation is unbiased.

Proof. See Appendix B.

5

With Lemma 2, as before, we can use the generative process in Equation (12) to sample m and use
the conditional trajectory distribution pπ∗ω (τ |m) to sample trajectories for estimating ∂

∂θLinfo(θ, ψ).
The overall training objective of PEMIRL is:

min
ω

max
θ,ψ

EτE∼pπE (τ),m∼qψ(m|τE),(s,a)∼ρπω (s,a|m) log(1−Dθ(s, a,m))+

EτE∼pπE (τ),m∼qψ(m|τE) log(Dθ(s, a,m)) + Linfo(θ, ψ) (13)

where Dθ(s, a,m) = exp(fθ(s, a,m))/(exp(fθ(s, a,m)) + πω(a|s,m))

We summarize the meta-training procedure in Algorithm 1 and the meta-test procedure in Appendix C.

Algorithm 1 PEMIRL Meta-Training
Input: Expert trajectories DE = {τ jE}; Initial parameters of fθ, πω, qψ .
repeat

Sample two batches of unlabeled demonstrations: τE , τ ′E ∼ DE
Infer a batch of latent context variables from the sampled demonstrations: m ∼ qψ(m|τE)
Sample trajectoriesD from πω(τ |m), with the latent context variable fixed during each rollout and included
in D.
Update ψ to increase Linfo(θ, ψ) with gradients in Equation (11), with samples from D.
Update θ to increase Linfo(θ, ψ) with gradients in Equation (15), with samples from D.
Update θ to decrease the binary classification loss:

E(s,a,m)∼D[∇θ logDθ(s, a,m)] + Eτ ′
E
∼DE ,m∼qψ(m|τ ′

E
)[∇θ log(1−Dθ(s, a,m))]

Update ω with TRPO to increase the following objective: E(s,a,m)∼D[logDθ(s, a,m)]
until Convergence
Output: Learned inference model qψ(m|τ), reward function fθ(s, a,m) and policy πω(a|s,m).

4 Related Work

Inverse reinforcement learning (IRL), first introduced by Ng and Russell [22], is the problem of
learning reward functions directly from expert demonstrations. Prior work tackling IRL include
margin-based methods [1, 26] and maximum entropy (MaxEnt) methods [40]. Margin-based methods
suffer from being an underdefined problem, while MaxEnt requires the algorithm to solve the forward
RL problem in the inner loop, making it challenging to use in non-tabular settings. Recent works have
scaled MaxEnt IRL to large function approximators, such as neural networks, by only partially solving
the forward problem in the inner loop, developing an adversarial framework for IRL [7, 8, 11, 24].
Other imitation learning approaches [15, 20, 14, 17] are also based on the adversarial framework,
but they do not recover a reward function. We build upon the ideas in these single-task IRL works.
Instead of considering the problem of learning reward functions for a single task, we aim at the
problem of inferring a reward that is disentangled from the environment dynamics and can quickly
adapt to new tasks from a single demonstration by leveraging prior data.

We base our work on the problem of meta-learning. Prior work has proposed memory-based
methods [5, 28, 21, 25] and methods that learn an optimizer and/or a parameter initialization [3, 19, 9].
Meta-IRL [34, 12] incorporates meta-learning and IRL, showing fast adaptation of the reward
functions to unseen tasks. Unlike these approaches, our method is not restrictred to discrete tabular
settings and does not require access to grouped demonstrations sampled from a task distribution.
Meanwhile, one-shot imitation learning [6, 10, 36, 35] demonstrates impressive results on learning
new tasks using a single demonstration; yet, they also require paired demonstrations from each
task and hence need prior knowledge on the task distribution. More importantly, one-shot imitation
learning approaches only recover a policy, and cannot use additional trials to continue to improve,
which is possible when a reward function is inferred instead. Several prior approaches for multi-task
imitation learning [20, 14, 32] propose to use unstructured demonstrations without knowing the
task distribution, but they neither study quick generalization to new tasks nor provide a reward
function. Our work is thus driven by the goal of extending meta-IRL to addressing challenging
high-dimensional control tasks with the help of an unstructured demonstration dataset.

6

Figure 1: Experimental domains (left to right): Point-Maze, Ant, Sweeper, and Sawyer Pusher.

5 Experiments

In this section, we seek to investigate the following two questions: (1) Can PEMIRL learn a policy
with competitive few-shot generalization abilities compared to one-shot imitation learning methods
using only unstructured demonstrations? (2) Can PEMIRL efficiently infer robust reward functions
of new continuous control tasks where one-shot imitation learning fails to generalize, enabling an
agent to continue to improve with more trials?

We evaluate our method on four simulated domains using the Mujoco physics engine [33]. To our
knowledge, there’s no prior work on designing meta-IRL or one-shot imitation learning methods for
complex domains with high-dimensional continuous state-action spaces with unstructured demonstra-
tions. Hence, we also designed the following variants of existing state-of-the-art (one-shot) imitation
learning and IRL methods so that they can be used as fair comparisons to our method:
• AIRL: The original AIRL algorithm without incorporating latent context variables, trained

across all demonstrations.
• Meta-Imitation Learning with Latent Context Variables (Meta-IL): As in [25], we use

the inference model qψ(m|τ) to infer the context of a new task from a single demonstrated
trajectory, denoted as m̂, and then train the conditional imitaiton policy πω(a|s, m̂) using the
same demonstration. This approach also resembles [6].
• Meta-InfoGAIL: Similar to the method above, except that an additional discriminator D(s, a)

is introduced to distinguish between expert and sample trajectories, and trained along with the
conditional policy using InfoGAIL [20] objective.

We use trust region policy optimization (TRPO) [31] as our policy optimization algorithm across
all methods. We collect demonstrations by training experts with TRPO using ground truth reward.
However, the ground truth reward is not available to imitation learning and IRL algorithms. We
provide full hyperparameters, architecture information, and experimental setup details in Appendix D.
Full video results are on the anonymous supplementary website2.

5.1 Policy Performance on Test Tasks

Point Maze Ant Sweeper Sawyer Pusher

Expert −5.21± 0.93 968.80± 27.11 −50.86± 4.75 −23.36± 2.54
Random −51.39± 10.31 −55.65± 18.39 −259.71± 11.24 −106.88± 18.06

AIRL [11] −18.15± 3.17 127.61± 27.34 −152.78± 7.39 −51.56± 8.57
Meta-IL −6.68± 1.51 218.53± 26.48 −89.02± 7.06 −28.13± 4.93
Meta-InfoGAIL −7.66± 1.85 871.93± 31.28 −87.06± 6.57 −27.56± 4.86
PEMIRL (ours) −7.37± 1.02 846.18± 25.81 −74.17± 5.31 −27.16± 3.11

Table 1: One-shot policy generalization to test tasks on four experimental domains. Average return
and standard deviations are reported over 5 runs.

We first answer our first question by showing that our method is able to learn a policy that can adapt to
test tasks from a single demonstration, on four continuous control domains: Point Maze Navigation:
In this domain, a pointmass needs to navigate around a barrier to reach the goal. Different tasks
correspond to different goal positions and the reward function measures the distance between the
pointmass and the goal position; Ant: Similar to [9], this locomotion task requires fast adaptation to

2Video results can be found at: https://sites.google.com/view/pemirl

7

https://sites.google.com/view/pemirl

Figure 2: Visualizations of learned reward functions for point-maze navigation. The red star represents
the target position and the white circle represents the initial position of the agent (both are different
across different iterations). The black horizontal line represents the barrier that cannot be crossed. To
show the generalization ability, the expert demonstration used to infer the target position are sampled
from new target positions that have not been seen in the meta-training set.

Figure 3: From top to bottom, we show the disabled ant running forward and backward respectively.

walking directions of the ant where the ant needs to learn to move backward or forward depending
on the demonstration; Sweeper: A robot arm needs to sweep an object to a particular goal position.
Fast adaptation of this domain corresponds to different goal locations in the plane; Sawyer Pusher:
A simulated Sawyer robot is required to push a mug to a variety of goal positions and generalize to
unseen goals. We illustrate the set-up for these experimental domains in Figure 1.

We summarize the results in Table 1. PEMIRL achieves comparable imitation performance compared
to Meta-IL and Meta-InfoGAIL, while AIRL is incapable of handling multi-task scenarios without
incorporating the latent context variables.

5.2 Reward Adaptation to Challenging Situations

After demonstrating that the policy learned by our method is able to achieve competitive “one-shot”
generalization ability, we now answer the second question by showing PEMIRL learns a robust
reward that can adapt to new and more challenging settings where the imitation learning methods and
the original AIRL fail. Specifically, after providing the demonstration of an unseen task to the agent,
we change the underlying environment dynamics but keep the same task goal. In order to succeed in
the task with new dynamics, the agent must correctly infer the underlying goal of the task instead
of simply mimicking the demonstration. We show the effectiveness of our reward generalization by
training a new policy with TRPO using the learned reward functions on the new task.

Point-Maze Navigation with a Shifted Barrier. Following the setup of Fu et al. [11], at meta-test
time, after showing a demonstration moving towards a new target position, we change the position of
the barrier from left to right. As the agent must adapt by reaching the target with a different path from
what was demonstrated during meta-training, it cannot succeed without correctly inferring the true
goal (the target position in the maze) and learning from trial-and-error. As a result, all direct policy
generalization approaches fail as all the policies are still directing the pointmass to the right side of
the maze. As shown in Figure 2, PEMIRL learns disentangled reward functions that successfully infer
the underlying goal of the new task without much reward shaping. Such reward functions enable the
RL agent to bypass the right barrier and reach the true goal position. The RL agent trained with the

8

reward learned by AIRL also fail to bypass the barrier and navigate to the target position, as without
incorporating the latent context variables and treating the demonstration as multi-modal, AIRL learns
an “average” reward and policy among different tasks. We also use the output of the discriminator
of Meta-InfoGAIL as reward signals and evaluate its adaptation performance. The agent trained by
this reward fails to complete the task since Meta-InfoGAIL does not explicitly optimize for reward
learning and the discriminator output converges to uninformative uniform distribution at convergence.

Method Point-Maze-Shift Disabled-Ant

Policy
Generalization

Meta-IL −28.61± 3.71 −27.86± 10.31
Meta-InfoGAIL −29.40± 3.05 −51.08± 4.81

PEMIRL −28.93± 3.59 −46.77± 5.54

Reward
Adaptation

AIRL −29.07± 4.12 −76.21± 10.35
Meta-InfoGAIL −29.72± 3.11 −38.73± 6.41
PEMIRL (ours) −9.04± 1.09 152.62± 11.75

Expert −5.37± 0.86 331.17± 17.82

Table 2: Results on direct policy generalization and reward adaptation to challenging situations.

Disabled Ant Walking. As in Fu et al. [11], we disable and shorten two front legs of the ant
such that it cannot walk without changing its gait to a large extent. Similar to Point-Maze-Shift, all
imitaiton policies fail to maneuver the disabled ant to the right direction. As shown in Figure 3, reward
functions learned by PEMIRL encourage the RL policy to orient the ant towards the demonstrated
direction and move along that direction using two healthy legs, which is only possible when the
inferred reward corresponds to the true underlying goal and is disentangled with the dynamics. In
contrast, the learned reward of original AIRL as well as the discriminator output of Meta-InfoGAIL
cannot infer the underlying goal of the task and provide precise supervision signal, which leads to the
unsatisfactory performance of the induced RL policies. Quantitative results are presented in Table 2.

6 Conclusion

In this paper, we propose a new meta-inverse reinforcement learning algorithm, PEMIRL, which is
able to efficiently infer robust reward functions that are disentangled from the dynamics and highly
correlated with the ground-truth rewards under meta-learning settings. To our knowledge, PEMIRL
is the first model-free Meta-IRL algorithm that can achieve this and scale to complex domains with
continuous state-action spaces. PEMIRL generalizes to new tasks by performing inference over
a latent context variable with a single demonstration, on which the recovered policy and reward
function are conditioned. Extensive experimental results demonstrate the scalability and effectiveness
of our method against strong baselines.

Acknowledgments

This research was supported by Toyota Research Institute, NSF (#1651565, #1522054, #1733686),
ONR (N00014-19-1-2145), AFOSR (FA9550- 19-1-0024). The authors would like to thank Chris
Cundy for discussions over the paper draft.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. arXiv preprint arXiv:1606.04474, 2016.

[4] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. In
IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991.

9

[5] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl$ˆ2$:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[6] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Neural Information
Processing Systems (NIPS), 2017.

[7] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between
generative adversarial networks, inverse reinforcement learning, and energy-based models.
arXiv preprint arXiv:1611.03852, 2016.

[8] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International Conference on Machine Learning, pages 49–58,
June 2016.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, 2017.

[10] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. 2017.

[11] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[12] Adam Gleave and Oliver Habryka. Multi-task maximum entropy inverse reinforcement learning.
arXiv preprint arXiv:1805.08882, 2018.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[14] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim. Multi-
modal imitation learning from unstructured demonstrations using generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 1235–1245, 2017.

[15] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems 29, pages 4565–4573. 2016.

[16] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[17] Alex Kuefler and Mykel J. Kochenderfer. Burn-in demonstrations for multi-modal imitation
learning. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’18, 2018.

[18] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

[19] Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv preprint arXiv:1703.00441,
2017.

[20] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning
from visual demonstrations. In Advances in Neural Information Processing Systems, pages
3812–3822, 2017.

[21] Tsendsuren Munkhdalai and Hong Yu. Meta networks. International Conference on Machine
Learning (ICML), 2017.

[22] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00,
2000.

10

[23] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In ICML, volume 99, pages 278–287,
1999.

[24] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. Variational
discriminator bottleneck: Improving imitation learning, inverse rl, and gans by constraining
information flow. arXiv preprint arXiv:1810.00821, 2018.

[25] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient
off-policy meta-reinforcement learning via probabilistic context variables. arXiv preprint
arXiv:1903.08254, 2019.

[26] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum margin planning. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, 2006.

[27] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 627–635, 2011.

[28] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International Conference on
Machine Learning (ICML), 2016.

[29] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor learning
by imitation. Philosophical Transactions of the Royal Society of London B: Biological Sciences,
2003.

[30] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[31] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization. International Conference on Machine Learning, 2015.

[32] Arjun Sharma, Mohit Sharma, Nicholas Rhinehart, and Kris M. Kitani. Directed-info GAIL:
learning hierarchical policies from unsegmented demonstrations using directed information.
arXiv preprint arXiv:1810.01266, 2018.

[33] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In International Conference on Intelligent Robots and Systems (IROS), 2012.

[34] Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over
intent via meta-inverse reinforcement learning. arXiv preprint arXiv:1805.12573, 2018.

[35] Tianhe Yu, Pieter Abbeel, Sergey Levine, and Chelsea Finn. One-shot hierarchical imitation
learning of compound visuomotor tasks. arXiv preprint arXiv:1810.11043, 2018.

[36] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. One-shot imitation from observing humans via domain-adaptive meta-learning.
Robotics: Science and Systems (R:SS), 2018.

[37] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Ken Goldberg, and Pieter Abbeel. Deep
imitation learning for complex manipulation tasks from virtual reality teleoperation. arXiv
preprint arXiv:1710.04615, 2017.

[38] Shengjia Zhao, Jiaming Song, and Stefano Ermon. The information autoencoding family: A
lagrangian perspective on latent variable generative models. arXiv preprint arXiv:1806.06514,
2018.

[39] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

[40] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

11

A Proof of Lemma 1

From Section 2.3 and 2.4 in [18], we know that the policy whose induced trajectory distribution is
Equation (6) takes the following energy-based form:

πθ(at|st,m) = exp(Qsoft(st, at,m)− Vsoft(st,m))

Qsoft(st, at,m) = fθ(st, at,m) + logEst+1∼P (·|st,at,m)[exp(Vsoft(st+1,m))]

Vsoft(st,m) = log

∫
A
exp(Qsoft(st, a

′,m))da′

which corresponds to the optimal policy to the following entropy regularized reinforcement learning
problem (for a certain value of m):

max
π

Eπ

[
T∑
t=1

fθ(st, at,m)− log π(at|st,m)

]
(14)

From Section 2, we know that Equation (14) is exactly the training objective for the adaptive sampler
πω in AIRL. Thus, the trajectory distribution of the optimal policy πω∗ matches pθ(τ |m) defined in
Equation (6).

B Proof of Lemma 2

First, the gradient of Linfo(θ, ψ) w.r.t. θ can be written as:

∂

∂θ
Linfo(θ, ψ) = Em∼p(m),τ∼p(τ |m,θ) log q(m|τ, ψ)

∂

∂θ
log pθ(τ |m) (15)

As pθ(τ |m) is an energy-based distribution (Equation (6)), we need to derive the gradient of
log p(τ |m, θ) w.r.t. θ:

∂

∂θ
log p(τ |m, θ) = ∂

∂θ

[
log

(
η(s1)

T∏
t=1

P (st+1|st, at)

)
+

T∑
t=1

fθ(st, at,m)− logZ(θ)

]
(16)

=

T∑
t=1

∂

∂θ
fθ(st, at,m)− ∂

∂θ
logZ(θ) (17)

=

T∑
t=1

∂

∂θ
fθ(st, at,m)− Eτ∼p(τ |m,θ)

[
T∑
t=1

∂

∂θ
fθ(st, at,m)

]
(18)

Substituting Equation (18) into Equation (15), we get:

Em∼p(m),τ∼pθ(τ |m)

[
log qψ(m|τ)

[
T∑
t=1

∂

∂θ
fθ(st, at,m)− Eτ ′∼pθ(τ |m)

T∑
t=1

∂

∂θ
fθ(s

′
t, a
′
t,m)

]]
With Lemma 1, we know that when ω is trained to optimality, we can sample from pπ∗ω (τ |m) to
construct an unbiased gradient estimation.

C Meta-Testing Procedure of PEMIRL

We summarize the meta-test stage of PEMIRL for adapting reward functions to new tasks in Algo-
rithm 2.

D Experimental Details

D.1 Network Architectures

For all methods except AIRL, qψ(m|τ) and πω(a|s,m) are represented as 2-layer fully-connected
neural networks with 128 and 64 hidden units respectively and ReLU as the activation function.

12

Algorithm 2 PEMIRL Meta-Test for Reward Adaptation
Input: A test context variable m ∼ p(m), a test expert demonstration τE ∼ pπE (τ |m), and
ground-truth reward r(s, a,m).
Infer the latent context variable from the test demonstration: m̂ ∼ qψ(m|τE).
Train a policy using TRPO w.r.t. adapted reward function fθ(s, a, m̂).
Evaluate the learned policy with r(s, a,m).

Following [11], to alleviate the reward ambiguity problem, we represent the reward function with two
components (a context-dependent disentangled reward estimator rθ(s,m) and a context-dependent
potential function hφ(s,m)):

fθ,φ(st, at, st+1,m) = rθ(st,m) + γhφ(st+1,m)− hφ(st,m)

Here rθ(s,m) and hφ(s,m) are realized as a 2-layer fully-connected neural networks with 32 hidden
units.

D.2 Environment Details

Point-Maze. The ground-truth reward corresponds to negative distance toward the goal position
as well as controlling the pointmass from moving too fast. We use 100 meta-training tasks and 30
meta-training tasks.

Ant. The ground-truth reward corresponds to moving as far as possible forward or backward without
being flipped. We have 2 tasks in this domain.

Sweeper. The ground-truth reward is the negative distance from the sweeper to the object plus the
negative distance from the object to the goal position. We train all methods on 100 meta-training
tasks and test them on 30 meta-test tasks.

Sawyer Pushing. The ground-truth reward in this domain is similar to Sweeper, and we also use 100
meta-training tasks and 30 meta-test tasks.

D.3 Training Details

Training the policy. During training TRPO, we use an entropy regularizer 1.0 for Point-Maze, and 0.1
for the other three domains. We find that adding an imitation objective in PEMIRL that maximizes
the log-likelihood of the sampled expert trajectory conditioned on the latent context variable inferred
by qψ with scaling factor 0.01 accelerates policy training.

Training the inference network and the reward model. We train qψ(m|τ), rθ(s,m) and hφ(s,m)
using the Adam optimizer with default hyperparameters.

Scaling up the mutual information regularization. Note that in Equation 10, β does not necessarily
need to be equal to 1. Adjusting β is equivalent to scaling Linfo(θ, ψ). We scale Linfo(θ, ψ) by 0.1 for
all of our experiments.

Policy and inference network initialization. We initialize and qψ(m|τ) using Meta-IL discussed in
Section 5 while randomly initializing the policy πω(a|s,m).

Stabilizing adversarial training. As in [11], we mix policy samples generated from previous 20
training iterations and use them as negatives when training the disriminator. We find that such a
strategy prevents the discriminator from overfitting to samples from the current iteration.

13

	1 Introduction
	2 Preliminaries
	3 Probabilistic Embeddings for Meta-Inverse Reinforcement Learning
	3.1 Problem Statement
	3.2 Meta-IRL with Mutual Information Regularization over Context Variables
	3.3 Achieving Tractability with Sampling-Based Gradient Estimation

	4 Related Work
	5 Experiments
	5.1 Policy Performance on Test Tasks
	5.2 Reward Adaptation to Challenging Situations

	6 Conclusion
	A Proof of Lemma ??
	B Proof of Lemma ??
	C Meta-Testing Procedure of PEMIRL
	D Experimental Details
	D.1 Network Architectures
	D.2 Environment Details
	D.3 Training Details

