McTorch, a manifold optimization
library for deep learning

Mayank Meghwanshi Pratik Jawanpuria
Microsoft, India Microsoft, India
mamegh@microsoft.com pratik. jawanpuria@microsoft.com
Anoop Kunchukuttan Hiroyuki Kasai
Microsoft, India The University of Electro-Communications, Japan
anoop.kunchukuttan@microsoft.com kasai@is.uec.ac.jp
Bamdev Mishra

Microsoft, India
bamdevm@microsoft.com

Abstract

In this paper, we introduce McTorch, a manifold optimization library for deep
learning that extends PyTorc It aims to lower the barrier for users wishing to use
manifold constraints in deep learning applications, i.e., when the parameters are
constrained to lie on a manifold. Such constraints include the popular orthogonality
and rank constraints, and have been recently used in a number of applications in
deep learning. McTorch follows PyTorch’s architecture and decouples manifold
definitions and optimizers, i.e., once a new manifold is added it can be used with
any existing optimizer and vice-versa. McTorch is available at https://github,
com/mctorchl|

1 Introduction

Manifold optimization refers to nonlinear optimization problems of the form

min f(), (1
where f is the loss function and the parameter search space M is a smooth Riemannian manifold
[L]. Note that the Euclidean space is trivially a manifold. Conceptually, manifold optimization
translates the constrained optimization problem (I) into an unconstrained optimization over the
manifold M, thereby generalizing many of the standard nonlinear optimization algorithms with
guarantees [} 5, 27} 28, 33| [17, [7]. A few ingredients of manifold optimization are the matrix
representations of the tangent space (linearization of the search space at a point), an inner product
(to define a metric structure to compute the Riemannian gradient and Hessian efficiently), and a
notion of a straight line (a characterization of the geodesic curves to maintain strict feasibility of the
parameters). Two popular examplesﬂ of smooth manifolds are i) the Stiefel manifold, which is the set
of n X p matrices whose columns are orthonormal, i.e., M = {X € R"*P : XTX = I} [9]] and ii)
the symmetric positive definite manifold, which is the set of symmetric positive definite matrices, i.e.,
M ={XeR"™":X > 0} [4].

'PyTorch is available at https: //pytorch.org/|and introduced in [25].
%A comprehensive list of manifolds is at http: //manopt . org/tutorial.html|

Preprint. Work in progress.

https://github.com/mctorch
https://github.com/mctorch
https://pytorch.org/
http://manopt.org/tutorial.html

Manifold optimization has gained significant interest in computer vision [18} 30], Gaussian mixture
models [[10], multilingual embeddings [[14], matrix/tensor completion [8} [15 [16} [19, 21} 123} 31]],
metric learning [20 [32]], phase synchronization [6}34]], to name a few.

Deep learning refers to machine learning methods with multiple layers of processing to learn effective
representation of data. These methods have led to state-of-the-art results in computer vision, speech,
and natural language processing. Recently, manifold optimization has been applied successfully in
various deep learning applications [22} 2, 26} [1 1} [13} 24} 13]].

On the practical implementation front, there exists popular toolboxes — Manopt [8]], Pymanopt [29],
and ROPTLIB [12] — that allow rapid prototyping without the burden of being well-versed with
manifold-related notions. However, these toolboxes are more suitable for handling standard nonlinear
optimization problems and not particularly well-suited for deep learning applications. On the other
hand, PyTorch [23]], a Python based deep learning library, supports tensor computations on GPU
and provides dynamic tape-based auto-grad system to create neural networks. PyTorch provides
a flexible format to define and train deep learning networks. Currently, however, PyTorch lacks
manifold optimization support. The proposed McTorclﬂ library aims to bridge this gap between the
standard manifold toolboxes and PyTorch by extending the latter’s functionality.

McTorch builds upon the PyTorch library for tensor computation and GPU acceleration, and derives
manifold definitions and optimization methods from the toolboxes [8} 12} 29]. McTorch is well-
integrated with PyTorch that allows users to use manifold optimization in a straightforward way.

2 Overview of McTorch

McTorch library has been implemented by extending a PyTorch fork to closely follow its architecture.
All manifold definitions reside in the module torch.nn.manifold and are derived from the parent
class Manifold, which defines the manifold structure (i.e., the expressions of manifold-related
notions) that any manifold must implement. A few of these expressions are:

e rand: to get a random point on the manifold,
e retr: to retract a tangent vector onto the manifold,
e egrad2rgrad: to convert the back-propagated gradient to the Riemannian gradient.

To facilitate creation of a manifold-constrained parameter, PyTorch’s native Parameter class is mod-
ified to accept an extra argument on initialization to specify the manifold type and size. Parameter
can be initialized to a random point on the manifold or a particular value provided by the user.
Parameter also holds the attribute rgrad (which stands for the Riemannian gradient) that gets
updated with every back-propagated gradient step.

The existing optimizers in the module torch.optim are modified to support updates on the manifold.
An optimization step is a function of parameter’s current value, gradient, and optimizer state. In the
manifold optimization, the gradient is the Riemannian gradient and the update is with the retraction
operation.

To use manifolds in PyTorch layers (in torch.nn.Module), we have added the property
weight_manifold to the linear and convolutional layers which constrains the weight tensor of
the layer to a specified manifold. As the shape of weight tensor is calculated using the inputs to the
layer, we have added ManifoldShapeFactory to create a manifold object for a given tensor shape
such that it obeys the initialization conditions of that manifold.

All the numerical methods are implemented using the tensor functions of PyTorch and support both
CPU and GPU computations. As the implementation modifies and appends to the PyTorch code, all
the user facing APIs are similar to PyTorch. McTorch currently supports:

o Manifolds: Stiefel, PositiveDefinite,
e Optimizers: SGD, Adagrad, ConjugateGradient,
e Layers: Linear, Convld, Conv2d, Conv3d.

3McTorch stands for Manifold-constrained Torch.

5

3 McTorch Usage

Orthogonal weight normalization in multi-layer perceptron [11]. An example showing creation
and optimization of McTorch module with the Stiefel manifold.

import torch
import torch.nn as nn

3 import torch.nn.functional as F

4
5
6
8
9
10
11
12
13
14
15

16

A McTorch module using manifold constrained linear layers.
class OrthogonalWeightNormalizationNet (nn.Module) :

def __init__(self, input_size, hidden_sizes, output_size):
super (OrthogonalWeightNormalizationNet , self).__init__ ()
layer_sizes = [input_size] + hidden_sizes + [output_size]

self.layers = []

for i in range(l, len(layer_sizes)):
self.layers.append(nn.Linear(in_features=layer_sizes[i—1],
out_features=layer_sizes[i],
weight_manifold=nn. Stiefel))
ReLU for middle layers
if i != len(layer_sizes)—1:
self.layers.append(nn.ReLU())
LogSoftmax at the output layer
else:
self.layers .append(nn.LogSoftmax (dim=1))
self .model = nn.Sequential (xself.layers)

def forward(self, x):
return self.model(x)

Create module object.
model = OrthogonalWeightNormalizationNet(input_size=1024,
hidden_sizes=[128, 128, 128, 128, 128], output_size=68)

Optimize with the Adagrad algorithm.
optimizer = torch.optim.Adagrad(params=model. parameters (), lr=le—2)
for epoch in range(10):

optmizer.zero_grad ()

data, target = get_next_batch ()

output = model(data)

loss = F.nll_loss (output, target)

cost.backward ()

optimizer.step ()

In the above example, a new PyTorch module is defined by inheriting from nn.Module. It requires
defining an __init__ function to set up layers and a forward function to define forward pass of
the module. The backward pass for back-propagation of gradients is automatically computed. In
the layer definition, Linear layers with Stiefel (orthogonal) manifold are initialized. It also adds
ReLU nonlinearity between layers and softmax nonlinearity on the output. The forward function
of the model does a forward pass on sequence of layers. To optimize, torch.optim.Adagrad is
initialized, which is followed by multiple epochs of forward and backward passes of the module on
batched training data.

4 Roadmap and Conclusion

We are actively working on adding support for more manifolds and optimization algorithms. We are
also curating a collection of code examples and benchmarks to showcase various uses of manifold
optimization in deep learning research and applications.

McTorch is released under the BSD-3 Clause license and all the codes and examples are available on
the GitHub repository of the project at https://github.com/mctorch/mctorchl

https://github.com/mctorch/mctorch

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, 2008.

[2] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent neural networks. In /ICML,
2016.

[3] V. Badrinarayanan, B. Mishra, and R. Cipolla. Symmetry-invariant optimization in deep
networks. Technical report, arXiv preprint arXiv:1511.01754, 2015.

[4] R. Bhatia. Positive definite matrices, volume 24. Princeton university press, 2009.

[5] S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217-2229, 2013.

[6] N. Boumal. Nonconvex phase synchronization. SIAM Journal on Optimization, 26(4):2355—
2377, 2016.

[7] N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization
on manifolds. IMA Journal of Numerical Analysis, 2018.

[8] N.Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization
on manifolds. Journal of Machine Learning Research, 15(Apr):1455-1459, 2014.

[9] A. Edelman, T.A. Arias, and S.T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998.

[10] R. Hosseini and S. Sra. Matrix manifold optimization for gaussian mixtures. In NIPS, 2015.

[11] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li. Orthogonal weight normalization:
Solution to optimization over multiple dependent Stiefel manifolds in deep neural networks. In
AAAI 2017.

[12] W. Huang, P.-A. Absil, K. A. Gallivan, and P. Hand. ROPTLIB: an object-oriented C++ library
for optimization on Riemannian manifolds. Technical Report FSU16-14.v2, Florida State
University, 2016.

[13] Z. Huang, J. Wu, and L. Van Gool. Building deep networks on Grassmann manifolds. In AAAI,
2018.

[14] P. Jawanpuria, A. Balgovind, A. Kunchukuttan, and B. Mishra. Learning multilingual word
embeddings in latent metric space: a geometric approach. Technical report, arXiv preprint
arXiv:1808.08773, 2018.

[15] P. Jawanpuria and B. Mishra. A unified framework for structured low-rank matrix learning. In
ICML, 2018.

[16] H. Kasai and B. Mishra. Low-rank tensor completion: a riemannian manifold preconditioning
approach. In ICML, 2016.

[17] H. Kasai, H. Sato, and B. Mishra. Riemannian stochastic recursive gradient algorithm. In ICML,
2018.

[18] A. Kovnatsky, K. Glashoff, and M. M. Bronstein. Madmm: a generic algorithm for non-smooth
optimization on manifolds. In ECCV, 2016.

[19] D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor completion by Riemannian
optimization. BIT Numerical Mathematics, 2013. Doi: 10.1007/s10543-013-0455-z.

[20] G. Meyer, S. Bonnabel, and R. Sepulchre. Linear regression under fixed-rank constraints: a
Riemannian approach. In ICML, 2011.

[21] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre. Fixed-rank matrix factorizations and
Riemannian low-rank optimization. Computational Statistics, 29(3—4):591-621, 2014.

[22] M. Nickel and D. Kiela. Learning continuous hierarchies in the Lorentz model of hyperbolic
geometry. In ICML, 2018.

[23] M. Nimishakavi, P. Jawanpuria, and B. Mishra. A dual framework for low-rank tensor comple-
tion. In NIPS, 2018.

[24] M. Ozay and T. Okatani. Training CNNs with normalized kernels. In AAAZ, 2018.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In The NIPS workshop on the
future of gradient-based machine learning software & techniques, 2017.

[26] S.K.Roy, Z. Mhammedi, and M. Harandi. Geometry aware constrained optimization techniques
for deep learning. In CVPR, 2018.

[27] H. Sato and T. Iwai. A new, globally convergent Riemannian conjugate gradient method.
Optimization: A Journal of Mathematical Programming and Operations Research, 64(4):1011-
1031, 2013.

[28] H. Sato, H. Kasai, and B. Mishra. Riemannian stochastic variance reduced gradient. arXiv
preprint: arXiv:1702.05594, 2017.

[29] J. Townsend, N. Koep, and S. Weichwald. Pymanopt: A Python toolbox for optimization on
manifolds using automatic differentiation. Journal of Machine Learning Research, 17(137):1-5,
2016.

[30] R. Tron and K. Daniilidis. The space of essential matrices as a Riemannian quotient manifold.
SIAM Journal Imaging Sciences, 10(3):1416-1445, 2017.

[31] B. Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal on
Optimization, 23(2):1214-1236, 2013.

[32] P. Zadeh, R. Hosseini, and S. Sra. Geometric mean metric learning. In /CML, 2016.

[33] H.Zhang, S. J. Reddi, and S. Sra. Riemannian svrg: Fast stochastic optimization on Riemannian
manifolds. In NIPS, 2016.

[34] Y. Zhong and N. Boumal. Near-optimal bounds for phase synchronization. STAM Journal on
Optimization, 28(2):989-1016, 2018.

	Introduction
	Overview of McTorch
	McTorch Usage
	Roadmap and Conclusion

