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Abstract

Superoptimization requires the estimation of the best program for a given compu-1

tational task. In order to deal with large programs, superoptimization techniques2

perform a stochastic search. This involves proposing a modification of the current3

program, which is accepted or rejected based on the improvement achieved. The4

state of the art method uses uniform proposal distributions, which fails to exploit5

the problem structure to the fullest. To alleviate this deficiency, we learn a pro-6

posal distribution over possible modifications using Reinforcement Learning. To7

demonstrate the efficacy of our approach, we provide convincing results on the8

superoptimization of “Hacker’s Delight” programs.9

1 Introduction10

Superoptimization requires us to obtain the optimal program for a computational task. While modern11

compilers implement a large set of rewrite rules, they fail to offer any guarantee of optimality. An12

alternative approach is to search over the space of all possible programs that are equivalent to the13

compiler output, and select the one that is the most efficient. If the search is carried out in a brute-force14

manner, we are guaranteed to achieve superoptimisation. However, this approach quickly becomes15

computationally infeasible as the number of instructions and the length of the program grows.16

In order to efficiently perform superoptimisation, recent approaches have started to use a stochastic17

search procedure, inspired by Markov Chain Monte Carlo sampling [13]. Briefly, the search starts at18

an initial program, such as the compiler output. It iteratively suggests modifications to the program,19

where the probability of a modification is encoded in a proposal distribution. The modification is20

either accepted or rejected with a probability that is dependent on the improvement achieved. Under21

certain conditions on the proposal distribution, the above procedure can be shown to eventually22

sample from a distribution over programs, where the probability of a program is related to its quality.23

In other words, the more efficient a program, the more times it is encountered, thereby enabling24

superoptimisation.25

One of the main factors that governs the efficiency of the above stochastic search is the choice of26

the proposal distribution. Surprisingly, the state of the art method, called Stoke [13], uses an almost27

uniform proposal distribution. We argue that this choice fails to fully exploit the power of stochastic28

search. For example, consider the case where we are interested in performing bitwise operations, as29

indicated by the compiler output. In this case, it is more likely that the optimal program will contain30

bitshifts than floating point opcodes. Yet, Stoke will assign an equal probability of use to those.31

In order to alleviate the aforementioned deficiency of Stoke, we build a reinforcement learning32

framework to estimate a more suitable proposal distribution for the task at hand. The quality of33

the distribution is measured as the expected quality of the program obtained via stochastic search.34

Using training data, which consists of a set of input programs, the parameters are learnt via the35

REINFORCE algorithm [16]. We demonstrate the efficacy of our approach on a set of “Hacker’s36

Delight” [15] programs. Preliminary results indicate that a learnt proposal distribution outperforms37

the uniform one on novel tasks that were previously unseen during training.38
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2 Related Works39

The earliest approached for superoptimization relied on brute-force search. By sequentially enumer-40

ating all programs in increasing length orders [4, 11], the shortest program meeting the specification41

is guaranteed to be found. As expected, this approach scales poorly to longer programs or to large42

instruction sets. The longest reported synthesized program was 12 instructions long, on a restricted43

instruction set [11].44

Trading off completeness for efficiency, stochastic methods [13] reduced the number of programs to45

test by guiding the exploration of the space, using the observed quality of programs encountered as46

hints. However, using a generic, unspecific exploratory policy made the optimisation blind to the47

problem at hand. We propose to tackle this problem by learning the proposal distribution.48

Similar work was done in the restricted case of finding efficient implementation of computation of49

value of degree k polynomials [17]. Programs were generated from a grammar, using a learned policy50

to prioritise exploration. This particular approach of guided search looks promising to us, and is in51

spirit similar to our proposal, although applied on a very restricted case.52

Another approach to guide the exploration of the space of programs was to make use of the gradients53

of differentiable relaxation of programs. Bunel et al. [2] attempted this by simulating program54

execution using recurrent Neural Networks. This however provided no guarantee that the optimum55

found was going to correpond to a real program. Additionally, this method only had the possibiliy of56

performing very local moves, limiting the kind of discoverable transformations.57

Outside of program optimisation, applying learning algorithms to improve optimisation procedures,58

either in terms of results achieved or time taken, is a well studied subject. Doppa et al. [3] proposed59

imitation learning based methods to deal with structured output spaces, in a “Learning to search”60

framework. This is however not useful to our problem as we always have a valid cost function.61

More relevant is the recent litterature on learning to optimize. Li and Malik [10] and Andrychowicz62

et al. [1] learns how to improve on first-order gradient descent algorithms, making use of neural63

networks. Our work is similar, as we aim to improve the optimisation process. We differ in that64

our initial algorithm is a MCMC sampler, on a discrete space, as opposed to gradient descent on a65

continuous, unconstrained space.66

The training of a Neural Network to generate a proposal distribution to be used in sequential Monte-67

Carlo was also proposed by Paige and Wood [12] as a way to accelerate inference in graphical models.68

Additionally, similar approaches were successfully employed in computer vision problems where69

data driven proposals allowed to make inference feasible [7, 9, 18].70

3 Learning Stochastic Superoptimization71

Stoke performs black-box optimisation of a cost function on the space of programs, represented as a72

series of instructions. Each instruction is composed of an opcode, specifying what to execute, and73

some operands, specifying the corresponding registers. Each given input program T defines a cost74

function. For a candidate programR called a rewrite, the associated cost is given by:75

cost (R, T ) = ωe × eq(R, T ) + ωp × perf(R) (1)

The term eq(R; T ) measures how well do the outputs of the rewrite match with the outputs of the76

reference program when executed. This can be obtained either by running a symbolic validator or77

by running test cases, and accepting partial definition of correctness. The other term, perf(R) is a78

measure of the execution time of the program. An approximation can be the sum of the latency of all79

the instructions in the program. Alternatively, timing the program on some test cases can be used.80

To find the optimum of this cost function, Stoke runs an MCMC sampler, using the Metropolis81

algorithm. This allows to sample from the probability distribution induced by the the cost function:82

p(R; T ) = 1

Z
exp(−cost (R, T ))), (2)

whereR is the proposed rewrite, T is the input program.83

The sampling is done by proposing random movesR → R?, sampled from a proposal distribution84

q(R?|R). An acceptance criterion is computed, and used as the parameter of a Bernoulli distribution,85
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to decide whether or not the move is accepted.86

α(R → R?, T ) = min

(
1,
p(R?; T )
p(R; T )

)
. (3)

This criterion is justified at the condition that the proposal distribution is symmetric, that is,87

q(R?|R) = q(R|R?). In that case, in the limit, the distribution of states visited by the sam-88

pler will be p, making the optimal program the most sampled. In practice, the proposal distribution89

used is not symmetric but the whole process can still be understood as a stochastic search.90

The proposal distribution q originally used in [13] is a hierarchical model. A type of move is initially91

sampled from a probability distribution. Depending on the move that was sampled, additional samples92

are drawn to specify which part of the current program should be modified or which new operand93

or opcode should be used. The detailed structure of the probability distribution can be found in the94

attached supplementary material.95

Existing methods use uniform distributions for each of the elementary probability distributions the96

model sample from. This corresponds to a specific instantiation of the general approach. We propose97

to learn those probability distribution so as to maximize the probability of reaching the best programs.98

The cost function defined in equation (1) corresponds to what we want to optimize. Under a99

fixed computational budget to perform program superoptimization in less than T iterations, we are100

interested in having the lowest possible cost at the end. Given that our optimisation procedure is101

stochastic, we will need to consider the expected cost as our loss. This expected loss is a function102

of the parameters θ of our proposal distribution. The objective function of our “meta-optimisation”103

problem is therefore:104

L(θ) = Eθ

(
min
t=1..T

cost (Rt, T )
)
, (4)

Our chosen parameterisation of q is to keep the hierarchical structure of the original work of Schkufza105

et al. [13], and parameterise all separate probability distributions (over the type of move, the opcodes,106

the operands, and the lines of the program) independently. In order to learn them, we will make use107

of unbiased estimators of the gradient. These can be obtained using the REINFORCE algorithm [16].108

A helpful way to derive them is to consider the execution traces of the search procedure under the109

formalism of stochastic computation graphs [14]. This graph used can be found in the supplementary110

materials, as well as the derivation of the gradients associated with it.111

By instrumenting the Stoke system of Schkufza et al. [13], we can collect the execution traces so as to112

compute gradients over the outputs of the probability distributions, which can then be backpropagated.113

In that way, we can perform Stochastic Gradient Descent (SGD) over our objective function 4.114

4 Experiments115

We ran our experiments on the Hacker’s delight [15] corpus, a collection of 25 bit-manipulation116

programs, used as benchmark in program synthesis [6, 8, 13]. A detailed description of the task is117

given in the appendix. Some examples include identifying whether an integer is a power of two118

from its binary representation, counting the number of bits turned on in a register or computing the119

maximum of two integers.120

In order to have a larger corpus than the twenty-five programs initially obtained, we generate various121

starting points for each optimisation. This is accomplished by running Stoke with a cost function122

where ωp = 0 in (1), keeping only the correct programs and filtering out duplicates. This allows us to123

create a larger dataset.124

We divide the Hacker’s Delight tasks into two sets. We train on the first set and only evaluate125

performance on the second so as to evaluate the generalisation of our learned proposal distribution.126

We didn’t attempt to learn the probability distribution over the operands and the program position,127

only learning the ones over opcodes and type of move to perform.128

The probability distribution is here a simple categorical distribution. We learn the parameters of129

each separate distribution jointly, using a Softmax transformation to enforce that they are proper130

probability distribution. In our current experiment, the proposal distributions are not conditioned on131

the input program. Optimising them corresponds to finding an ideal proposal distribution for Stoke.132

Figure 2 shows the results. Both the training and the test loss decreases and it can be observed that133

the optimisation of program happens faster and that more programs reach the observed minimum.134
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(a) Training Loss (b) Testing Loss

Figure 1: Training of the proposal distribution. (1a) corresponds to the (unnormalized) objective
function of Eq.(4), respectively on the Training dataset and on the Testing dataset.

(a) Before Training (b) After Training

(c) Learned proposal distribution on the type of move

Figure 2: (2a) and (2b) are superposition of the plot of the lowest energy achieved using respectively
the initial proposal distribution / the trained proposal distribution. The learned proposal distribution
over the type of moves to do is shown in (2c). Moves corresponding to instruction deletion (second
cluster) or instruction swap with same mnemonics (fourth cluster) become more likely than instruction
permutations. The proposal distribution over the specific assembly instructions can be found in the
supplementary materials.

5 Conclusion135

Within this paper, we have shown that learning the proposal distribution of the stochastic search136

can lead to significant performance improvement. It is interesting to compare our approach to the137

synthesis-style approaches that have been appearing recently in the Deep Learning community [5]138

that aim at learning programs directly using differentiable representations of programs. We find139

that the stochastic search-based approach yields a significant advantage compared to those types of140

approaches, as the resulting program can be run independently from the Neural Network that was141

used to discover them.142

Several improvements are possible to the presented approach. Making the probability distribution a143

Neural Network conditioned on the initial input or on the current state of the rewrite would lead to144

a more expressive model, while essentially having similar training complexity. It will however be145

necessary to have a richer, more varied dataset to make any evaluation meaningful.146
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1 Generative model of the program transformations1

In Stoke [2], the program transformation are sampled from a generative model. This process2
was analysed from the publicly available code [1].3

First, a type of transformation is sampled uniformly from the following proposals method.4

1. Add a NOP instruction Add an empty instruction at a random position in the5
program.6

2. Delete an instruction Remove one of the instruction of the program.7

3. Instruction Transform Replace one existing line (instruction + operands) by a8
new one (New instruction and new operands).9

4. Opcode Transform Replace one instruction by another one, keeping the same10
operands. The new instruction is sampled from the set of compatible instructions.11

5. Opcode Width Transform Replace one instruction by another one, with the12
same memonic. This means that those instructions do the same thing, except that13
they don’t operate on the same part of the registers (for example, will replace movq14
that move 64-bit of data of the registers by movl that will move 32-bit of data)15

6. Operand Transform Replace the operand of a randomly selected instruction by16
another valid operand for the context, sampled at random.17

7. Local swap Transform Swap two instructions in the same “block”.18

8. Global Swap transform Swap any two instructions.19

9. Rotate transform Draw two positions in the program, and rotate all the instruc-20
tions between the two (the last one becomes the first one of the series and all the21
others get pushed back).22

Then, once the type of move has been sampled, the actual move has to be sampled. To do23
that, a certain numbers of sampling steps need to happen. Let’s take as example 3.24

25

To perform an Instruction Transform,26

1. A line in the existing programs is uniformly chosen.27

2. A new instruction is sampled, from the list of all possible instructions.28

3. For each of the arguments of the instruction, sample from the acceptable value.29

4. The chosen line is replaced by the new line that was sampled.30
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1 def proposal ( current_program ):
2 move_type = sample ( categorical (1 -9))
3 if move_type == 1: % Add NOP Instruction
4 pos = sample ( categorical (all - positions ( current_program )))
5 return (ADD_NOP , pos)
6 if move_type == 2: % Delete an Instruction
7 pos = sample ( categorical (all - positions ( current_program )))
8 return (DELETE , pos)
9 if move_type == 3: % Instruction Transform

10 pos = sample ( categorical (all - positions ( current_program )))
11 instr = sample ( categorical (set -of -all - instructions ))
12 arity = nb_args (instr)
13 for i = 1, arity:
14 operands [i] = sample ( categorical (possible - arguments (instr , i))) % get one of the arguments
15 % that can be used as i-th
16 % argument for instr
17 return (TRANSFORM , pos , instr , operands )
18 if move_type == 4: % Opcode Transform
19 pos = sample ( categorical (all - positions ( current_program )))
20 args = arguments_at ( current_program , pos)
21 instr = sample ( categorical (possible - instruction (args ))) % get one instruction that can
22 % be used with the arguments that
23 % are in the program at line pos.
24 return ( OPCODE_TRANSFORM , pos , instr)
25 if move_type == 5: % Opcode Width Transform
26 pos = sample ( categorical (all - positions ( current_program ))
27 curr_instr = instruction_at ( current_program , pos)
28 instr = sample ( categorical (same -memonic - instruction ( curr_instr )) % get one instruction with the
29 % same memonic that the
30 % instruction in the program
31 % at line pos.
32 return ( OPCODE_TRANSFORM , pos , instr)
33 if move_type == 6: % Operand transform
34 pos = sample ( categorical (all - positions (current - program ))
35 curr_instr = instruction_at ( current_program , pos)
36 arg_to_mod = sample ( categorical (1- nb_args ( curr_instr )))
37 new_operand = sample ( categorical (possible - arguments (curr_instr , arg_to_mod )))
38 return ( OPERAND_TRANSFORM , pos , arg_to_mod , new_operand )
39 if move_type == 7: % Local swap transform
40 block_idx = sample ( categorical (all - blocks (current - program )))
41 pos_1 = sample ( categorical (all -positions -in -block( current_program , block_idx )))
42 pos_2 = sample ( categorical (all -positions -in -block( current_program , block_idx )))
43 return (SWAP , pos_1 , pos_2)
44 if move_type == 8: % Global swap transform
45 pos_1 = sample ( categorical (all - positions ( current_program )))
46 pos_2 = sample ( categorical (all - positions ( current_program )))
47 return (SWAP , pos_1 , pos_2)
48 if move_type == 9: % Rotate transform
49 pos_1 = sample ( categorical (all - positions ( current_program )))
50 pos_2 = sample ( categorical (all - positions ( current_program )))
51 return (ROTATE , pos_1 , pos_2)

Figure 1: Generative Model of a Transformation

The sampling process of a move is therefore a hierarchy of sampling step. One way to31
thing of it is that we have a generative model for the moves. Depending on what type we32
sample, we may have differents series of sampling steps to perform. For a move, all the33
probabilities are sampled independently so the probability of proposing the move is the34
product of the probability of picking each of the sampling steps. The generative model is35
defined in Figure 1. It is going to be parameterized by the the parameters of each specific36
probability distribution it samples from. The default Stoke version uses uniform probabilities37
over all of those elementary distributions.38
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2 Metropolis algorithm as a Stochastic Computation Graph39

Feature of original program

Proposal Distribution

Neural Network (1) BP

Move

Categorical Sample (2) REINFORCE

Program

Candidate Rewrite

(3)

Candidate score

(3)

Score

Acceptance criterion

(4) (4)

New rewrite

Bernoulli (5)

(6)

Reward

(7)

Figure 2: Stochastic Computation Graph of the Metropolis algorithm used for program
superoptimization. Round nodes are stochastic nodes and square ones are deterministic. Red
arrows corresponds to computation done in the forward pass that needs to be learned while
green arrows correspond to the backward pass. Full arrow represent deterministic computation
and dashed arrow represent stochastic ones. The different steps of the forward pass are:
(1) Based on features of the reference program, the proposal distribution q is computed.
(2) A random move is sampled from the probability distribution and we keep track of the
probability of taking this move.
(3) The score of the rewrite that would be obtained by applying the chosen move is measured
experimentally.
(4) The acceptance criterion for the move is computed.
(5) The move is accepted with a probability equal to the acceptance criterion.
(6) Move 2-7 are repeated N times.
(7) The reward is observed, corresponding to the best program obtained during the search.

3 Hacker’s delight tasks40

The 25 tasks of the Hacker’s delight [3] datasets are the following:41
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1. Turn off right-most one bit42

2. Test whether an unsigned integer is of the form 2(n − 1)43

3. Isolate the right-most one bit44

4. Form a mask that identifies right-most one bit and trailing zeros45

5. Right propagate right-most one bit46

6. Turn on the right-most zero bit in a word47

7. Isolate the right-most zero bit48

8. Form a mask that identifies trailing zeros49

9. Absolute value function50

10. Test if the number of leading zeros of two words are the same51

11. Test if the number of leading zeros of a word is strictly less than of another work52

12. Test if the number of leading zeros of a word is less than of another work53

13. Sign Function54

14. Floor of average of two integers without overflowing55

15. Ceil of average of two integers without overflowing56

16. Compute max of two integers57

17. Turn off the right-most contiguous string of one bits58

18. Determine if an integer is a power of two59

19. Exchanging two fields of the same integer according to some input60

20. Next higher unsigned number with same number of one bits61

21. Cycling through 3 values62

22. Compute parity63

23. Counting number of bits64

24. Round up to next highest power of two65

25. Compute higher order half of product of x and y66

4 Learned distribution over the instruction67

In addition to the probability distribution over the type of transformation to make that is68
shown in the main paper, we also learn jointly a distribution over the assembly instruction.69
The learned version is shown in Figure (3).70
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Figure 3: Learned proposal distribution over the opcodes. Each pixel correpsonds to a
different opcode. Light one correspond to high probability, while black ones correspond to
opcodes that are never going to get sampled.

References71

[1] Berkeley Churchll, Eric Schkufza, and Stefan Heule. Stoke. https://github.com/72
StanfordPL/stoke, 2016.73

[2] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. SIGPLAN,74
2013.75

[3] Henry S Warren. Hacker’s delight. 2002.76

5


