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Abstract

We introduce advocacy learning, a novel supervised training scheme for clas-
sification problems. This training scheme applies to a framework consisting
of two connected networks: 1) the Advocates, composed of one subnetwork
per class, which take the input and provide a convincing class-conditional
argument in the form of an attention map, and 2) a Judge, which predicts
the inputs class label based on these arguments. Each Advocate aims to
convince the Judge that the input example belongs to their corresponding
class. In contrast to a standard network, in which all subnetworks are trained
to jointly cooperate, we train the Advocates to competitively argue for their
class, even when the input belongs to a different class. We also explore a
variant, honest advocacy learning, where the Advocates are only trained on
data corresponding to their class. Applied to several different classification
tasks, we show that advocacy learning can lead to small improvements in
classification accuracy over an identical supervised baseline. Through a
series of follow-up experiments, we analyze when and how Advocates improve
discriminative performance. Though it may seem counter-intuitive, a
framework in which subnetworks are trained to competitively provide evidence
in support of their class shows promise, performing as well as or better than
standard approaches. This provides a foundation for further exploration into
the effect of competition and class-conditional representations.

1 Introduction
In a classification setting, a model is trained to minimize training loss, typically subject to
some penalty or prior (e.g., regularization). In recent years, researchers have proposed a
large number of modifications to the standard supervised learning setting with the goal of
improving performance (Parascandolo et al., 2018; Vaswani et al., 2017). However, these
approaches focus on training different parts of the network to cooperate. In several real world
settings, such as the allocation of resources or the determination of legal truth, agents who
compete are critical to identifying good solutions. While recent work in adversarial networks
investigates the use of competition for training models, the model evaluated (i.e., the generator)
is self-cooperative (Goodfellow et al., 2014). In contrast, we investigate training a model where
different components compete during training and evaluation. In our model, subnetworks
compete to provide class-conditional representations of evidence in the form of attention maps.
Here, we use the term ‘attention map’ to refer to parts of the input that are useful for accurate
classification, similar to the idea of saliency (Itti et al., 1998). We hypothesize that class-
conditional attention maps (which attend to portions of the input indicative of a certain class)
could offer advantages over standard attention maps by emphasizing class-specific evidence.

Our proposed approach consists of two main components: a single Judge and multiple Ad-
vocates. Each Advocate produces an attention map that advocates for a particular class. A
decision is reached by the Judge, which weighs the arguments produced by the Advocates. For
this approach to work well, there must be a balance between the Advocates (so that each Advo-
cate can influence the Judge), and the Judge must be able to effectively use the given evidence
(so as not to be deceived by incorrect advocates). We achieve this balance via advocacy learning,
which trains the components jointly, but according to multiple different objectives. These
different objectives are key to striking the right balance between providing strong but factual
evidence. We also explore a variant, honest advocacy learning, where the Advocates are not
trained to deceptively compete with one another, but still provide class-conditional attention
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maps. In a series of experiments, we compare advocacy learning to several baselines in which
the entire network is trained according to the same standard objective. Across all datasets,
we observe an improvement in discriminative performance when learning class-conditional
attention maps under either an advocacy or honest advocacy learning framework.

2 Methods
We propose a novel approach to optimizing networks for supervised classification that
encourages class-conditional representations of evidence in the form of attention maps. We
hypothesize that, depending on how they are learned, class-conditional attention maps
could offer advantages over standard attention maps, by encouraging competition between
components of the network. Our proposed approach consists of training two connected
networks: i) the Judge and ii) the Advocates (see Figure 1b). At a high level, the Judge
learns to solve the classification problem given some evidence, while the Advocates supply
that evidence by arguing in support of a class which they are assigned. This method draws
inspiration from the legal system, where lawyers work to represent the interests of clients
while judges (or juries) establish facts. This setup is appealing because it reveals evidence that
supports different classes, and encourages each side’s strongest showing, potentially leading
to better final decisions. Advocacy learning consists of both a specific architecture (i.e.,
Advocate and Judge networks) and a specific method for training, both are described below.

2.1 Problem Setting

We consider the task of solving a multi-class classification problem in a supervised learning
setting. We assume access to a labeled training set consisting of labeled examples {x,y}, where
x∈Rd (where d may be a product d1×d2, such as in an image) and y∈{1,...,N}, where N is
the number of classes. We refer to the one-hot label distribution entailed by y as y, so y[y]=1
and y[j]=0 for all j 6=y. We use square brackets for indexing into a vector. While there exist
many learning frameworks to solve this class of problem, we focus on a deep learning approach.
When necessary, we indicate the parameters of a deep modelM i using θi, as in: ŷ=M i(x;θi).
Our proposed approach aims to solve the multi-class classification problem through a novel
training scheme, designed to discover evidence in support of specific class predictions.

2.2 Network Architecture
As mentioned above, our proposed approach is composed of two sets of modules: one set consist-
ing of multiple Advocate modules (1 per class) and the other of a single Judge module. A high-
level overview of our architecture, whichwe call an advocacy net, is given inFigure 1b. Here, we

(a) (b) (c)

Figure 1: a) A simple single-attention framework. The encoder-decoder produce an attention
map a, which is multiplied by the input x to create the input to the decision module, or Judge
J . b) Our advocacy learning framework. Each decoder Deci is trained separately to output
a class-conditional attention map, or argument ai, which is combined with the input to create
evidence E=[e0,...,eN ], where ei is evidence supporting class i. Each advocate is shown in
a different color, the number of Advocates is equal to the number of classes. c) An example
of a multiplicative visual attention map ai used to generate evidence ei.
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briefly describe a generic framework that can lend context throughout the remainder of this sec-
tion. Additional implementation details (e.g., number of layers) are provided in Appendix A.

Advocate Modules. This subnetwork consists of N Advocate modules Advi, where i ∈
{1,...N} corresponds to the class the Advocate represents. Given the input x, each advocate
generates an argument in the form of an attention map Advi(x)→ ai ∈ [0,1]d where each
entry lies in the closed unit interval. In our implementation, the Advocate modules produce
an attention map with dimensionality equal to the input. This is accomplished using a
convolutional encoder-decoder, as is standard for producing pixel-level output in images
(Badrinarayanan et al., 2017). Note that for complex input, such as medical images, other fully
convolutional architectures such as U-Nets may be more appropriate Ronneberger et al. (2015).
Based on these attention maps, each Advocate presents an argument ei as evidence to the
Judge in the form of an element-wise product between attention maps and the input, ei=ai�x.
Each Advocate is trained to emphasizes parts of the input that are indicative of the Advocate’s
class. This differs from a supervised attention map, which focuses on aspects of the input that
are indicative of the underlying class. In an advocacy learning system, each Advocate should
argue for a single class. In our implementation, Advocates share some underlying evidence
in the form of a shared encoder. This allows the Advocates to work together while also playing
off of each other.

Judge Network. The Judge J takes as input the combined evidence E=[e1,...,eN ]∈RN×d,
and outputs a probability distribution over classes ŷ. We make specific class predictions by
taking argmax(ŷ). The architecture of the Judge is flexible; the only limitation is that the
input size must be proportional to the total number of classes. In our implementation, the
Judge module is a convolutional network with fully connected output layers.

While there are certain constraints on the architecture of the network, primarily the existence
of the N Advocate modules and Judge, it’s the interplay between the modules and how they
are trained that is key. Trained end-to-end with the objective of minimizing training loss,
there would be no difference between the proposed architecture and a network with multiple
attention channels. This has important implications for the interpretability of the derived
attention maps. If the judge is a high-capacity nonlinear network then the evidence which
may convince it will by default be non-interpretable to humans. However, the flexibility
of architecture requirements means that work which has examined training interpretable
networks or interpreting trained networks applies Ribeiro et al. (2016); Zhang et al. (2017). In
the next section, we describe the key differences in how we train the Advocates vs. the Judge.

2.3 Training Algorithm
The complete advocacy learning algorithm is presented in Algorithm 1. We learn the
parameters of the Judge network by minimizing the cross-entropy loss: CE(ŷ,y)=−logŷ[y].
However, the Advocates are trained according to a different objective.

Advocate i is trained by minimizing the advocate cross-entropy loss: CEA(ŷ,i)=−logŷ[i].
Under this objective, the Advocate is trained to represent samples from all classes as its own.
We also consider a variant, called honest Advocates, which is not trained to deceive. The
honest advocate loss function is:

CEHA(ŷ,i,y)=

{
−logŷ[i], if i=y
0, otherwise

We optimize the parameters of the Judge and Advocates by interleaving steps of gradient
descent, updating the Judge and each Advocate individually according to their specific
loss function. We freeze the parameters of the sub-networks not updated. This allows the
Advocates to react to updates from the Judge, and the Judge to respond to the Advocates’
arguments. This optimization procedure is similar to the adversarial training procedure used
for generative adversarial networks, though the objective functions differ.

3 Baselines & Experimental Setup
We evaluate our proposed advocacy learning approach across a variety of datasets and tasks,
and compare against a series of different baselines. In this section, we explain our choice of
datasets and baselines. We conclude by providing implementation details.
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Algorithm 1: Advocacy Learning Algorithm
Input :Labeled training

data D={xk,yk}Sk=1 where S is the number of samples, xk∈Rd, and yk∈{1,...N}
Output :Trained Network A=(J,Adv1,...AdvN )

1 Initialize parameters for Judge θJ and Advocates θ1,...,θN ;
2 while training do
3 Draw example (x,y)∈D ; // Showing single sample for simplicity
4 for i∈{1,...N} do
5 ai←Advi(x;θi);
6 ei=ai�x;
7 end
8 E← [e1,...,eN ];
9 ŷ←J(E;θJ);

10 LJ =−log(ŷ[y]) ; // Cross-Entropy Loss, [∗] used for indexing
11 θJ←θJ−η5θJ

LJ ;
12 for i∈{1,...N} do
13 if not honest or i=y then // Honest Advocates update on true examples
14 LAdvi =−log(ŷ[i]);
15 θi←θi−η5θiLAdvi ;
16 end
17 end
18 end
19 return A

3.1 Model and Baselines
On both datasets we compare (honest) advocacy learning against three baselines that
incorporate attention:

• Attention Net: This baseline modifies the advocacy net architecture by removing
all but one attention module, however, that module is trained using a standard
end-to-end optimizer. This allows us to compare advocacy learning against a similar
model using standard supervision.
• Multi-Attention Net: Two differences exist between attention nets and advocacy

nets: the optimization procedure and the architecture. To highlight the specific effects
of advocacy learning, we include a comparison against a model with an identical
architecture, but trained using a standard end-to-end loss.
• Random Net: This baseline uses an identical architecture to the Advocate net, but

does not update the Advocates. This leaves the Judge to learn from a series of random
attention maps equal to the number of classes. This baseline measures whether the Ad-
vocate training is neutral, beneficial, or harmful relative to a random feature projection.
It is conceptually similar to the random-pixel baseline used by (Irving et al., 2018).

3.2 Implementation Details
We implement our models using PyTorch (Paszke et al., 2017). Our specific model architecture
(number of layers, filters, etc.) is given in Appendix A. In our experiments, we optimize
the network weights using Adam (Kingma and Ba, 2014) with a learning rate of 1e−4, and use
Dropout (Srivastava et al., 2014) and batch normalization (Ioffe and Szegedy, 2015) to prevent
overfitting. We examined using stochastic gradient descent with momentum in place of ADAM,
but found that it led the advocacy networks to diverge. We split off 10% of our training data
to use as a validation set for early stopping. We cease training when validation loss fails to
improve over 10 epochs. Model performance is reported on the canonical test splits for each
dataset. We regularize the attention maps by adding a penalty proportional to the L1-norm
of the map to encourage sparsity consistent with common notions of attention. Parameters
were initialized using the default PyTorch method. All code and data used to produce our
experiments will be made publicly available after review to allow for replication and extensions.

4



Under review as a conference paper at ICLR 2019

Table 1: Accuracy (± standard deviation over 5 random seeds) on the datasets between the
various models.

Dataset

Model MNIST FMNIST

Random Net 99.16±0.08 88.69±0.72
Attention Net 99.16±0.30 89.71±0.86
Multi-Attention Net 99.33±0.09 90.11±0.40

Honest Advocacy Net 99.32±0.08 90.81±0.34
Advocacy Net 99.42±0.05 91.62±0.41

4 Results and Discussion
We present our main result: the performance of advocacy learning across two image datasets.
We then present experiments that examine the impact of advocacy learning and the properties
of advocacy networks.

4.1 Advocacy Learning on Multi-Class Balanced Image Data
We begin by examining the performance of our advocacy net variants and baselines on two
publicly available image classification datasets: MNIST and Fashion-MNIST (Xiao et al.,
2017). The Advocate modules are not optimized to improve classification performance, and
their optimization could plausibly lead to a reduction in performance (by learning to deceive
the Judge). However, we find across a range of datasets that this is not the case. Our results
are presented in Table 1. On these datasets, advocacy learning does as well as or outperforms
all baselines. The improvement is most pronounced in Fashion-MNIST, perhaps due to the
denser images or the larger available room for improvement. Moreover, we find that this
difference is not solely attributable to the class-conditional nature of the attention-maps, as
in all datasets the advocacy nets outperform the honest advocacy nets. This suggests that
deception, in addition to competition, can help produce high-quality attention maps.

4.2 Impact of Class Conditional Attention
Results in Table 1 demonstrate that class-conditional attention, or arguments, can improve
upon supervised attention maps. We observe that honest advocacy nets perform similarly to
multi-attention nets on MNIST, and slightly better on FMNIST. The only difference between
these architectures is that the honest Advocates receive fewer gradient updates than the
attention modules per epoch, in a way that makes them class specific. The competition
introduced by advocacy nets further improves performance, outperforming the multi-attention
net on both datasets.

To get a closer look at how advocacy learning compares with the end-to-end supervised
baselines, we plot the averaged difference between the confusion matrices of the multi-attention
nets (MA) and advocacy nets (Adv) Figure 2. Overall, we observe that advocacy nets result
in improvements for a subset of class pairs (e.g., classes 4 and 9), but leave the majority of
predictions unchanged. On MNIST (Figure 2a), we find a few examples where advocacy
learning lowers performance. In particular, the advocacy net is more likely to misclassify 8s as
9s; though the reverse error (9s as 8s) does not increase. This is likely due to the asymmetric
morphological relationship between the digits: an 8 can be obscured to look like a 9, but the
converse is less likely. It appears to help emphasize curves in the input (reducing the instances
with 9 classified as 4 or 7 classified as 9). On Fashion-MNIST (Figure 2b) we observe that
certain class pairs (pullovers or coats v.s. shirts) are markedly improved, while most others
are unaffected. This evidence suggests that advocacy learning most improves performance by
distinguishing among classes with similar morphology, though this analysis is confounded by the
fact that it tends to be those class pairs that have the greatest potential room for improvement.

Qualitative examples of attention maps from the honest Advocate and multi-attention
network are given in Figure 3. We found honest advocacy nets gave denser (and thus more
interpretable) attention maps than advocacy nets. We observe that both honest advocacy nets
and multi-attention nets generate a variety of attention maps with checkering characteristic
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(a) (b)

Figure 2: Averaged difference across five runs in confusion matrices between the multi-attention
and advocacy networks (≥0 means the Advocacy net performed better) on a) MNIST and
b) FMNIST. We zero out the diagonal elements to focus on misclassification. A positive
number means the multi-attention net made more misclassifications than the advocacy net
and vice-versa. We observe the advocacy net tends to improve performance across classes,
but can make certain morphologically similar examples (i.e., 8 vs 9 in a) more difficult.

Figure 3: Evidence generated from a Fashion-MNIST example. The top row shows a sample
from the class the column represents. The second row shows evidence generated by the
multi-attention net (the ordering is arbitrary), the bottom row shows evidence from an honest
Advocate network (the order corresponds to class). The image is an example of class 6 (shirts).
Of particular note is the argument generated by the Advocate for class 1 (pants).
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Figure 4: a) A heatmap showing effect of varying Judge and Advocate capacity (in terms
of residual blocks: high # means high capacity) for an advocacy net on MNIST. b-c) The two
general trends seen over the heatmap. In (b) we see that performance decreases as we increase
Advocate capacity, in (c) we see that performance increases as we increase Judge capacity.

of deconvolutional layers (Odena et al., 2016). An interesting example of class-conditional
behavior is shown by the advocate for class 1. This Advocate, representing the "pants" class,
emphasizes the sides of the shirt, similar to pants legs.

4.3 Impact of Advocate and Judge Capacity

As theAdvocates try to deceive the Judge, a natural question is how the relative capacity of these
components impacts performance. To answer this question, we look a variation of our advocacy
net where we can easily vary the capacity of different pieces. We replace the convolutional
layers in the Advocate encoder and Judge with some number of convolutional residual blocks.
By changing the number of blocks, we can increase or decrease the capacity of the Advocate or
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Table 2: Accuracy (± standard deviation over 5 random seeds, this is not a confidence interval)
on the modified MNIST datasets between the various models. The MIMIC results are reported
in terms of AUPR.

Dataset

Model MIMIC Imbalanced MNIST Binary MNIST

Random Net 39.26±1.51 99.02±0.08 98.58±1.35
Attention Net 45.79±1.80 98.68±0.48 99.23±0.22
Multi-Attention Net 45.74±1.71 99.00±0.13 99.32±0.14

Honest Advocacy Net 46.34±1.73 99.17±0.06 99.31±0.13
Advocacy Net 39.03±4.58 99.17±0.14 98.72±0.58

Judge. Details of this modification are given inAppendix A.We observe that the advocacy net
performs best when Judge capacity is high and Advocate capacity is low. Our best result from
Figure 4a is slightly higher than our best MNIST result in Table 1 (99.46% v.s. 99.42%). We
performed an identical architecture search with the multi-attention net, there was no capacity
setting that beat the best results attained by the advocacy net (best 99.34% v.s. 99.46%).

4.4 Competition and Deception
On the tasks considered above, it is somewhat surprising that advocacy nets outperform
honest advocacy nets. Both incorporate class-conditional attention maps that compete to
influence the Judge. The fact that advocacy nets, which are trained to actively deceive the
Judge, do better suggests that such deception may play a useful role in learning.

To better understand the potential strength of the deception, we examined the effect of
freezing the Judge while continuing to update the Advocates for both advocate and honest
advocate nets. We found that training without the Judge did not affect network performance
in the honest advocate net, but decreased performance in the advocate net by 85%. Thus it is
clear that adaptations by the Judge play a crucial role in maintaining advocate net accuracy.

Up to this point, we have considered only advocacy networks in which all Advocates share
an encoder. Such an architecture could encourage implicit sharing of information, possibly
tempering the negative effects of deception. To test this hypothesis, we evaluated an advocacy
net without a shared encoder on MNIST and FMNIST. On both datasets (averaged across
5 runs), we found that the advocacy network without a shared encoder achieved lower
performance both in absolute terms and relative to an honest advocacy network without a
shared encoder (98.29 v.s. 99.05 for MNIST, 86.47 v.s. 89.29 for FMIST). This suggests the
shared encoder is an important way for Advocates to share information.

The results presented so far all involve multi-class image datasets with balanced classes. To
explore how these assumptions change the impact of deception in competition, we applied
advocacy learning to a large electronic health record (EHR) dataset, MIMIC III (Johnson
et al., 2016). This dataset, the largest publicly available repository of EHR data, has become
an important benchmark in the machine learning for health community (Harutyunyan et al.,
2017), and is helping to drive advances in precision health (Desautels et al., 2016; Maslove
et al., 2017; Oh et al., 2018). We used the clinical time-series subset of the database for
mortality prediction, as in Harutyunyan et al. (2017). We also considered variants of MNIST
that break the multi-class and balanced assumptions. These additional experiments test the
generalizability of our findings to i) different data types (time series as opposed to images),
ii) imbalanced classes, and iii) binary labels. Our results are presented in Table 2.

We report our results on MIMIC in terms of the area under the precision recall curve (AUPR),
since the task is binary with considerable class imbalance in the test set. We find that honest
advocacy learning continues to provide benefits relative to the baselines, though the differences
are small. Notably, in this task advocacy learning performs slightly worse than the random
attention, while honest advocacy learning outperforms the fully supervised system.

This reversal of the results from Table 1 is interesting, and helps illuminate cases where
advocacy learning may or may not work. There are many differences between MIMIC
and MNIST/FMNIST which may explain why advocacy learning fails. Two of the major
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differences, besides the data type, are the imbalanced classes and the number of classes. To
see the isolated effect of these changes, we created two modified versions of MNIST.

For the first modifiedMNIST, ImbalancedMNIST, we subsampled the training set, introducing
class imbalance. After subsampling, the least represented class, 0, had 600 training samples,
and each successive class had 600 additional samples. The test set remained unchanged, which
is why we report results in accuracy. We found that class imbalance lowered the performance
of all models by 0.1-0.3%; the Advocate net was more strongly affected than the honest
Advocate net. However, both models wind up with very similar accuracy (advocacy learning
99.17±0.14 vs. honest advocacy learning 99.17±0.06).
For the second modification, we created Binary MNIST, a variant with only two classes: 4
and 9. The per-class number of examples in the training and test set were unchanged. We
found that the switch to a binary formulation reduced absolute performance for the advocacy
network by 0.7%, a sizable decrease for MNIST for what should be an easier problem. We
did not observe similar decreases with either the honest advocate net or the multi-attention
net. This decrease suggests that, in practice, the competition between many advocates helps
the Judge achieve good performance in the presence of deception. In all datasets considered,
the class-conditional attention provided by honest advocacy learning did not hurt, and in
the presence of imbalanced data helped, performance relative to the supervised baseline. This
suggests the value of competition in training, with or without deception.

4.5 Intuition for Advocates

The fundamental idea of this work: advocate modules that compete with one another instead
of cooperating, is counter-intuitive from a performance perspective. The fact that this
training scheme works at all, let alone better than the baselines in several datasets, is quite
surprising. However, there are reasons other than the empirically demonstrated performance
to suggest that such a training approach could work. Honest Advocates are similar to a
Mixture-of-Experts model, and such models have a long and rich history (Yuksel et al., 2012).
As for vanilla Advocates, their original motivation was to introduce competition into the
training of a neural network. In economic theory, competition plays a vital role in efficiently
allocating resources, leading to better functioning systems (Godfrey, 2008). In machine
learning, the notion of competition has been found useful as an adaptive loss function for image
generation (Goodfellow et al., 2014) and self-competition was used to surpass professional Go
players (Silver et al., 2017). While these systems used competition between networks during
training, competition within a network has been used as well. A winner-take-all competitive
framework was found to lead to superior semi-supervised image classification performance
(Makhzani and Frey, 2015), and the dynamic routing used in Capsule Networks can been
seen as type of competition (Sabour et al., 2017).

The field of multi-objective optimization also gives evidence that advocacy learning could
plausibly be expected to work. A well known result from that field is that multiple gradient
descent, a form of gradient descent applied against multiple (possibly contradicting) objective
functions, achieves a Pareto equilibrium, or a setting where no objective can be improved
without damaging the performance of a different objective (Désidéri, 2014). Viewed through
this lens, advocacy learning may be expected to work because of the asymmetry in the objective
functions for the advocates vs. the judge. Over a batch of data, each advocate is neutral to the
ordering of class assignments, as the objective depends solely on the number of class labels which
it is assigned. However, the Judge is highly sensitive to this ordering, as its objective function
requires classes to be properly labeled. Thus, over the optimization procedure we might expect
predictions for misclassified examples to change, as the advocates are neutral to this, but we
would expect the predictions for correctly classified examples to remain constant as the judge
is sensitive to this. As a result, over the optimization procedure we expect the performance to
increase, converging at perfect training performance. Of course, our use of standard gradient
descent (using ADAM) and the non-convexity of the loss function complicates this analysis,
but such complications are not unusual in the analysis of neural networks. This provides some
theoretical backing to the empirical success of advocacy learning.

8



Under review as a conference paper at ICLR 2019

5 Related Work
Our proposed advocacy learning setup, in which the Advocates are trained to consistently
argue for their particular class in order to convince a Judge, is related to several different
ideas proposed in recent years. These include 1) mixture-of-experts, 2) generative adversarial
networks and 3) debate agents. Here, we review each of these in turn, highlighting relevant
similarities and differences with our proposed approach.

Others have considered transformations of the input in the context of improving classification.
Parascandolo et al. (2018) proposed the use of a mixture-of-experts model to learn inverse
data transforms, such as denoising, to improve performance. These transforms are similar in
nature to the attention maps generated by our fully supervised baselines, and the competition
between experts resembles our Advocate-Advocate relationships. Our work differs in the
nature of our Advocate loss (unsupervised), the goal of the Advocates (convincing the Judge of
a particular class), and the manner in which Advocates specialize (our Advocates are assigned
particular classes to represent).

Advocacy learning consists of Advocate-Advocate relationships and Advocate-Judge
relationships. In standard neural networks, all relationships are cooperative. I.e., all parts of
the network are trained to accomplish the same goal. Adversarial relationships, or situations
where the submodules compete with one another, have recently garnered interest (Durugkar
et al., 2016; Goodfellow et al., 2014; Ghosh et al., 2017). Within a generative adversarial
network framework, researchers have examined multiple discriminators (Durugkar et al., 2016)
and multiple generators (Ghosh et al., 2017). In the multi-generator setting, each generator is
encouraged to capture distinct portions of the class distribution. This bears a resemblance to
the way in which each of our advocates captures relevant evidence in favor of its corresponding
class. However, in contrast to GANs, advocacy learning focuses discrimination, not generation.
Moreover, the Advocate-Judge relationship is neither entirely cooperative (the Advocate may
argue for an untrue class) nor entirely adversarial (the Advocate may argue for a true class).

Concurrentwork sets up a similar task to our own, training agents to ‘debate’ in order to convince
a Judge about the class associated with an input (Irving et al., 2018). The authors use Monte-
Carlo tree search to simulate a debate with the goal of identifying a series of pixels to convince a
pre-trained Judge classifier of an input example’s class. While conceptually similar to advocacy
learning, our work differs in motivation and methodologically. In addition to considering a
different learning framework: neural networks, vs. Monte-Carlo tree search, there are two key
differences in problem formulation: 1) our work is geared towards jointly learning Judges andAd-
vocates, instead of learning debaters that convince a separately trained (or human) Judge, and
2) our work involves Advocates, not debaters, the distinction is that the debaters choose what
they will argue for and are awarded based on relative performance, whereas Advocates are forced
to argue for particular outcomes and are rewarded only insofar as those outcomes are realized.

6 Conclusion
We have presented a novel approach to supervised classification: advocacy learning. Our
approach divides a network into two sub-networks: i) a set of Advocates trained to provide
arguments supporting their corresponding class, and ii) a Judge that uses these arguments
to predict the true class. These sub-networks differ not only in their goals, but also in how
they are trained. Over a series of experiments on three publicly available datasets, we showed
that class-condition attention can improve performance relative to standard attention. These
results were particularly notable in a multi-class setting. Despite the lack of supervision,
Advocates can effectively compete to generate higher quality evidence, though this effect was
largely localized to a few class-pairs (e.g. shirts v.s. pullovers). Moreover, by varying the
network architecture (e.g., by changing the capacity and or by increasing the amount of weight
sharing), one can tradeoff deception, competition, and cooperation of the various subnetworks.
Extensions may consider further improving this balance, by controlling the ratio of honest
and deceptive updates, or the ratio of class-specific updates. A limitation of this architecture
is the one-to-one relationship between the number of classes and number of advocates, which
makes training on datasets like ImageNet implausible. Future work could examine methods to
remove this linear relationship, such as training advocates that work across class hierarchies.
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A Network Architecture

We provide the specific architecture used for our Judge and Advocate Module on the image
and MIMIC experiments. Other implementation details are found in the main paper.

Table 3: The Judge network for Image data.

Layer Filter

Conv Features
Conv1 32x3x3 Convolution

32 Channel 2d BatchNorm
ReLU

Conv2 32x3x3 Convolution
64 Channel 2d BatchNorm
ReLU
2x2 Max Pool

Conv3 64x3x3 Convolution
64 Channel 2d BatchNorm
ReLU

Conv4 64x3x3 Convolution
32 Channel 2d BatchNorm
ReLU
2x2 Max Pool

Output
FC1 512 node Linear layer

512 Channel 1d BatchNorm
ReLU
Dropout(p=0.2)

Out Linear Output
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Table 4: The Advocate Module for Image data.

Layer Filter

Encoder
Conv1 32x3x3 Convolution

32 Channel 2d BatchNorm
ReLU

Conv2 32x3x3 Convolution
64 Channel 2d BatchNorm
ReLU
2x2 Max Pool

Conv3 64x3x3 Convolution
64 Channel 2d BatchNorm
ReLU

Conv4 64x3x3 Convolution
32 Channel 2d BatchNorm
ReLU
2x2 Max Pool

Decoder
Deconv1 32x3x3 Stride-1 Deconvolution

32 Channel 2d BatchNorm
ReLU

Deconv2 16x2x2 Stride-2 Deconvolution
16 Channel 2d BatchNorm
ReLU

Deconv3 8x2x2 Stride-2 Deconvolution
8 Channel 2d BatchNorm
ReLU

Deconv4 4x5x5 Stride-1 Deconvolution
4 Channel 2d BatchNorm
ReLU

Output 2x3x3 Convolution with Padding=1
2 channel 2d BatchNorm
1x1x1 Convolution

Table 5: The residual blocks in the variable capacity Judge and Advocate components. Both
blocks are repeated n times where n is the number of residual blocks for the network. Max
pooling is done after each block. Three additional 2x2 convolutions are performed before the
output. In the Advocate encoder, this output is given to the decoder. In the Judge, the output
is given to the fully connected layers. In both cases, the architecture remains unchanged from
the non-residual verison.

Layer Filter

Conv Features
Block1 32x3x3 Convolution with padding 1

32 Channel 2d BatchNorm
ReLU

Block2 32x3x3 Convolution
64 Channel 2d BatchNorm
ReLU
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Table 6: The Judge network for MIMIC III.

Layer Filter

Conv Features
Conv1 64x3 1D Convolution

64 Channel 1D BatchNorm
ReLU
2-width 1D Max Pool

Conv2 64x3 1D Convolution
64 Channel 1D BatchNorm
ReLU
2-width 1D Max Pool

FC1 64 node Linear layer
64 Channel 1D BatchNorm
ReLU
Dropout(p=0.2)

Out Linear Output

Table 7: The Advocate Module for MIMIC. Note the final convolution has a number of layers
equal to the input channel size, which for the MIMIC III benchmark is 76.

Layer Filter

Encoder
Conv1 32x3 1D Convolution

32 Channel !d BatchNorm
ReLU

Conv2 32x3 1D Convolution
32 Channel 1d BatchNorm
ReLU
2x2 Max Pool

Conv3 64x3 1D Convolution
64 Channel 1d BatchNorm
ReLU

Conv4 64x3 1D Convolution
64 Channel 2d BatchNorm
ReLU
2x2 Max Pool

Decoder
Deconv1 32x3 Stride-1 1D Deconvolution

32 Channel 1D BatchNorm
ReLU

Deconv2 32x2 Stride-2 1D Deconvolution
32 Channel 1D BatchNorm
ReLU

Deconv3 64x2 Stride-2 1D Deconvolution
64 Channel 1D BatchNorm
ReLU

Deconv4 64x5 Stride-1 1D Deconvolution
64 Channel 1d BatchNorm
ReLU

Output 64x3 1D Convolution with Padding=1
64 channel 1D BatchNorm
Nx1 1D Convolution
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