
Model-Based Diffusion for Trajectory Optimization

Chaoyi Pan∗, Zeji Yi∗, Guanya Shi†, Guannan Qu†

Carnegie Mellon University
{chaoyip,zejiy,guanyas,gqu}@andrew.cmu.edu

Abstract

Recent advances in diffusion models have demonstrated their strong capabilities in
generating high-fidelity samples from complex distributions through an iterative
refinement process. Despite the empirical success of diffusion models in motion
planning and control, the model-free nature of these methods does not leverage
readily available model information and limits their generalization to new scenarios
beyond the training data (e.g., new robots with different dynamics). In this work,
we introduce Model-Based Diffusion (MBD), an optimization approach using the
diffusion process to solve trajectory optimization (TO) problems without data.
The key idea is to explicitly compute the score function by leveraging the model
information in TO problems, which is why we refer to our approach as model-
based diffusion. Moreover, although MBD does not require external data, it
can be naturally integrated with data of diverse qualities to steer the diffusion
process. We also reveal that MBD has interesting connections to sampling-based
optimization. Empirical evaluations show that MBD outperforms state-of-the-art
reinforcement learning and sampling-based TO methods in challenging contact-rich
tasks. Additionally, MBD’s ability to integrate with data enhances its versatility and
practical applicability, even with imperfect and infeasible data (e.g., partial-state
demonstrations for high-dimensional humanoids), beyond the scope of standard
diffusion models. Videos and codes: https://lecar-lab.github.io/mbd/

1 Introduction

Model
information

xt+1 = ft(xt, ut)

x0

x1

u1

y(0)
1

xT

uT

y(0)
T

…

y(i−1)
1

y(i−1)
T

…

y(i)
1

y(i)
T

…

y(N)
1

y(N)
T

…

Y (0) Y (i−1) Y (i) Y (N)

Model-based diffusion in humanoid running tasks

T
rajectory

Y (i) = αY (i−1) + 1 − αw

Y (i−1) = 1
αi

(Y (i) + (1 − ᾱi)∇Y (i)log pi(Y (i)))

Forward

Backward

Model-based score approximation

Figure 1: MBD refines the trajectory by leveraging the dynamics
model directly without relying on demonstration data.

Trajectory optimization (TO)
aims to optimize the state
and control sequence to min-
imize a cost function while
subject to specified dynamics
and constraints. Given non-
linear, non-smooth dynam-
ics and non-convex objec-
tives and constraints, tradi-
tional optimization methods
like gradient-based methods
and interior point methods are
less effective in solving TO
problems. In response, diffu-
sion models have emerged as
a powerful tool for trajectory
generation in complex dy-
namical systems due to their
expressiveness and scalabil-
ity [12, 54, 34, 33, 40, 5].

∗ Equal contributions. † Equal advising.

https://lecar-lab.github.io/mbd/

Although diffusion models excel when learning from large-scale, high-dimensional, and high-quality
demonstrations, their dependency on such data limits their practicality. For example, after training a
manipulation task with a specific robotic arm, the model may struggle to generalize to new tasks with
a different arm as the underlying dynamics change. This limitation arises from the model-free nature
of existing diffusion-based methods, which do not leverage readily available model information to
enhance adaptability. Moreover, existing diffusion-based approaches often require high-quality (in
terms of optimality and feasibility) demonstration data, which limits their applications in various
scenarios with imperfect data, such as dynamically infeasible trajectories (e.g., generated by high-level
planners using simplified models) and partial demonstrations (e.g., lower-body-only demonstrations
for a high-dimensional humanoid).

Fortunately, unlike diffusion model’s applications in vision or language where data is from unknown
distributions (e.g., internet-scale image data), in trajectory optimization, we often know the distri-
bution of desired trajectories, which is described by the optimization objectives, constraints, and
the underlying dynamics model, although such a distribution is intractable to directly sample from.
Diffusion models offer a tantalizing new perspective, by iteratively refining samples from isotropic
Gaussians to meaningful desired distributions in manageable steps, rather than directly learning
the complex desired distribution. Inspired by this, we propose Model-Based Diffusion (MBD) that
utilizes model information to approximate the gradient of the log probability density function (a.k.a.
score function) and uses it to iteratively refine sampled trajectories to solve TO problems, as depicted
in Fig. 1. This model-centric strategy allows for the generation of dynamically feasible trajectories
in a data-free manner, and gradually moves them towards more optimal solutions. Furthermore, by
using demonstrations as observations of the target distribution, MBD can be smoothly combined with
data of different qualities to steer the diffusion process and enhance its effectiveness. Particularly,
we merge the demonstration data into the sampling process by evaluating their likelihoods with the
model and use them to improve the estimation of the score function. Our contributions are threefold:

• We introduce the Model-Based Diffusion (MBD) framework for trajectory optimization, utilizing
the dynamics model to estimate the score function. This enables an effective trajectory planner
given non-smooth dynamics and non-convex objectives, such as contact-rich manipulation tasks or
high-dimensional humanoids.

• Our analysis and empirical evaluations demonstrate that MBD matches, and often exceeds, the
performance of existing reinforcement learning and sampling-based TO methods. In particular,
MBD outperforms PPO by 59% in various tasks within tens of seconds of diffusing.

• We demonstrate MBD’s flexibility in utilizing diverse imperfect data to steer the diffusion process
and further enhance the performance. Specifically, the resulting whole-body humanoid trajectory
from MBD is more natural by utilizing the lower-body-state-only human motion data. Similarly,
MBD can effectively address long-horizon sparse-reward Umaze navigation tasks by leveraging
infeasible demonstrations generated by an RRT planner with simplified dynamics.

2 Related Work

Diffusion Models. Diffusion models have been widely adopted as generative models for high-
dimensional data, such as image [51], audio [13], and text [8] through iterative refinement pro-
cesses [50, 28]. The backward process can be viewed as gradient prediction [52] or score match-
ing [53], which learns the score function to move samples towards the data distribution. We deliver
new methods to perform the backward diffusion process using the available model information.

Sampling-based Optimization. Optimization involving black-box functions is widely applied across
various fields, including hyperparameter tuning and experimental design [49, 27]. Evolutionary
algorithms like CMA-ES are often used to tackle black-box optimization problems, dynamically
modifying the covariance matrix to produce new samples [24]. Such problems can also be efficiently
addressed within the Bayesian optimization framework [50, 19], which offers greater efficiency.
Nonetheless, traditional BO algorithms are generally restricted to low-dimensional problems.

Trajectory Optimization. Traditionally, trajectory optimization (TO) is solved using gradient-
based optimization, which faces challenges such as non-convex problem structures, nonlinear or
discontinuous dynamics, and high-dimensional state and control action spaces. As two equivalent
formulations, direct methods [25] and shooting-based methods [29] are commonly used to solve TO

2

problems, where gradient-based optimizers such as Augmented Lagrangian [32], Interior Point [36],
and Sequential Quadratic Programming [3, 48] are employed. To leverage the parallelism of modern
hardware and improve global convergence properties, sampling-based methods like Cross-Entropy
Motion Planning (CEM) [37] and Model Predictive Path Integral (MPPI) [58, 62] have been proposed
to solve TO by sampling from target distributions. To solve stochastic optimal control problems,
trajectory optimization has also been framed as an inference problem in a probabilistic graphical
model, where system dynamics defines the graph structure [35, 39]. This perspective extends methods
such as iLQG by integrating approximate inference techniques to improve trajectory optimization [55].
The connection between diffusion and optimal control has been explored in [10], which motivates us
to use diffusion models as solvers for trajectory optimization.

Diffusion for Planning. Diffusion-based planners have been used to perform human motion gener-
ation [12, 54] and multi-agent motion prediction [34]. Diffusion models are capable of generating
complete trajectories by folding both dynamics and optimization processes into a single framework,
thus mitigating compounding errors and allowing flexible conditioning [33, 40, 5]. In addition, they
have been adeptly applied to policy generation, enhancing the capability to capture multimodal
demonstration data in high-dimensional spaces for long-horizon tasks [46, 15]. These works assume
no access to the underlying dynamics, limiting the generalization to new environments. To enforce
dynamics constraints, SafeDiffuser [60] integrates control barrier functions into the learned diffusion
process, while Diffusion-CCSP [61] composes the learned geometric and physical conditions to
guarantee constraint compliance. Our approach uses diffusion models directly as solvers, rather than
simply distilling solutions from demonstrations.

Langevin-based Markov Chain Monte Carlo for Global Optimization. Gradient-based sampling
algorithms have been widely used in global optimization, where the energy function J is optimized
by sampling from the Boltzmann distribution p∝ exp(−J

λ
) [57, 43]. By annealing the temperature

λ to zero, the sampling process converges to the global minimum of the energy function J [31].
The convergence of Langevin-based MCMC methods has been well studied in both continuous and
discretized settings [16, 21], showing that the distribution will converge in probability to the target
distribution with certain decreasing schedule of the step size and temperature λ. In practice, the most
common Langevin-based MCMC methods are unadjusted Langevin Monte Carlo (ULMC) [17] and
Underdamped Langevin Monte Carlo (UdLMC) [14], with convergence rates of O(1

ϵ2
log(1

ϵ
)) and

O(1
ϵ
) given strongly convex and smooth energy functions, respectively. Recently, Langevin-based

MCMC methods have been integrated into diffusion processes to improve global convergence and
sampling efficiency [30, 6], where the score function is estimated by Monte Carlo to accelerate and
stabilize the diffusion process. Our work differs from these methods in that we aim to sample from
the high-probability region of the target distribution without assuming access to the gradient of the
energy function, and without assuming the energy function is smooth or convex.

3 Problem Statement and Background

Notations: We use lower (upper) scripts to specify the time (diffusion) step, e.g., xt, ut, yt represent
the state, control and state-control pair at time t, and Y (i) represents the diffusion state at step i.

This paper focuses on a class of trajectory optimization (TO) problems whose objective is to find the
sequences {xt} and {ut} that minimize the cost function J(x1∶T ;u1∶T) subject to the dynamics and
constraints. The optimization problem 1 can be formulated as follows:

min
x1∶T ,u1∶T

J(x1∶T ;u1∶T) = lT (xT) +
T−1

∑
t=0

lt(xt, ut) (1a)

s.t. x0 = xinit (1b)
xt+1 = ft(xt, ut), ∀t = 0,1, . . . , T − 1, (1c)
gt(xt, ut) ≤ 0, ∀t = 0,1, . . . , T − 1. (1d)

where xt ∈ Rnx and ut ∈ Rnu are the state and control at time t, ft ∶ Rnx ×Rnu → Rnx represents the
dynamics, gt ∶ Rnx ×Rnu → Rng are the constraint functions and lt ∶ Rnx ×Rnu → R are the stage

1We assume deterministic dynamics for simplicity to sample the dynamically feasible trajectory. The
extension to stochastic dynamics is straightforward.

3

costs. We use Y = [x1∶T ;u1∶T] to denote all decision variables. Traditionally, TO is solved using
nonlinear programming, which faces challenges such as non-convex problem structures, nonlinear or
discontinuous dynamics, and high-dimensional state and control action spaces. Recently, there has
been a growing interest in bypassing these challenges by directly generating samples from the optimal
trajectory distribution using diffusion models trained on optimal demonstration data [12, 40, 46, 61].

To use diffusion for TO, (1) is first transformed into a sampling problem. The target distribution
p0(Y (0)) is proportional to dynamical feasibility pd(Y)∝∏T

t=1 1(xt = ft−1(xt−1, ut−1)), optimal-
ity pJ(Y)∝ exp (−J(Y)

λ
) and the constraints pg(Y)∝∏T

t=1 1(gt(xt, ut) ≤ 0), i.e.,

p0(Y)∝ pd(Y)pJ(Y)pg(Y) (2)

Obtaining the solution Y ∗ from the TO problem in Eq. (1) is equivalent to sampling from Eq. (2)
given a low temperature λ → 0. In fact, in Appendix A.2, we prove that the distribution of J(Y)
with Y ∼ p0(⋅) converges in probability to the optimal value J∗ as λ→ 0, under mild assumptions.
However, it is generally difficult to directly sample from the high-dimensional and sparse target
distribution p0(⋅). To address this issue, the diffusion process iteratively refines the samples following
a backward process, which reverses a predefined forward process as shown in Fig. 1. The forward
process corrupts the original distribution p0(⋅) to an isotropic Gaussian pN(⋅) by incrementally
adding small noise to it and scaling it down by

√
αi to maintain an invariant noise covariance

(see Fig. 2(b) for an example). Mathematically, this means we iteratively obtain Y (i) ∼ pi(⋅) with
pi∣i−1(⋅∣Y (i−1)) ∼ N (

√
αiY

(i−1), (1−αi)I). Because the noise at each time step is independent, the
conditional distribution of Y (i)∣Y (i−1) also leads to that of Y (i)∣Y (0):

pi∣0(⋅∣Y (0)) ∼ N (
√
ᾱiY

(0), (1 − ᾱi)I), ᾱi =
i

∏
k=1

αk. (3)

The backward process pi−1∣i(Y (i−1)∣Y (i)) is the reverse of the forward process pi∣i−1(Y (i)∣Y (i−1)),
which removes the noise from the corrupted distribution pN(⋅) to obtain the target distribution p0(⋅).
The target distribution p0(⋅) in the diffusion process is given by:

pi−1(Y (i−1)) = ∫ pi−1∣i(Y (i−1)∣Y (i))pi(Y (i))dY (i), (4)

p0(Y (0)) = ∫ pN(Y (N))
1

∏
i=N

pi−1∣i(Y (i−1)∣Y (i))dY (1∶N) (5)

Standard diffusion models [33, 40, 61], which we refer to as Model-Free Diffusion (MFD), solve the
backward process by learning score function merely from data. In contrast, we propose leveraging
the dynamics model to estimate the score to improve the generalizability of the model and allow a
natural integration with diverse quality data.

4 Model-Based Diffusion

In this section, we formally introduce our MBD algorithm that leverages model information to
perform backward process. To streamline the discussion, in Section 4.1, we first present MBD
with Monte Carlo score ascent to solve simplified and generic unconstrained optimization problems.
In Section 4.2, we extend MBD to the constrained optimization setting to solve the TO problem given
complex dynamics and constraints. Lastly, in Section 4.3, we augment the MBD algorithm with
demonstrations to improve sample quality and steer the diffusion process.

4

4.1 Model-based Diffusion as Multi-stage Optimization

−1.0 −0.5 0.0 0.5 1.0

Y

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
O

b
je

ct
iv

e
(a) Objective Function J(Y)

−1.0 −0.5 0.0 0.5 1.0

Y

0.000

0.005

0.010

0.015

0.020

D
en

si
ty

(b) Forward Density

p0 = e−
J
λ

p1

p20

p100

p199

0 50 100 150 200

Diffusion Step

−2

−1

0

1

2

Y

(c) Backward Process

Reverse SDE

MC Score Ascend

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Reverse SDE vs. Monte Carlo score ascent (MCSA) on a synthetic highly non-convex ob-
jective function. (a) Synthesized objective function with multiple local minima. (b) The intermediate
stage density pi(⋅), where peaked p0(⋅) is iteratively corrupted to a Gaussian pN(⋅). (c) Reverse SDE
vs. MCSA: Background colors represent the density of pi(⋅) at different stages. MCSA converges
faster due to larger step size and lower sampling noise while still capturing the multimodality.

We consider the reverse process for an unconstrained optimization problem minY J(Y), where the

target distribution is p0(Y (0)) ∝ exp (−J(Y (0))
λ
). In our MBD framework, “model” implies that

we can evaluate J(Y (0)) for arbitrary Y (0), enabling us to compute the target distribution up to the
normalizing constant.

MBD uses Monte Carlo score ascent instead of the commonly adopted reverse SDE approach in
MFD. Specifically, when denoising from i to i − 1, MBD performs one step of gradient ascent on
log pi(Y (i)) and then scales the sample by the factor 1

√
αi

as defined in the forward process:

Y (i−1) = 1
√
αi

(Y (i) + (1 − ᾱi)∇Y (i) log pi(Y (i))) (6)

Critically, with the model-informed p0(Y (0)), we can estimate the score function ∇Y (i) log pi(Y (i))
by connecting pi(Y (i)) to p0(Y (0)) via Bayes’ rule:

∇Y (i) log pi(Y
(i)
) =
∇Y (i) ∫ pi∣0(Y

(i)
∣ Y (0))p0(Y

(0)
)dY (0)

∫ pi∣0(Y (i) ∣ Y (0))p0(Y (0))dY (0)
=
∫ ∇Y (i)pi∣0(Y

(i)
∣ Y (0))p0(Y

(0)
)dY (0)

∫ pi∣0(Y (i) ∣ Y (0))p0(Y (0))dY (0)

(7a)

=
∫ −

Y (i)−
√

ᾱiY
(0)

1−ᾱi
pi∣0(Y

(i)
∣ Y (0))p0(Y

(0)
)dY (0)

∫ pi∣0(Y (i) ∣ Y (0))p0(Y (0))dY (0)
(7b)

= −
Y (i)

1 − ᾱi
+

√
ᾱi

1 − ᾱi

∫ Y (0)pi∣0(Y
(i)
∣ Y (0))p0(Y

(0)
)dY (0)

∫ pi∣0(Y (i) ∣ Y (0))p0(Y (0))dY (0)
(7c)

Between Eq. (7a) and Eq. (7b), we use the forward Gaussian density in Eq. (3): pi∣0(Y (i) ∣ Y (0))∝

exp(− 1
2

(Y (i)−
√
ᾱiY

(0)
)
⊺
(Y (i)−

√
ᾱiY

(0)
)

1−ᾱi
). Its log-likelihood gradient is ∇Y (i)pi∣0(Y (i) ∣ Y (0)) =

− 1
1−ᾱi
(Y (i) −

√
ᾱiY

(0))pi∣0(Y (i) ∣ Y (0)). Given Y (0) as the integration variable in Eq. (7c),
pi∣0(Y (i) ∣ Y (0)) is evaluated as a function of Y (0) parameterized by Y (i). Based on that, we define
the function ϕi(Y (0)) as:

ϕi(Y (0))∝ pi∣0(Y (i) ∣ Y (0))∝ exp(−1
2

(Y (0) − Y (i)
√
ᾱi
)
⊺

(Y (0) − Y (i)
√
ᾱi
)

1−ᾱi

ᾱi

)∝ N (Y
(i)

√
ᾱi

,
I

ᾱi
− I) (8)

5

This finding enables the Monte-Carlo estimation for computing the score function. We collect a batch
of samples from ϕi(⋅) which we denote as Y(i) and approximate the score as:

∇Y (i) log pi(Y (i)) = −
Y (i)

1 − ᾱi
+
√
ᾱi

1 − ᾱi

∫ Y (0)ϕi(Y (0))p0(Y (0))dY (0)

∫ ϕi(Y (0))p0(Y (0))dY (0)
(9a)

≈ − Y (i)

1 − ᾱi
+
√
ᾱi

1 − ᾱi

∑Y (0)∈Y(i) Y
(0)p0(Y (0))

∑Y (0)∈Y(i) p0(Y (0))
´¹¹¹¸¹¹¶

Monte Carlo Approximation

∶= − Y (i)

1 − ᾱi
+
√
ᾱi

1 − ᾱi
Ȳ (0)(Y(i)) (9b)

Aspect Model-Based Diffusion (MBD) Model-Free Diffusion (MFD)

Target Distribution Known (Eq. (2)), but hard to sample Unknown, but have data
Objective Sample Y (0) from high-likelihood region of p0(⋅) Sample Y (0) ∼ p0(⋅)
Score Approximation Estimated using the model (Eq. (9a)). Can be aug-

mented with demonstrations (Eqs. (11) and (13))
Learned from data

Backward Process Perform Monte Carlo score ascent (Eq. (6)) to
move samples towards most-likely states

Run reverse SDE to preserve sam-
ple diversity

Table 1: Comparison of Model-Based Diffusion (MBD) and Model-Free Diffusion (MFD)

Comparison between MFD and MBD. Table 1 highlights the key differences between MBD
and MFD, which originate from two assumptions made in MBD: (a) a known target distribution
p0(Y (0)) given the model; (b) the objective of sampling Y (0) from the high-likelihood region of
p0(Y (0)) to minimize the cost function. For (a), MBD leverages p0 to estimate the score follow-
ing Eq. (9a), whereas MFD learns that from the data. For (b), MBD runs Monte Carlo score ascent
in Eq. (6) to quickly move the samples to the high-density region as depicted in Fig. 2(c), while
MFD runs reverse SDE Y (i−1) = 1

√
αi
(Y (i) + 1−αi

2
∇Y (i) log pi(Y (i))) +

√
1 − αizi, where zi is

Gaussian noise, to maintain the sample diversity. Given low temperature λ, it can be shown that
∇ log pi(Y (i)) ≈ − 1

(1−ᾱi)
(Y (i) − argmaxpi(⋅)) 2, i.e., the function log pi(Y (i)) is 1

(1−ᾱi)
-smooth.

Therefore, choosing the step size (1− ᾱi) in Eq. (6) is considered optimal, as for L-smooth functions,
O(1

L
) is the step size that achieves the fastest convergence [64].

How diffusion helps? The diffusion process plays an important role in helping Monte Carlo score
ascent overcome the local minimum issue in highly non-convex optimization problems, as shown
in Fig. 2(a). Compared with optimizing a highly non-convex objective, Monte Carlo score ascent
is applied to the intermediate distribution pi(⋅) = ∫ p0(Y (0))pi∣0(⋅)dY (0), which is made concave
by convoluting p0(⋅) with a Gaussian distribution pi∣0(⋅), as shown in Fig. 2(b). Starting from the
strongly concave Gaussian distribution pN ∼ N (0, I) with scale ᾱN → 0, the density is easy to
sample. The covariance of the sampling density Σϕi = (1

ᾱi
− 1)I is large when i = N , implying

that we are searching a wide space for global minima. In the less-noised stage, the intermediate
distribution pi(⋅) is more peaked and closer to the target distribution p0(⋅), and ᾱi → 1 produces a
smaller sampling covariance Σϕi to perform a local search. By iteratively running gradient ascent on
the smoothed distribution, MBD can effectively optimize a highly non-convex objective function as
presented in Fig. 2. The MBD algorithm is formally depicted in Algorithm 1.

Connection with Sampling-based Optimization. When diffusion step is set to N = 1, MBD
effectively reduces to the Cross-Entropy Method (CEM) [11] for optimization. To see this, we
can plug the estimated score Eq. (9b) into the Monte Carlo score ascent Eq. (6) and set N =
1: Y (0) = ᾱ1

α1
Ȳ (0)(Y(1)) = Ȳ (0)(Y(1)) = ∑Y (0)∈Y(1) Y

(0)w(Y (0))

∑
Y (0)∈Y(1) w(Y

(0))
where w(Y (0)) = p0(Y (0)) ∝

exp(−J(Y (0))
λ
) and Y(1) ∼ N (Y

(1)

α0
, (1

α0
− 1)I). This precisely mirrors the update mechanism in

CEM, which aims to optimize the objective function fCEM(Y (0)) = J(Y (0)) and determine the
sampling covariance ΣCEM = (1

α0
− 1)I , thus linking the sampling strategy of CEM with the α

schedule in MBD. The advances that distinguish MBD from CEM-like methods are (1) the careful

2See more elaborations in Appendix A.2

6

Algorithm 1 Model-based Diffusion for Generic Optimization

1: Input: Y (N) ∼ N (0, I)
2: for i = N to 1 do
3: Sample Y(i) ∼ N (Y (i)√

ᾱi−1
, (1

ᾱi−1
− 1)I)

4: Calculate Eq. (9b) Ȳ (0)(Y(i)) =
∑

Y (0)∈Y(i)
Y (0)p0(Y (0))

∑
Y (0)∈Y(i)

p0(Y (0))

5: Estimate the score Eq. (9a): ∇Y (i) log pi(Y
(i)
) ≈ − Y (i)

1−ᾱi
+
√

ᾱi

1−ᾱi
Ȳ (0)(Y(i))

6: Monte Carlo score ascent Eq. (6): Y (i−1) ← 1√
αi
(Y (i) + (1 − ᾱi)∇Y (i) log pi(Y

(i)
))

7: end for

scheduling of α and (2) the intermediate refinements on pi, both following the forward diffusion
process. This allows MBD to optimize for smoothed functions in the early stage and gradually refine
the solution for the original objective. On the contrary, CEM’s solution could either be biased given
a large ΣCEM which overly smoothes the distribution as in p20, p100 of Fig. 2(b), or stuck in local
minima with a small ΣCEM as in p1 of Fig. 2(b) where the distribution is highly non-concave.

4.2 Model-based Diffusion for Trajectory Optimization

For TO, we have to accommodate the constraints in Eq. (1) which change the target distribution to
p0(Y (0))∝ pd(Y (0))pJ(Y (0))pg(Y (0)). Given that pd(Y (0)) is a Dirac delta function that assigns
non-zero probability only to dynamically feasible trajectories, sampling from ϕi(Y (0)) could result
in low densities. To enhance sampling efficiency, we collect a batch of dynamically feasible samples
Y(i)d from the distribution ϕi(Y (0))pd(Y (0)) with model information. Proceeding from Eq. (9a), and
incorporating p0(Y (0))∝ pd(Y (0))pJ(Y (0))pg(Y (0)), we show the score function is:

∇Y (i) log pi(Y
(i)
) = −

Y (i)

1 − ᾱi
+

√
ᾱi

1 − ᾱi

∫ Y (0)ϕi(Y
(0)
)pd(Y

(0)
)pg(Y

(0)
)pJ(Y

(0)
)dY (0)

∫ ϕi(Y (0))pd(Y (0))pg(Y (0))pJ(Y (0))dY (0)
(10a)

≈ −
Y (i)

1 − ᾱi
+

√
ᾱi

1 − ᾱi

∑
Y (0)∈Y(i)

d

Y (0)pJ(Y
(0)
)pg(Y

(0)
)

∑
Y (0)∈Y(i)

d

pJ(Y (0))pg(Y (0))
(10b)

= −
Y (i)

1 − ᾱi
+

√
ᾱi

1 − ᾱi
Ȳ (0), (10c)

where Ȳ (0) =
∑

Y (0)∈Y(i)
d

Y (0)w(Y (0))

∑
Y (0)∈Y(i)

d

w(Y (0))
, w(Y (0)) = pJ(Y

(0)
)pg(Y

(0)
) (10d)

The model plays a crucial role in score estimation by transforming infeasible samples Y(i) from Line 3
in Algorithm 2 into feasible onesY(i)d . The conversion is achieved by putting the control part U = u1∶T

of Y (0) = [x1∶T ;u1∶T] into the dynamics Eq. (1c) recursively to get the dynamically feasible samples
Y
(0)
d (Line 4), which shares the same idea with the shooting method [29] in TO. MBD then evaluates

the weight of each sample with pg(Y (0))pJ(Y (0)) in Line 5. One common limitation of shooting
methods is that they could be inefficient for long-horizon tasks due to the combinatorial explosion of
the constrained space pg(Y)∝∏T

t=1 1(gt(xt, ut) ≤ 0), leading to low constraint satisfaction rates.
To address this issue, we will introduce demonstration-augmented MBD in Section 4.3 to guide the
sampling process from the state space to improve sample quality.

4.3 Model-based Diffusion with Demonstration

With the ability to leverage model information, MBD can also be seamlessly integrated with
various types of data, including imperfect or partial-state demonstrations by modeling them as
noisy observations of the desired trajectory p(Ydemo ∣ Y (0)) ∼ N (Y (0), σ2I). Given subopti-
mal demonstrations, sampling from the posterior p(Y (0) ∣ Ydemo) ∝ p0(Y (0))p(Ydemo ∣ Y (0))
could lead to poor solutions as the demonstration likelihood p(Ydemo ∣ Y (0)) could dominate the
model-based distribution p0(Y (0)) ∝ pd(Y (0))pJ(Y (0))pg(Y (0)) and mislead the sampling pro-

7

Algorithm 2 Model-based Diffusion for Trajectory Optimization

1: Input: Y (N) ∼ N (0, I)
2: for i = N to 1 do
3: Sample Y(i) ∼ N (Y (i)√

ᾱi−1
, (1

ᾱi−1
− 1)I)

4: Get dynamically feasible samples: Y(i)d ← rollout(Y(i))
5: Calculate Ȳ (0) with Eq. (10d) (model only) or Eq. (13) (model + demonstration)
6: Estimate the score Eq. (10c): ∇Y (i) log pi(Y

(i)
) ≈ − Y (i)

1−ᾱi
+
√

ᾱi

1−ᾱi
Ȳ (0)

7: Monte Carlo score ascent Eq. (6): Y (i−1) ← 1√
αi
(Y (i) + (1 − ᾱi)∇Y (i) log pi(Y

(i)
))

8: end for

cess. Rather, we assess Y (0) using p(Ydemo ∣ Y (0)), employing a similar technique to interchange
the distribution’s parameter with the random variable, as demonstrated in Eq. (8), to establish
pdemo(Y (0))∝ p(Ydemo ∣ Y (0))∝ N (Y (0) ∣ Ydemo, σ

2I).

To accommodate demonstrations of varying qualities, instead of fixing target to p0(Y (0))p(Ydemo ∣
Y (0)), we propose seperating the p0(Y (0)) from pdemo(Y (0)) to form a new target distribution3:

p′0(Y (0))∝ (1 − η)pd(Y (0))pJ(Y (0))pg(Y (0)) + ηpdemo(Y (0))pJ(Ydemo)pg(Ydemo) (11)

where η is a constant to balance the model and the demonstration. Here, we have introduced two
extra constant terms pJ(Ydemo) and pg(Ydemo) to ensure that the demonstration likelihood is properly
scaled to match the model likelihood p0(Y (0)). With these preparations, we propose to adaptively
determine the significance of the demonstration by choosing η as follows:

η = {1 pd(Y (0))pJ(Y (0))pg(Y (0)) < pdemo(Y (0))pJ(Ydemo)pg(Ydemo)
0 pd(Y (0))pJ(Y (0))pg(Y (0)) ≥ pdemo(Y (0))pJ(Ydemo)pg(Ydemo).

(12)

When samples have a high model-likelihood p0, we ignore the demonstration and sample from the
model. Otherwise, we trust the demonstration. With the demonstration-augmented target distribution,
we modify the way to calculate Ȳ (0) in Eq. (10d) as follows to obtain the score estimate:

Ȳ (0) =
∑Y (0)∈Y

(i)
d

Y (0)w(Y (0))

∑Y (0)∈Y
(i)
d

w(Y (0))
, w(Y (0)) =max{ pd(Y (0))pJ(Y (0))pg(Y (0)),

pdemo(Y (0))pJ(Ydemo)pg(Ydemo)
}. (13)

5 Experimental Results

The experimental section will focus on demonstrating the capabilities of MBD in: (1) its effectiveness
as a zeroth-order solver for high-dimensional, non-convex, and non-smooth trajectory optimization
problems, and (2) its flexibility in utilizing dynamically infeasible data to enhance performance and
regularize solutions. Our benchmark shows that MBD outperforms PPO by 59% in various control
tasks with 10% computational time.

Beyond control problems, in Appendix A.3, we also show that MBD significantly improves sampling
efficiency by an average of 23% over leading baselines in high-dimensional (up to 800d) black-
box optimization testbeds [23, 18, 56, 42, 41, 44]. We also apply MBD to optimize an MLP
network with 28K parameters in a gradient-free manner, achieving 86% accuracy within 2s for
the MNIST classification task [2], which is comparable to the gradient-based optimizer (SGD with
momentum, 93% accuracy). To further extend MBD to closed-loop control, we employ receding
horizon strategy to MBD in Appendix A.6 to update control sequence at each timestep, further
improving the performance of MBD by 9.6% in terms of reward.

5.1 MBD for Planning in Contact-rich Tasks

To test the effectiveness of MBD as a trajectory optimizer for systems involving non-smooth dynamics,
we run MBD on both locomotion and manipulation tasks detailed in Appendix A.5.1. The locomotion

3A comparison between the demonstration-augmented MBD and the vanilla MBD is illustrated in Fig. 6
with detailed breakdowns in Appendix A.4.

8

Task CMA-ES CEM MPPI RL∗ MBD
Hopper 1.12 ± 0.10 0.65 ± 0.12 0.91 ± 0.15 1.40 ± 0.04 1.53 ± 0.03
Half Cheetah 0.44 ± 0.10 0.22 ± 0.15 0.20 ± 0.14 1.59 ± 0.05 2.31 ± 0.19
Ant 1.18 ± 0.52 0.85 ± 0.17 0.33 ± 0.45 3.26 ± 1.61 3.80 ± 0.35
Walker2D 0.83 ± 0.04 1.06 ± 0.04 0.90 ± 0.05 1.09 ± 0.28 2.63 ± 0.23
Humanoid Standup 0.58 ± 0.01 0.47 ± 0.01 0.53 ± 0.05 0.83 ± 0.02 0.99 ± 0.07
Humanoid Running 0.60 ± 0.11 0.41 ± 0.16 0.59 ± 0.14 1.80 ± 0.03 2.92 ± 0.26
Push T 0.39 ± 0.07 0.25 ± 0.09 −0.13 ± 0.09 −0.63 ± 0.16 0.67 ± 0.10

Table 2: Reward of different methods on non-continuous tasks. ∗RL requires offline training and
generate a closed-loop policy so it is not an apple-to-apple baseline.

Task CMA-ES CEM MPPI RL MBD
Hopper 29.3 s 26.5 s 26.4 s 17m45.63 s 26.5 s
Half Cheetah 29.5 s 26.4 s 26.7 s 4m18.8 s 26.8 s
Ant 18.4 s 16.1 s 16.0 s 2m46.8 s 16.2 s
Walker2D 37.5 s 34.5 s 34.7 s 5m1.5 s 34.6 s
Humanoid Standup 20.8 s 17.6 s 17.7 s 4m29 s 17.7 s
Humanoid Running 30.8 s 29.7 s 29.6 s 3m34.7 s 30.0 s
Push T 10m40.0 s 10m32.0 s 10m32.3 s 67m25.6 s 10m32.8 s

Table 3: Computational time of different methods on non-continuous tasks.

tasks includes hopper, half-cheetah, ant, walker2d, humanoid-standup, and humanoid-running. The
selected manipulation task, pushT [15], presents its own challenges due to the complexity introduced
by contact dynamics and the long-horizon nature of the task. These tasks are widely considered
difficult due to their hybrid nature and high dimensionality.

MBD is compared with the state-of-the-art zeroth-order optimization methods, including CMA-
ES [7], CEM [11], and MPPI [59], as well as reinforcement learning (RL) algorithms (e.g., PPO [47]
and SAC [22]) on these tasks. Please note RL is only used for performance reference not as there is
no existing TO method that can solve such high-dimensional discontinuous tasks as we have shown in
the experiments. Model-free RL, especially PPO/SAC, is widely used in such tasks and is considered
the SOTA method. The difference between RL and MBD is further discussed in Appendix A.8 and
A.6. The RL implementation follows the high-performance parallelized framework from Google
Brax [20] elaborated in Appendix A.5.3. For the zeroth-order optimizer, we match the iteration and
sample number with the MBD. All the experiments were conducted on a single NVIDIA RTX 4070
Ti GPU. Quantitative metrics including the average step reward and the computational time tested
over 50 steps repeated for 8 seeds are reported in Tables 2 and 3. MBD substantially outperforms
zeroth-order optimization methods and even outperforms RL in most tasks. Specifically, for the
pushT task, MBD achieves a significantly higher reward than the RL algorithm thanks to its iterative
refinement process, which effectively explores the full control space while keeping fine-grained
control to precisely push the object. Compared with the computationally heavy RL algorithms, MBD
only requires one-tenth of time, which is similar to other zeroth-order optimization methods. The
optimization process of MBD is visualized in Fig. 3, where the iterative refinement process with the
model plays a crucial role in optimizing high-dimensional tasks.

Figure 4: MBD optimized trajectory with data augmentation on the (a) Humanoid Jogging and (b)
Car UMaze Navigation tasks. With data augmentation, the trajectory is regularized and refined to
achieve the desired objective.

9

Figure 3: Optimization process of MBD on the (a) Humanoid Standup, (b) Push T, and (c) Humanoid
Running tasks. The trajectory is iteratively refined to achieve the desired objective in the high-
dimensional space with model information.

5.2 Data-augmented MBD for Trajectory Optimization

We also evaluate the performance of MBD with data augmentation on the Car UMaze Navigation and
Humanoid Jogging tasks to see how partial and dynamically infeasible data can help the exploration
of MBD and regularize the solution by steering the diffusion process.

For Car UMaze Navigation, the map blocked by U-shaped obstacles is challenging to explore given a
nonlinear dynamics model. Therefore, random shooting has a low chance of reaching the goal region.
To sample with loosened dynamical constraints, we augment MBD with data from the RRT [38]
algorithm through goal-directed exploration with simplified dynamics. Fig. 4(b) shows the difference
between data-augmented MBD and data-free one: the former can refine the infeasible trajectory and
further improve it to reach the goal in less time, while the latter struggles to find a feasible solution.
The reason is that the infeasible trajectory from RRT serves as a good initialization for MBD, which
can be further refined to minimize the cost function with MBD.

For Humanoid Jogging, we aim to regularize the solution for the task with multiple solutions to the
desired one with partial state data. Due to the infinite possibilities for humanoid jogging motion, the
human motion data provide a good reference to regularize MBD to converge to a more human-like
and robust solution instead of an aggressive or unstable one [26, 45]. We use data from the CMU
Mocap dataset [1], from which we extract torso, thigh, and shin positions and use them as a partial
state reference. Fig. 4(a) demonstrates a more stable motion generated by data-augmented MBD.

6 Conclusion and Future Work

This paper introduces Model-Based Diffusion (MBD), a novel diffusion-based trajectory optimization
framework that employs a dynamics model to approximate the score function. MBD not only out-
performs existing methods in terms of sample efficiency and generalization, but also provides a new
perspective on trajectory optimization by leveraging diffusion models as powerful samplers. Future
directions involve theoretically understanding its convergence, optimizing the standard Gaussian for-
ward process using the model information, adapting it to online tasks with receding horizon strategies,
and exploring advanced sampling and scheduling techniques to further improve performance.

Acknowledgments

This work was supported by NSF Grant 2154171, NSF CAREER 2339112 and CMU CyLab Seed
Funding.

References
[1] Carnegie Mellon University - CMU Graphics Lab - motion capture library.

http://mocap.cs.cmu.edu/.

10

[2] The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the
Web] | IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/document/6296535.

[3] Sequential Quadratic Programming. In Jorge Nocedal and Stephen J. Wright, editors, Numerical
Optimization, pages 529–562. Springer, New York, NY, 2006.

[4] David H. Ackley. A Connectionist Machine for Genetic Hillclimbing, volume 28 of The Kluwer
International Series in Engineering and Computer Science. Springer US, Boston, MA, 1987.

[5] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is Conditional Generative Modeling all you need for Decision-Making?, July 2023.

[6] Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Niko-
lay Malkin, and Alexander Tong. Iterated Denoising Energy Matching for Sampling from
Boltzmann Densities, February 2024.

[7] Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Theoretical Foundation
for CMA-ES from Information Geometry Perspective. Algorithmica, 64(4):698–716, December
2012.

[8] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured Denoising Diffusion Models in Discrete State-Spaces, February 2023.

[9] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization, December 2020.

[10] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-
based generative modeling, July 2023.

[11] Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer. Chapter 3 -
The Cross-Entropy Method for Optimization. In C. R. Rao and Venu Govindaraju, editors,
Handbook of Statistics, volume 31 of Handbook of Statistics, pages 35–59. Elsevier, January
2013.

[12] João Carvalho, An T. Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion Planning
Diffusion: Learning and Planning of Robot Motions with Diffusion Models. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1916–1923, Detroit,
MI, USA, October 2023. IEEE.

[13] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan.
WaveGrad: Estimating Gradients for Waveform Generation, October 2020.

[14] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. Underdamped
Langevin MCMC: A non-asymptotic analysis, January 2018.

[15] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion, June 2023.

[16] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for Global Optimization
in $\mathbb{R}^n $. SIAM Journal on Control and Optimization, 25(3):737–753, May 1987.

[17] Murat A. Erdogdu and Rasa Hosseinzadeh. On the Convergence of Langevin Monte Carlo: The
Interplay between Tail Growth and Smoothness. In Proceedings of Thirty Fourth Conference on
Learning Theory, pages 1776–1822. PMLR, July 2021.

[18] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scal-
able Global Optimization via Local Bayesian Optimization. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[19] Peter I. Frazier. A Tutorial on Bayesian Optimization, July 2018.

11

[20] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax – A Differentiable Physics Engine for Large Scale Rigid Body Simulation, June
2021.

[21] Saul B. Gelfand and Sanjoy K. Mitter. Recursive Stochastic Algorithms for Global Optimization
in $\mathbb{R}^d $. SIAM Journal on Control and Optimization, 29(5):999–1018, September
1991.

[22] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[23] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial, March 2023.

[24] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the Time Complex-
ity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).
Evolutionary Computation, 11(1):1–18, March 2003.

[25] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear programming
and collocation. Journal of Guidance, Control, and Dynamics, May 2012.

[26] Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, and Guanya Shi.
Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation, March 2024.

[27] José Miguel Hernández-Lobato, James Requeima, Edward O. Pyzer-Knapp, and Alán Aspuru-
Guzik. Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration
of Chemical Space. In Proceedings of the 34th International Conference on Machine Learning,
pages 1470–1479. PMLR, July 2017.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020.

[29] Taylor A. Howell, Brian E. Jackson, and Zachary Manchester. ALTRO: A Fast Solver for
Constrained Trajectory Optimization. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 7674–7679, Macau, China, November 2019. IEEE.

[30] Xunpeng Huang, Hanze Dong, Yifan Hao, Yi-An Ma, and Tong Zhang. Reverse Diffusion
Monte Carlo, March 2024.

[31] Chii-Ruey Hwang. Laplace’s Method Revisited: Weak Convergence of Probability Measures.
The Annals of Probability, 8(6):1177–1182, December 1980.

[32] Wilson Jallet, Antoine Bambade, Nicolas Mansard, and Justin Carpentier. Constrained Dif-
ferential Dynamic Programming: A primal-dual augmented Lagrangian approach, October
2022.

[33] Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with Diffusion
for Flexible Behavior Synthesis, December 2022.

[34] Chiyu Max Jiang, Andre Cornman, Cheolho Park, Ben Sapp, Yin Zhou, and Dragomir Anguelov.
MotionDiffuser: Controllable Multi-Agent Motion Prediction using Diffusion, June 2023.

[35] B. Kappen, V. Gomez, and M. Opper. Optimal control as a graphical model inference problem.
Machine Learning, 87(2):159–182, May 2012.

[36] Seung-Jean Kim, K. Koh, M. Lustig, Stephen Boyd, and Dimitry Gorinevsky. An Interior-Point
Method for Large-Scale -Regularized Least Squares. IEEE Journal of Selected Topics in Signal
Processing, 1(4):606–617, December 2007.

[37] Marin Kobilarov. Cross-entropy motion planning. The International Journal of Robotics
Research, 31(7):855–871, June 2012.

[38] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. Research
Report 9811, 1998.

12

[39] Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and
Review, May 2018.

[40] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. AdaptDif-
fuser: Diffusion Models as Adaptive Self-evolving Planners, May 2023.

[41] Jialin Liu, Antoine Moreau, Mike Preuss, Baptiste Roziere, Jeremy Rapin, Fabien Teytaud, and
Olivier Teytaud. Versatile Black-Box Optimization, April 2020.

[42] Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A Framework for Bayesian
Optimization in Embedded Subspaces. In Proceedings of the 36th International Conference on
Machine Learning, pages 4752–4761. PMLR, May 2019.

[43] Radford M. Neal. Annealed Importance Sampling, September 1998.

[44] Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the Scope as You Learn:
Adaptive Bayesian Optimization in Nested Subspaces, April 2023.

[45] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. AMP: Adversarial
Motion Priors for Stylized Physics-Based Character Control. ACM Transactions on Graphics,
40(4):1–20, August 2021.

[46] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-Conditioned Imitation
Learning using Score-based Diffusion Policies, June 2023.

[47] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017.

[48] Guanya Shi, Wolfgang Honig, Xichen Shi, Yisong Yue, and Soon-Jo Chung. Neural-Swarm2:
Planning and Control of Heterogeneous Multirotor Swarms Using Learned Interactions. IEEE
Transactions on Robotics, 38(2):1063–1079, April 2022.

[49] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of Ma-
chine Learning Algorithms. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[50] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
Unsupervised Learning using Nonequilibrium Thermodynamics, November 2015.

[51] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In
International Conference on Learning Representations, October 2020.

[52] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data
Distribution, October 2020.

[53] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations,
February 2021.

[54] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H. Bermano.
Human Motion Diffusion Model, October 2022.

[55] Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages 1049–1056, Montreal
Quebec Canada, June 2009. ACM.

[56] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning Search Space Partition for
Black-box Optimization using Monte Carlo Tree Search. In Advances in Neural Information
Processing Systems, volume 33, pages 19511–19522. Curran Associates, Inc., 2020.

[57] Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynam-
ics.

13

[58] Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model Predictive Path Integral
Control: From Theory to Parallel Computation. Journal of Guidance, Control, and Dynamics,
40(2):344–357, February 2017.

[59] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou.
Information-Theoretic Model Predictive Control: Theory and Applications to Autonomous
Driving. IEEE Transactions on Robotics, 34(6):1603–1622, December 2018.

[60] Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, and Daniela Rus. SafeDiffuser: Safe Planning with
Diffusion Probabilistic Models, May 2023.

[61] Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu, Joshua B. Tenenbaum, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. Compositional Diffusion-Based Continuous Constraint Solvers,
September 2023.

[62] Zeji Yi, Chaoyi Pan, Guanqi He, Guannan Qu, and Guanya Shi. CoVO-MPC: Theoretical
Analysis of Sampling-based MPC and Optimal Covariance Design, January 2024.

[63] Zeji Yi, Yunyue Wei, Chu Xin Cheng, Kaibo He, and Yanan Sui. Improving sample efficiency
of high dimensional Bayesian optimization with MCMC, January 2024.

[64] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method, December 2012.

14

A Appendix / Supplemental Material

A.1 Notation Table

Meaning Symbol

state, control at time t xt, ut

state control pair at time t yt
diffused random variable at step i Y (i)

density of diffused distribution at step i pi(⋅)
density of diffused r.v. at step i conditioned on step j pi∣j(⋅ ∣ ⋅)
samples collected from proposal distribution at setp i Y(i)

scale down factor at step i αi

accumulated scale down factor at step i ᾱi

dynamic feasibility density, optimality density, constraint density pd(⋅), pJ(⋅), pg(⋅)

A.2 Convergence of Distribution with Small λ

We first give the definition of the volume of the sub-level set for cost J .

Definition 1. Let F ∶Rd →R be a measurable function. Define the volume of the sub-level set for a
given level t as:

VF (t) = ∫
Rd

χ{Y ∈Rd∶F (Y)≤t}(Y)dY,

where χ denotes the indicator function.

The volume function VJ(t) plays a crucial role in linking geometric properties with probabilistic
outcomes in optimization and learning algorithms. This function provides a quantitative measure that
helps us to understand how changes in parameters like λ influence the distribution and concentration
of probability mass.

The interplay between geometry and probability, represented by VJ(t), is crucial for evaluating the
convergence and stability of algorithms. It provides a significant method for utilizing the PDF of the
random variable Y to constrain the CDF, thereby facilitating convergence in distribution.

Proposition 2. Given the target distribution Y ∼ p(⋅) with P (Y)∝ exp (−J(Y)
λ
) , Y ∈Rd, where

J is a cost function with minY J(Y) = 0 and Y ∗ = argminJ(Y), and assuming that the volume
function VJ(t) is bounded by polynomial inequalities:

Polyl(t) ≤ VJ(t) ≤ Polyu(t),

where Polyl(t) = ∑M
k=0 c

l
kt

αk and Polyu(t) = ∑M
k=0 c

u
kt

αk are polynomials with coefficients satis-
fying clk = 0 if and only if cuk = 0. The exponent term satisfies that αk ∈ R, and 0 < α0 < α1 < ⋯ <
αM <∞, It follows that:

lim
λ→0

J(Y) pÐ→ J(Y ∗) = 0.

The cost value J(Y) converges in probability to J(Y ∗) as λ→ 0.

The condition on the polynomial bounds of VJ(t) is generally not restrictive. For instance, consider
J = ηc ∥Y − Y∗∥m, where Y ∗ is the optimal point and ηc > 0 is any constant. In this case, VJ(t) =
Ct

d
m , where C is a constant, meets the constraint in a straightforward way. This condition can be

extended beyond this simple scenario, as even if J has multiple modes, it can still adhere to this
polynomial constraint.

Proof. The convergence in distribution of Y towards Y ∗ as λ → 0 is established by analyzing the
behavior of the probability density function, defined up to a multiplicative constant. Consider the

15

density Y 0 ∼ pλ(Y) approximating Y ∗ when λ approaches zero.

P (J(Y) ≤ t) = ∫
{J(Y)≤t}

p(Y)dY, (14a)

= ∫
t

0
∫
{J(Y)=x}

p(Y)dY dx, (14b)

∝ ∫
t

0
exp(−x

λ
)∫
{J(Y)=x}

dY dx, (14c)

= ∫
t

0
exp(−x

λ
)dVJ(x)

dx
dx, (14d)

where Eq. (14c) is valid since P (Y)∝ exp (−J(Y)
λ
) and J(Y) represents the sufficient statistics of

the distribution. We can obtain Eq. (14d) by computing the derivative of VJ(x) based on the volume
definition as shown in Definition 1.

We denote Jmin =minY J(Y) = 0 and Jmax =maxY J(Y) with Jmax satisfying 0 ≤ Jmax ≤ +∞. We
proceed to analyze Eq. (14d) by performing integration by parts as shown in Eq. (15a).

∫
Jmax

Jmin

exp(− t
λ
)dVJ(t) = ∫

Jmax

Jmin

d [exp(− t
λ
)VJ(t)] +

1

λ
exp(− t

λ
)VJ(t)dt (15a)

= exp(− t
λ
)VJ(t)∣

Jmax

Jmin

+ 1

λ
∫

Jmax

Jmin

exp(− t
λ
)VJ(t)dt. (15b)

To establish convergence in probability, we need to demonstrate that for any small ϵ > 0 and δ > 0,
there exists sufficiently small λ > 0, such that

P (J(Y) < ϵ) = ∫
ϵ
0 exp (− t

λ
)dVJ(t)

∫
Jmax

0 exp (− t
λ
)dVJ(t)

≥ 1 − δ. (16)

where the equality is due to Eq. (14d). Setting δ′ = 1−δ
δ

, it suffices to show that:

∫
ϵ
0 exp (− t

λ
)dVJ(t)

∫
Jmax

ϵ exp (− t
λ
)dVJ(t)

≥ δ′. (17)

Assuming without loss of generality that Jmax =∞, becuase dVJ(t) ≥ 0, exp(− t
λ
) > 0, we have:

∫
ϵ
0 exp (− t

λ
)dVJ(t)

∫
Jmax

ϵ exp (− t
λ
)dVJ(t)

≥ ∫
ϵ
0 exp (− t

λ
)dVJ(t)

∫
∞

ϵ exp (− t
λ
)dVJ(t)

. (18)

This ratio as in Eq. (17) can be expanded using the integral bounds and the polynomial approximations
for VJ(t),then it suffices to show that

∫
ϵ
0 exp (− t

λ
)dVJ(t)

∫
∞

ϵ exp (− t
λ
)dVJ(t)

≥ δ′. (19)

By inserting Eq. (15b) into both the numerator and denominator on the LHS of Eq. (19), we obtain

∫
ϵ
0 exp(− t

λ
)dVJ(t)

∫
∞

ϵ exp(− t
λ
)dVJ(t)

=
exp(− ϵ

λ
)V (ϵ) + 1

λ ∫
ϵ
0 exp(− t

λ
)VJ(t)dt

−exp(− ϵ
λ
)V (ϵ) + 1

λ ∫
∞

ϵ exp(− t
λ
)VJ(t)dt

(20a)

≥ ∫
ϵ
0 exp(− t

λ
)VJ(t)dt

∫
∞

ϵ exp(− t
λ
)VJ(t)dt

(20b)

≥ ∫
ϵ
0 exp(− t

λ
)∑M

k=0 c
l
kt

αkdt

∫
∞

ϵ exp(− t
λ
)∑M

k=0 c
u
kt

αkdt
(20c)

16

To bound the expression in Eq. (20c), we first derive the following integrals by utilizing a change of
variables x = t

λ
, which simplifies the expressions:

∫
ϵ

0
exp(− t

λ
) tαk dt = λk+1 ∫

ϵ
λ

0
exp(−x)xαk dx, (21a)

∫
∞

ϵ
λ

exp(− t
λ
) tαk dt = λk+1 ∫

∞

ϵ
λ

exp(−x)xαk dx. (21b)

For these transformed integrals, we can observe that ∫
∞

0 exp(−x)xαk dx = Γ(αk + 1), the gamma
function, which is well-defined for all non-negative αk. Given that δ′ is a function of δ , by applying
the intermediate value theorem and definition of the limit of the integral, we can choose ϵk in such a
way that:

∫
ϵk

0
exp(−x)xαk dx ≥ ckδ

′

1 + ckδ′
Γ(αk + 1),

where ck = clk
cu
k

denotes the ratio of coefficients in polynomial lower and upper bounds for VJ(t).
By selecting ϵmax = max ϵ0, ϵ1,⋯, ϵM to be the maximum of all such ϵk, ensuring coverage for all
polynomial terms up to M , we establish that:

∫
ϵmax

0 exp (− t
λ
) clktαk dt

∫
∞

ϵmax
exp (− t

λ
) cuktαk dt

≥ δ′, for all k = 0,1, . . . ,M. (22)

By ensuring that λ ≤ ϵ
ϵmax

, we can conclude:

∫
ϵ
0 exp (− t

λ
)∑M

k=0 c
l
kt

αk dt

∫
∞

ϵ exp (− t
λ
)∑M

k=0 c
u
kt

αk dt
≥ δ′, (23)

Thus, the condition specified in Eq. (16) is satisfied, validating that the distribution of Y converges in
distribution to Y ∗ as λ approaches zero.

By adding another mild assumption regarding the landscape of J near the global optimum, we can
demonstrate the convergence of the random variable Y itself, rather than the convergence of J(Y).
Definition 3. We denote the minimum of the complementary set of neighborhood as:

J∗B(δ) = min
∥Y −Y ∗∥>δ

J(Y) − J(Y ∗).

Proposition 4. Given the context and conditions specified in Definitions 1 and 3 and Proposition 2,
and given that J has only one golbal minimizer Y ∗, i.e. there exist small δ∗, that for δ ∈ (0, δ∗],
J∗B(δ) is strictly increasing, and J∗B(δ∗) <∞. It follows that:

lim
λ→0

Y
pÐ→ Y ∗.

The random variable Y converges in probability to Y ∗ as λ→ 0.

Proof. In order to prove that limλ→0Y
pÐ→ Y ∗. We need to prove that for any sufficient small γ > 0

and δ > 0, there exists small λ > 0, such that

P (∥Y − Y ∗∥ ≤ δ) ≥ 1 − γ (24)

From Definition 3 and due to the strict increase of J∗B(δ),

∥Y − Y ∗∥ ≤ δ, ∀Y ∈ {Y ∈Rd ∣ J(Y) − J(Y ∗) < J∗B(δ)} , (25)

where 0 < δ ≤ δ∗. Because if ∥Y − Y ∗∥ > δ, J(Y)−J(Y ∗) < J∗B(δ) =min∥Y −Y ∗∥>δ J(Y)−J(Y ∗)
contradicts Definition 3.

17

Given that limλ→0 J(Y)
pÐ→ J(Y ∗). and any sufficient small ϵ, γ > 0.

P (J(Y) − J(Y ∗) ≤ ϵ) ≥ 1 − γ (26)

Therefore, ∃λ > 0, such that

P (J(Y) − J(Y ∗) ≤ J∗B(δ)) ≥ 1 − γ. (27)

And From Eq. (25), we have that

P (∥Y − Y ∗∥ ≤ δ) ≥ P (J(Y) − J(Y ∗) ≤ J∗B(δ)) ≥ 1 − γ (28)

We have that Y converges in probability to Y ∗ ,i.e, limλ→0Y
pÐ→ Y ∗.

Proposition 5. Given the context and conditions specified in Propositions 2 and 4 and the way
we define the forward process as in Eq. (3). The diffused Yi converge in density to a Gaussian
distribution.

lim
λ→0

Y (i)
dÐ→ N (

√
ᾱiY

∗,
√
1 − ᾱiI),

where Y (i) ∼ pi(⋅) as in Eq. (3).

Proposition 5 is derived by using Slutsky’s theorem on Proposition 4 and offers insight into choosing
the stepsize as discussed in Section 4.1.

A.3 Black-box Optimization with MBD

As a zeroth order optimizer, MBD is capable of addressing both trajectory optimization and broader,
high-dimensional unconstrained optimization challenges. Such black-box optimization tasks are
universally acknowledged as difficult [7, 63]. We first show superior performance of MBD within
this black-box optimization context. In such settings, the Bayesian Optimization technique struggles
due to the computational intensity required to develop surrogate models and identify new potential
solutions [18]. Alternative black-box optimization strategies [23] are not limited by computational
issues but tend to be less efficient because they do not estimate the black-box function as accurately.
MBD’s effectiveness is evaluated using two well-known highly non-convex black-box optimization
benchmarks: Ackley [4] and Rastrigin [9], each tested across three different dimensionalities. Com-
parisons were made with CMA-ES [23], TuRBO [18], LA-MCTS [56], HesBO [42], Shiwa [41], and
BAxUS [44].

0 1000 2000 3000 4000 5000 6000

−12.5

−10.0

−7.5

−5.0

−2.5

J
(Y

)

Ackley-200d

0 1000 2000 3000 4000 5000 6000
−14

−12

−10

−8

−6

−4

Ackley-400d

0 1000 2000 3000 4000 5000 6000
−14

−12

−10

−8

−6

Ackley-800d

0 1000 2000 3000 4000 5000 6000

.

−3500

−3000

−2500

−2000

−1500

J
(Y

)

Rastrigin-200d

0 1000 2000 3000 4000 5000 6000

.

−7000

−6000

−5000

−4000

Rastrigin-400d

0 1000 2000 3000 4000 5000 6000

.

−14000

−12000

−10000

−8000

Rastrigin-800d

TuRBO-1 LA-MCTS HesBO CMA-ES Shiwa BAxUS MBD

Figure 5: Performance of MBD on high-dimensional black-box optimization benchmarks. MBD
outperforms other Gaussian Process-based Bayesian Optimization methods by a clear margin.

Fig. 5 shows the performance of MBD on the Ackley and Rastrigin benchmarks. MBD demonstrates
superior performance over other algorithms for several reasons. Firstly, the implementation of a

18

scheduled forward process that determines the total number of samples consequently boosts sample
efficiency. Secondly, the application of Monte Carlo score ascent on various log pi(Y (i)) facilitates
its escape from local optima of varying scales. It is important to acknowledge that comparing
computational efficiency may not be entirely fair, given that black-box optimization problems
typically involve functions that are costly to evaluate. However, MBD markedly outperforms other
Gaussian Process-based Bayesian Optimization approaches, achieving computational time savings of
more than twentyfold, similar to the improvements observed with different evolutionary optimization
strategies.

Here are the implementation detail for the benchmarks. For the BO benchmarks, the experiments
were conducted on an A100 GPU because of the high computational demands of the Gaussian Process
Regression Model it incorporates.

TuRBO: TuRBO is implemented based on tutorials from Botorch [9].

LA-MCTS: LA-MCTS, we refer to authors’ reference implementations, and use TuRBO as its local
BO solver [56].

HesBO: For HesBO, we refer to authors’ reference implementations [42]. We transformed default
GP component into Gpytorch version for faster inference speed on GPU. We set the embedding
dimension to 20 for all tasks

CMA-ES: We use pycma4 to implement CMA-ES, and use default setting except setting population
size eqauls to batch size.

Shiwa: We use Nevergrad5 to implement Shiwa, and use default setting to run experiments.

BAxUS: We refer to the authors’ reference implementations [44].

A.3.1 MBD for DNN Training without Gradient Information

To further demonstrate the effectiveness of MBD in high-dimensional systems, we apply MBD to
optimize an MLP network for MNIST classification [2] without access to the gradient information.
MBD achieve 85.5% accuracy with 256 samples within 2s, which is comparable to the performance
of the SGD optimizer with momentum (92.7% accuracy). We use MLP with 2 hidden layers, each
with 32 neurons, and ReLU activation function. The input is flattened to 784 dimensions, and the
output is a 10-dimensional vector. We use cross-entropy loss as the objective function. The network
has 27,562 parameters in total, which makes sampling-based optimization challenging. MBD can
effectively optimize the network with a small number of samples, demonstrating its effectiveness in
high-dimensional black-box optimization tasks.

A.4 MBD with Demonstration Explaination

Data-augmented MBD calculate the score function with demostration as follows:

Y (i−1) = 1
√
αi

(Y (i) + (1 − ᾱi)∇Y (i) log pi(Y (i))) (29)

∇Y (i) log pi(Y (i)) = −
Y (i)

1 − ᾱi
+
√
ᾱi

1 − ᾱi
Ȳ (0) (30)

where Ȳ (0) =
∑Y (0)∈Y

(i)
d

Y (0)w(Y (0))

∑Y (0)∈Y
(i)
d

w(Y (0))
(31)

w(Y (0)) =max{ wmodel(Y (0)) = pd(Y (0))pJ(Y (0))pg(Y (0)),
wdemo((Y (0))) = pdemo(Y (0))pJ(Ydemo)pg(Ydemo)

} (32)

4https://github.com/CMA-ES/pycma
5https://github.com/facebookresearch/nevergrad

19

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Y

−0.3

−0.2

−0.1

0.0

0.1

O
b

je
ct

iv
e

Objective and Density

0 10 20 30 40 50

Diffusion Step

−1.0

−0.5

0.0

0.5

1.0

Y

Backward Process with MC Score Ascend

w/ data w/o data Data Point

0.00

0.01

0.02

0.03

D
en

si
ty

J(Y)

p0(Y)

Infeasible Region

Desired Point

Data Point

Figure 6: MBD with data vs. without data on a nonconvex function with constraints ∣∣Y ∣ − 0.4∣ > 0.3.
We want MBD converge to the optimal point8 with the help of demonstration data ●. Although the
demostration point is not optimal, MBD can still converge to the optimal point with the guidance of
the demonstration data. Here data serves as a regularization term to guide the diffusion process to the
negative optimal point while allowing to use model further to refine the solution.

where demonstrate likelihood term wdemo(Y (0)) will draw samples towards data without considering

the model. Given w = wdemo, Ȳ (0) =
∑

Y (0)∈Y(i)
d

Y (0)pdemo(Y
(0)
)

∑
Y (0)∈Y(i)

d

pdemo(Y (0))
= Ydemo. The score function would be

∇Y (i) log pi(Y (i)) = − Y (i)

1−ᾱi
+
√
ᾱi

1−ᾱi
Ydemo, which means the score function is a linear combination of

the current sample and the demonstration data.

If we don’t use Eq. (11) and employ the posterior distribution p(Y (0)∣Ydemo)∝ p0(Y (0))pdemo(Y (0)),
it will yields update weights w = wdemowmodel, which will draw samples to both model and demonstra-
tion data. If the demonstration data is not optimal, the final solution will be a compromise between
the model and demonstration data. In Fig. 6, the resulted solution will lie between optimal point8
with the help of demonstration data ●.

Using the max function in w can aviod this issue. In the early stage while pJ(Y (0)) is low due to poor
sample quality, wdemo will dominate thanks to the high pJ(Ydemo). This will draw samples towards
the demonstration data as shown in the earlier stage of Fig. 6. As the sample quality improves and
pJ(Y (0)) > pJ(Ydemo), wmodel will dominate and the sample will converge to the optimal point.

A.5 Experiment Details

A.5.1 Simulator and Environment

We leverage the GPU-accelerated simulator Google Brax [20] to design the locomotion and manipula-
tion tasks. All task is set to use positional backend in Brax except for the pushT task, which uses the
generalizable backend for better contact dynamics simulation. Here we provide a brief description of
each task implementations:

1. Ant: The Ant task is a 3D locomotion task where the agent is required to move forward as
fast as possible. The reward is composed of the forward velocity of the agent and control
cost, same as the original Brax implementation. The control dimension is 8.

2. Hopper: The Hopper task is a 2D locomotion task where the agent is required to jumping
forward as fast as possible. We use the same reward function as the original Brax implemen-
tation. We modify the simulation substeps from 10 to 20 for longer planning horizon given
the same control node. The control dimension is 3.

3. Walker2d: The Walker2d task is a 2D locomotion task where the agent is required to walk
forward. The reward is composed of keep the agent upright and moving forward. The
control dimension is 6.

4. Halfcheetah: The Halfcheetah task is a 2D locomotion task where the agent is required
to run forward. The reward is composed of the forward velocity of the agent and control

20

cost. We follow the same reward function as the original Brax implementation. The control
dimension is 6.

5. Humanoidrun: The Humanoidrun task is a 3D locomotion task where the agent is required
to run forward. The reward is composed of the forward velocity of the agent and standing
upright. Here we also modify the simulation substeps from 10 to 20 for longer planning
horizon. The control dimension is 17.

6. Humanoidstandup: The Humanoidstandup task is a 3D locomotion task where the agent
is required to stand up. The reward is the upright torso position of the agent. The control
dimension is 17.

7. PushT: The PushT task is a 2D manipulation task where you can apply force to a sphere
to push the T-shaped object to the target location. The reward is composed of the distance
between the target and the object and orientation difference between the target and the object.
To make the task more challenging, we randomize the target location 20cm away from the
initial position and make sure the rotational angle is greater than 135 degrees, which makes
it hard to solve the task with single continous contact policy. The control dimension is 2.

8. Car2D: We implement a 2D car task with standard bicycle dynamics model, where state
is x = [x, y, θ, v, δ], and action is u = [a, δ]. The dynamics is defined as ẋ = f(x,u) =
[v cos(θ), v sin(θ), v

L
tan(δ), a, δ]. The constraints are defined as the U-shape area in the

middle of the map, where the car cannot enter. The reward is composed of the distance
between the target and the car and the control cost. The control dimension is 2.

A.5.2 MBD Hyperparameters

In general, MBD is very little hyperparameters to tune compared with RL. We use the same hyperpa-
rameters for all the tasks, with small tweaks for harder tasks.

Task Name Horizon Sample Number Temperature λ

Ant 50 100 0.1
Halfcheetah 50 100 0.4
Hopper 50 100 0.1
Humanoidstandup 50 100 0.1
Humanoidrun 50 300 0.1
Walker2d 50 100 0.1
PushT 40 200 0.2

Table 4: MBD hyperparameters for various tasks

For diffusion noise schedulling, we use simple linear scheduling β0 = 1 × 10−4 and βN = 1 × 10−2,
and the diffusion step number is 100 across all tasks. Each step’s αi is calculated as αi = 1 − βi.

A.5.3 Baseline Algorithms Implementation

For reinforcement learning implementation, we strictly follow the hyperparameters and implementa-
tion details provided by the original Brax repository, which optimize for the best performance. For
our self-implemented PushT task, the hyperparameters is ported from Pusher task in Brax for fair
comparison. The hyperparameters for the RL tasks are shown in Table 5 and Table 6.

For the zeroth order optimization tasks, we the same hyperparameters as the MBD algorithm.

A.5.4 Demonstration Collections

For RRT algorithm in Car2D task, we set the max step size to 0.2, and the max iterations to 1000
given the maximum episode length is 50.

For the demonstration collection in Humanoid Jogging task, we first download the mocap data which
contains each joints’ position in the world frame. Then we use the joint data to calculate the position
of torso, thigh and shin position as partial state reference for our task.

21

Environment Algorithm Timesteps Reward Scaling Episode Length

Ant PPO 100M 10 1000
Hopper SAC 6.55M 30 1000
Walker2d PPO 50M 1 1000
Halfcheetah PPO 50M 1 1000
Pusher PPO 50M 5 1000
PushT PPO 100M 1.0 100
Humanoidrun PPO 100M 0.1 100
Humanoidstandup PPO 100M 0.1 1000

Table 5: General RL configuration for various environments

Environment Minibatches Updates/Batch Discounting Learning Rate

Ant 32 4 0.97 3 × 10−4
Hopper 32 4 0.997 6 × 10−4
Walker2d 32 8 0.95 3 × 10−4
Halfcheetah 32 8 0.95 3 × 10−4
Pusher 16 8 0.95 3 × 10−4
PushT 16 8 0.99 3 × 10−4
Humanoidrun 32 8 0.97 3 × 10−4
Humanoidstandup 32 8 0.97 6 × 10−4

Table 6: RL specifics for various environments

A.6 MBD for Online Control

Even though MBD is designed as a trajectory optimization algorithm, it can be naturally extended
to receding horizon control as shown in Algorithm 3. By conditioning the planning on each step’s
observation, MBD’s MPC extension can further improve the performance of MBD by 9.6% in terms
of reward, especially given control noise as shown in Fig. 7.

The online running frequence of MBD MPC is shown in Table 7 on RTX 4070Ti GPU. Please note
that the frequency is calculated under the assumption of solving the whole 50 steps TO problem
without reduced model at each iteration. Besides, the Brax code environment we used is not optimized
for GPU, so the actual frequency could be higher with optimized environment. In our work we just
use Brax as a simple and easy-to-use option. As the major computation time of MBD is spent on the
forward dynamics simulation, it can be further improved by using more efficient physics engine.

Environment Frequency (Hz)

Hopper 4.56
HalfCheetah 4.51
Ant 10.28
Walker2d 3.49
Humanoidstandup 6.82
Humanoidrun 4.03

Table 7: Online Running Frequency of receding horizon MBD

A.7 Sample Number Abalation

Given that sampling-based optimization is the core of MBD, we ablate the sample number in Fig. 8.
We can see that MBD converges to the optimal point with as few as 128 samples. The harder the task
is, the larger performance gap between MBD and other TO solvers.

22

Algorithm 3 Model-based Diffusion with Receding Horizon
1: Initialize: Optimize trajectory x0∶T , u0∶T−1 with MBD
2: for t = 0 to tfinal do
3: Observe the state xt

4: Optimize trajectory xt∶t+T , ut∶t+T−1 with single-step MBD
5: Apply the first control input ut to the system
6: Shift trajectory for next initialization: xt+1∶t+T , ut+1∶t+T−1
7: end for

Hopper HalfCheetah Ant Walker2D Humanoid
Standup

Humanoid
Running

PushT

Environment

−1

0

1

2

3

4

R
ew

ar
d

Algorithm

RL

RL(noisy)

MBD

MBD(noisy)

MBD(receding)

MBD(noisy,receding)

Figure 7: Comparison of the performance between RL, MBD and MBD receding horizon version
with both perfect model and noisy model (with 5% control noise). Given perfect model, we find
MBD’s performance can be further augmented by 9.6% with naive receding horizon planning and
leads RL by larger 74.2%. Given noisy model, MBD receding horizon version still outperforms RL
by 65.3%.

A.8 Objective Function Abalation

Given that RL and TO have different objective settings, especially the horizon difference, we
conducted an ablation study by swapping the optimization objectives of MBD and RL. RL optimizes
for a longer horizon discounted reward J = ∑HRL

t=0 γtrt,H = 1000, γ < 1 while MBD optimizes for a
shorter horizon undiscounted cumulative rewards J = ∑HMBD

t=0 rt,H = 50, γ = 1. Figure 9 shows the
performance of MBD and RL under each other’s optimization objectives.

MBD outperforms RL by 44.5% under the RL objective and 805.5% under the TO objective. The
results demonstrate that MBD’s superior performance is attributed to its better diffusion-style iterative
optimization process compared with RL’s random exploration.

23

64 128 256 512 10242048

N

0

1

2

3

4

R
ew

a
rd

Ant

64 128 256 512 10242048

N

0.0

0.5

1.0

1.5

R
ew

a
rd

Hopper

64 128 256 512 10242048

N

0.0

0.5

1.0

1.5

2.0

2.5

R
ew

a
rd

Walker2D

64 128 256 512 10242048

N

0.0

0.5

1.0

1.5

2.0

2.5

R
ew

a
rd

HalfCheetah

64 128 256 512 10242048

N

0

1

2

3

R
ew

ar
d

HumanoidRunning

64 128 256 512 10242048

N

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

HumanoidStandup

64 128 256 512 10242048

N

−0.2

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

PushT

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

CMA-ES MPPI CEM MBD

Figure 8: Ablation study on the number of samples’s effect on the performance of MBD and other
TO solver. For lower-dimensional task like Ant, Hopper, MBD’s performance is less sensitive to
the number of samples. For higher-dimensional task like Humanoid, MBD’s performance is more
sensitive to the number of samples but still outperforms all the baselines.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 1 list the main contributions of the paper, which are accurately reflected
in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses the limitations of the proposed approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors

24

Hopper HalfCheetah Ant Walker2D Humanoid
Standup

Humanoid
Running

PushT

Environment

−1

0

1

2

3

4

R
ew

a
rd

Algorithm

RL(γ = 1, H = 50)

RL(γ < 1, H = 1000)

MBD(γ = 1, H = 50)

MBD(γ < 1, H = 1000)

Figure 9: Ablation study on RL and TO objective function. γ = 1,H = 50 is TO objective,
γ < 1,H = 1000 is RL objective, where γ is the discount factor and H is the horizon. For both
objective function, MBD outperforms RL by 44.5% and 805.5% on average. We also find RL’s
overall performance is better given the discounted objective while MBD’s performance is better given
the total objective, which is consistent with our main results.

should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This paper includes theoretical results, and all the assumptions and proofs are
provided in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.

25

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix A.5 provides all the necessary information to reproduce the main
experimental results. The code and data are also provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

26

Justification: The paper provides open access to the data and code, with dedicated README
files and instructions to reproduce the main experimental results comes with the supplemental
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix A.5 provides all the necessary information to understand the experi-
mental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Main quantitative results in Table 2 report the mean and standard deviation
over 8 runs given different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the hardware requirements in Appendix A.5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not address societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned the package used in the paper on Appendix A.5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Work
	Problem Statement and Background
	Model-Based Diffusion
	Model-based Diffusion as Multi-stage Optimization
	Model-based Diffusion for Trajectory Optimization
	Model-based Diffusion with Demonstration

	Experimental Results
	MBD for Planning in Contact-rich Tasks
	Data-augmented MBD for Trajectory Optimization

	Conclusion and Future Work
	Appendix / Supplemental Material
	Notation Table
	Convergence of Distribution with Small
	Black-box Optimization with MBD
	MBD for DNN Training without Gradient Information

	MBD with Demonstration Explaination
	Experiment Details
	Simulator and Environment
	MBD Hyperparameters
	Baseline Algorithms Implementation
	Demonstration Collections

	MBD for Online Control
	Sample Number Abalation
	Objective Function Abalation

