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Abstract
Feature-based methods are commonly used to explain model predictions, but these methods
often implicitly assume that interpretable features are readily available. However, this is
often not the case for high-dimensional data, and it can be hard even for domain experts to
mathematically specify which features are important. Can we instead automatically extract
collections or groups of features that are aligned with expert knowledge? To address this gap,
we present FIX (Features Interpretable to eXperts), a benchmark for measuring how well a
collection of features aligns with expert knowledge. In collaboration with domain experts,
we propose FIXScore, a unified expert alignment measure applicable to diverse real-world
settings across cosmology, psychology, and medicine domains in vision, language, and time
series data modalities. With FIXScore, we find that popular feature-based explanation
methods have poor alignment with expert-specified knowledge, highlighting the need for
new methods that can better identify features interpretable to experts.
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1 Introduction

Machine learning is increasingly used in domains like healthcare (Tjoa and Guan, 2019),
law (Atkinson et al., 2020), governance (Meijer and Wessels, 2019), science (de la Torre-López
et al., 2023), education (Holstein et al., 2018) and finance (Modarres et al., 2018). However,
modern models are often black-box, which makes it hard for practitioners to understand
their decision-making and safely use model outputs (Rai, 2019). For example, surgeons are
concerned that blind trust in model predictions will lead to poorer patient outcomes (Hameed
et al., 2023); in law, there are known instances of wrongful incarcerations due to over-reliance
on faulty model predictions (Zeng et al., 2016; Wexler, 2017). Although such models have
promising applications, their opaque nature is a liability in domains where transparency is
crucial (Jacovi et al., 2021; Hong et al., 2020).

To address the pertinent need for transparency and explainability of their decision-making,
the interpretability of machine learning models has emerged as a central focus of recent
research (Arrieta et al., 2019; Saeed and Omlin, 2023; Räuker et al., 2023). A popular and
well-studied class of interpretability methods is known as feature attributions (Ribeiro et al.,
2016; Lundberg and Lee, 2017; Sundararajan et al., 2017). Given a model and an input,
a feature attribution method assigns scores to input features that reflect their respective
importance toward the model’s prediction. A key limitation, however, is that the attribution
scores are only as interpretable as the underlying features themselves (Zytek et al., 2022).

Feature-based explanation methods commonly assume that the given features are already
interpretable to the user, but this typically only holds for low-dimensional data. With
high-dimensional data like images and text documents, where the readily available features
are individual pixels or tokens, feature attributions are often difficult to interpret (Nauta
et al., 2023). The main problem is that features at the individual pixel or token level are
often too granular and thus lack clear semantic meaning in relation to the entire input.
Moreover, the important features are also domain-dependent, which means that different
attributions are needed for different users. These factors limit the usefulness of popular
feature attribution methods on high-dimensional data.

Instead of individual features, people tend to understand high dimensional data better in
terms of semantic collections of low level features, such as regions in an image or phrases
in a document. Moreover, for a feature to be useful, it should align with the intuition of
domain experts in the field. To this end, an interpretable feature for high-dimensional data
should have the following properties. First, they should encompass a grouping of related
low-level features (e.g., pixels, tokens), thus creating high-level features that experts can more
easily digest. Second, these low-level feature groupings should align with domain experts’
knowledge of the relevant task, thus creating features with practical relevance. We refer to
features that satisfy these criteria as expert features.

But how can we obtain such features? In practice, this process is left to domain experts
to identify and provide such features for individual tasks. Although experts often have a
sense of what the expert features should be, formalizing such features is often non-trivial
and difficult. Moreover, besides formalizing, manually annotating expert features can also be
expensive and labor-intensive. Towards obtaining high-quality features, we ask the following
question:

Can we automatically measure how well features align with expert knowledge?
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Dataset Mass Maps Supernova Multilingual 
Politeness Emotion Chest X-Ray Cholecystectomy

Input (x) mass map image
simulated 
astronomical time-
series data

conversation 
snippet Reddit comment chest X-ray image video surgery 

image

Output (y)
energy density Ωm, 

matter fluctuation σ8 
astronomical sources 
(e.g. supernova) politeness level emotion pathology safe/unsafe zone

# Examples 110,000 7,848 22,800 58,000 28,868 1,015

Expert Features voids, clusters linear consistent 
wavelengths lexical categories Russell’s 

circumplex model
anatomical 
structures organ structures

Input Example

Examples of 
Expert Features

Adapted From [Kacprzak et al., 2023] [Team et al., 2018] [Havaldar et al., 
2023a] [Demszky et al., 2020] [Majkowska et al., 

2020] [Madani et al., 2022]

Implicit Expert Features Explicit Expert Features

I was running my 
spellchecker and totally 
didn't realize that this 
was a vandalized page. 
Please accept my 
apology. I will spellcheck 
a little slower next time.

“I was running my 
spellchecker and 
totally didn't 
realize that this 
was a vandalized 
page. Please 
accept my apology. 
I will spellcheck a 
little slower next 
time.”

Categories
First person

Please
Negative
Promise

Apologetic

Cosmology Psychology Medicine

This was potentially 
the most dangerous 
stunt I have ever 
seen someone do. 
One minor mistake 
and you die.

“This was potentially the 
most dangerous stunt I 
have ever seen someone 
do. One minor mistake 
and you die.” 

Low arousal
High arousal, negative valence
Low arousal, negative valence
Positive valence

Figure 1: The FIX benchmark contains 6 datasets across a diverse set of application areas,
data modalities, and dataset sizes. For each dataset, we show an example of an input and
some example expert features for that input.

To this end, we present the FIX benchmark, a unified evaluation measuring feature inter-
pretability that can capture each individual domain’s expert knowledge. We propose a class
of metrics called the FIXScore and a collection of real-world datasets with expert-designed
features.

Our goal is to guide the development of new methods to produce interpretable features
by introducing a unified evaluation metric for the expert interpretability of feature groups.
The FIX datasets (summarized in Figure 1) collectively encompass a diverse array of real-
world settings (cosmology, psychology, and medicine) and data modalities (vision, language,
and time-series): abdomen surgery safety identification (Madani et al., 2022), chest X-ray
classification (Lian et al., 2021), mass maps regression (Kacprzak et al., 2023), supernova
classification (Željko Ivezić et al., 2019), multilingual politeness classification (Havaldar
et al., 2023a), and emotion classification (Demszky et al., 2020; Havaldar et al., 2023b). The
challenge lies in unifying all 6 different real-world settings and 3 different data modalities into
a single framework. We achieve this with our proposed expert alignment measure FIXScore,
allowing for a benchmark that does not overfit any particular domain. To our knowledge,
while previous work has identified the need for interpretable features (Zytek et al., 2022;
Doshi-Velez and Kim, 2017), a benchmark that measures the interpretability of features for
real-world experts does not yet exist. The FIX benchmark accomplishes this and also serves
as a basis for studying, constructing, and extracting expert features. In summary:

1. In collaboration with domain experts, we develop the FIX benchmark, a collection of 6
curated datasets with metrics for evaluating the explanation inheritability of high-level
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features. Our datasets are taken from real-world settings and covers diverse modalities
spanning images, text, and time-series data. *

2. We introduce a general feature evaluation metric, FIXScore, that unifies the different
real-world settings of cosmology, psychology, and medicine into a single framework.
The criteria for what made features interpretable in each domain were closely informed
by real domain experts.

3. We evaluate commonly used techniques for extracting higher-level features and find
that existing methods score poorly on FIXScore, highlighting the need for developing
new general-purpose methods designed to automatically extract expert features.

2 Related Work

Interpretability. Interpretability in machine learning is a multifaceted concept that encom-
passes algorithmic transparency (Shin and Park, 2019; Rader et al., 2018; Grimmelikhuijsen,
2023), explanation methods (Marcinkevičs and Vogt, 2023; Havaldar et al., 2023c), and
visualization techniques (Choo and Liu, 2018; Spinner et al., 2019; Wang et al., 2023), among
other aspects. In this work, we focus on feature-level interpretability, a central topic in
interpretability research (Hong et al., 2020; Nauta et al., 2023). Feature-based methods are
popular because they are believed to offer simple, adaptable, and intuitive settings in which
to analyze and develop interpretable machine learning workflows (Molnar et al., 2020). We
refer to (Nauta et al., 2023; Dwivedi et al., 2023; Weber et al., 2023) and the references
therein for extensive reviews on feature-based explanations.

Application-grounded Evaluation. Chaleshtori et al. (2024) extend the work of Doshi-
Velez and Kim (2017) to propose a comprehensive taxonomy of evaluating explanations.
Notably, this includes application-grounded evaluations, which broadly seek to measure the
efficacy of feature-based methods in settings with human users and realistic tasks, such
as AI-assisted decision-making. However, the available literature on application-grounded
evaluations is sparse: Chaleshtori et al. (2024) reviewed over 50 existing NLP datasets and
found that only four were suitable for application-grounded evaluations (DeYoung et al., 2019;
Wadden et al., 2020; Koreeda and Manning, 2021; Malik et al., 2021). A principal objective
of the FIX benchmark is to provide an application-grounded evaluation of feature-based
explanations in real-world settings.

Feature Generation. Because high-quality and interpretable features may not always
be available, there is interest in automatically generating them by combining low-level
features (Nargesian et al., 2017; Erickson et al., 2020; Zhang et al., 2023a). Notably,
Zhang et al. (2023a) propose a method for tabular data using the expand-and-reduce
framework (Kanter and Veeramachaneni, 2015). However, existing generation methods do
not necessarily produce interpretable features, and most works focus on tabular data. The
FIX benchmark aims to address these limitations by providing a setting in which to study
and develop methods for interpretable feature generation across diverse problem domains.

XAI Benchmarks. There exists a suite of benchmarks for explanations that cover
the properties of faithfulness (or fidelity) (Zhou et al., 2021; Agarwal et al., 2022), robust-

* Packaged libraries of code, hugging face data loaders and updates are available at https://brachiolab.
github.io/fix/
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Figure 2: The FIX benchmark allows measuring alignment of extracted features with expert
features in different domains, either implicitly with a scoring function or explicitly with
expert annotations.

ness (Alvarez-Melis and Jaakkola, 2018; Agarwal et al., 2022), simulatability (Mills et al.,
2023), fairness (Fel et al., 2021; Agarwal et al., 2022), among others. Quantus (Hedström
et al., 2023), XAI-Bench (Liu et al., 2021), OpenXAI (Agarwal et al., 2022), GraphXAI (Agar-
wal et al., 2023), and ROAR (Hooker et al., 2019) are notable open-source implementations
that evaluate for such properties. CLEVR-XAI (Arras et al., 2022) and Zhang et al. (2023b)
provide benchmarks that combine vision and text. ERASER (DeYoung et al., 2019) is a
popular NLP benchmark that unifies diverse NLP datasets of human rationales and decisions.
In general, however, there is a lack of interpretability benchmarks that evaluate feature
interpretability in real-world settings — a gap we aim to address with the FIX benchmark.

3 Expert Feature Extraction

Feature-based explanation methods require interpretable features to be effective. For example,
surgeons communicate safety in surgery with respect to key anatomical structures and
organs, which are interpretable features for surgeons (Strasberg and Brunt, 2010; Hashimoto
et al., 2019). These interpretable features are a key bridge that can help surgical AI
assistants communicate effectively with surgeons. However, ground-truth annotations for
such interpretable features are often expensive and hard to obtain, as they typically require
trained experts to manually annotate large amounts of data. This bottleneck is not unique
to surgery, and such challenges motivate us to study the problem of extracting features
interpretable to experts, or what we call expert features.

Consider a task with inputs from X ⊆ Rd and outputs in Y. In the example of surgery,
X may be the set of surgery images, and Y is the target of where it is safe or unsafe to
operate. We model a higher-level expert feature of input x ∈ X as a subset of features
represented with a binary mask g ∈ {0, 1}d, where gi = 1 if the ith feature is included and
gi = 0 otherwise. In surgery, for example, a good high-level feature is one that accurately
selects a key anatomical structure or organ from an input x. The objective of interpretable
feature extraction is to find a set of masks Ĝ ⊆ {0, 1}d that effectively approximates the
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expert features of x. That is, each binary mask ĝ ∈ Ĝ aims to identify some subset of features
meaningful to experts.

However, given a candidate subset of features, how can we judge whether the resulting
subset is actually meaningful to experts? To analyze and evaluate potential expert features,
we adopt the following key guiding principle: expert features should be designed by
experts, for experts . Specifically, to ensure broad utility to experts in real world problems,
we have designed the FIX benchmark to satisfy the following three properties:

1. Formulated by Experts: Desirable expert features and their corresponding evaluation
metrics should be developed by experts and be widely-accepted in their field. In all
settings, we work directly with experts to ensure that all of the FIX datasets and their
expert features are well supported and accepted in each domain.

2. Misalignment of Models and Experts: We focus the FIX benchmark on settings
where experts by default reason with respect to expert features, but machine learning
models typically use low level features. This mismatch is a major communication
barrier when explaining model predictions to experts. The FIX settings span problems
in medicine, scientific discovery, and social science where experts regularly communicate
via expert features, such as organs in surgery, but models are trained in high dimensional
inputs, such as high resolution images.

3. Measure Algorithmic Progress in Expert Feature Extraction: The ultimate
goal of this benchmark is to guide the develop of novel expert feature extraction
methods. to ensure that algorithms are of use to the broader scientific community,
solutions should not be overly tailored to any single task. The FIX settings are designed
to span a variety of machine learning modalities (vision, language, and time series) and
learning problems (clarification, regression, and segmentation).

In contrast, existing interpretability benchmarks do not closely tie the features to expert
knowledge. For example, CLEVR-XAI (Arras et al., 2022), ERASER (DeYoung et al.,
2019), and ToolQA (Zhuang et al., 2023) benchmarks are built synthetically or are typical
machine learning benchmarks that do not necessarily align with expert knowledge in practical
domains. Other benchmarks, such as Ismail et al. (2020), DRAC (Qian et al., 2024), and
FIND (Schwettmann et al., 2024) are task-specific and do not measure general algorithmic
progress across domains.

3.1 Measuring Alignment of Extracted Features with Expert Features

Suppose we are given a function ExpertAlign(ĝ, x) ∈ [0, 1] that measures how expert-
interpretable a group ĝ ∈ {0, 1}d is for input x ∈ Rd. Such alignment functions for individual
groups are common in related tasks, such as in word semantics (Mathew et al., 2020),
segmentation (Cordts et al., 2016; Abu Alhaija et al., 2018) or object detection (Everingham
et al., 2010; Lin et al., 2014) etc. The challenge in designing FIXScore is to extend
ExpertAlign to a set of groups Ĝ ⊆ {0, 1}d while ensuring that individual low-level
features are well-covered by Ĝ. To do this, we first define how well each low-level feature
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i = 1, . . . , d aligns with respect to Ĝ and x as follows:

FeatureAlign(i, Ĝ, x) =


0, if Ĝ[i] = ∅
1

|Ĝ[i]|

∑
ĝ∈Ĝ[i]

ExpertAlign(ĝ, x), otherwise (1)

where Ĝ[i] = {ĝ ∈ Ĝ : i ∈ ĝ} are the groups of Ĝ that cover feature i. This measures how
well, on average, each covering group of i aligns with the expert criteria of interpretability.
This is to promote that each group of Ĝ[i] usefully contributes towards the alignment metric.
We then extend FeatureAlign to all the low-level features to define:

FIXScore(Ĝ, x) =
1

d

d∑
i=1

FeatureAlign(i, Ĝ, x) (2)

where we note that FIXScore is parametrized by the particular choice of ExpertAlign
function. FIXScore can thus be thought of as an average of averages: the expert alignment
for each individual feature i = 1, . . . , d is averaged over all covers Ĝ[i]. As a result, this
metric has two key strengths regarding feature coverage:

1. Duplication Invariance at Optimality. If one extracts perfect expert features (i.e.,
FIXScore(Ĝ, x) = 1 for some Ĝ and x), the FIXScore cannot be increased further
by duplicating expert features. This property ensures that the score cannot be trivially
inflated with repeated features.

2. Encourages Diversity of Expert Features. Since the score aggregates a value for
each feature from i = 1, . . . , d, adding a new expert feature that does not yet overlap
with already extracted features is always beneficial.

The use of a generic expert alignment function enables the FIXScore to accommodate
a diverse set of applications which fulfills the first desiderata of domain agnostic. To satisfy
the third desideratum of expert alignment, FIXScore includes an expert alignment function
customized by experts for each domain. There are two main ways one can specify the
ExpertAlign function: implicitly with a score specified by an expert or explicitly with
annotations from an expert, as shown in Figure 2.

Case 1: Implicit Expert Alignment. Suppose we do not have explicit annotations of
expert features for ground truth groups. In this case, we use implicit expert features defined
indirectly via a scoring function that measures the quality of an extracted feature. The
exact formula of the score is specified by an expert and will depend on the domain and task.
Implicit expert features have the advantage of potentially being more scalable than features
manually annotated by experts.

Case 2: Explicit Expert Alignment. In the case where we do have annotations for
expert features G⋆, we can use a standardized expression for the FIXScore that measures
the best possible intersection with the annotated expert features. Then, the expert alignment
score of a feature group ĝ is

ExpertAlign(ĝ, x) = max
g⋆∈G⋆(x)

|ĝ ∩ g⋆|
|ĝ ∪ g⋆|

(3)

7



Jin et al.

and |·| counts the number of ones-entries, and ∩ and ∪ are the element-wise conjunction and
disjunction of two binary vectors, respectively. In other words, in the explicit case where the
ground-truth expert features are known, alignment amounts to finding the best IoU score
among all the expert-defined features G⋆. Matching intuition, FIXScore attains its optimal
value at Ĝ = G⋆:

Theorem 1. In the explicit case where G⋆ is known and has full coverage (for all features
i = 1, . . . , d, there exists g⋆ ∈ G⋆ such that i ∈ g⋆), we have FIXScore(G⋆, x) = 1 for all x.

In this benchmark, the Mass Maps, Supernova, Multilingual Politeness, and Emotion
datasets are examples of the implicit features case. On the other hand, the Cholecystectomy
and Chest X-ray datasets are examples of the explicit expert features case.

Our goal in FIX is to benchmark general-purpose feature extraction techniques that
are domain agnostic and do not use the FIXScore during training. Instead, benchmark
challengers can use neural network models trained on the end-to-end tasks to automatically
extract features without explicit supervision, which we release as part of the benchmark
and discuss further in Appendix B. Annotations for expert features are too expensive to
collect at scale for training, while implicit features are by no means comprehensive. The
FIX benchmark is intended for evaluation purposes to spur research in general purpose and
automated expert feature extraction.

4 FIX Datasets

To develop the FIX benchmark, we curated datasets for expert features designed by experts
in accordance with the properties discussed in Section 3. In this section, we briefly describe
each FIX dataset in Figure 1. For each dataset, we provide an overview of the domain task
and the problem setup. We then introduce the key expert alignment function that measures
the quality of an expert feature, and explain why certain properties incorporated in the
expert alignment function are desirable to experts.

4.1 Mass Maps Dataset

Motivation. A major focus of cosmology is the initial state of the universe, which can be
characterized by various cosmological parameters such as Ωm, which relates to energy density,
and σ8, which pertains to matter fluctuations (Abbott et al., 2022). These parameters
influence what is observable by mass maps, also known as weak lensing maps, which capture
the spatial distribution of matter density in the universe. Although mass maps can be
obtained through the precise measurement of galaxies (Jeffrey et al., 2021; Gatti et al., 2021),
it is not known how to directly measure Ωm and σ8. This has inspired machine learning
efforts to predict the two cosmological parameters from simulations (Ribli et al., 2019; Matilla
et al., 2020; Fluri et al., 2022). However, it is hard for cosmologists to gain insights into how
to predict Ωm and σ8 from black-box ML models.

Problem Setup. Our dataset contains clean simulations from CosmoGridV1 (Kacprzak
et al., 2023). Each input is a one-channel image of size (66, 66), where the task is to predict
Ωm and σ8. Here, Ωm is the average energy density of all matter relative to the total
energy density, including radiation and dark energy, while σ8 describes fluctuations in the
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(a) Full map (b) Void (c) Cluster

Figure 3: An example with expert features for Mass Maps Regression, showing (a) the
full map, (b) a feature with 100% void, and (c) a feature with 100% cluster. Voids are
under-dense large regions that appear to be dark, and clusters are over-dense regions that
appear as bright dots. The purity scores for both void and cluster are 1. We gray-out the
pixels not selected in each feature.

distribution of matter (Abbott et al., 2022). The dataset has contains train/validation/test
splits of sizes 90,000/10,000/10,000, respectively.

Expert Features. When inferring Ωm and σ8 from the mass maps, we aim to discover
which cosmological structures most influence these parameters. Two types of cosmological
structures in mass maps known to cosmologists are voids and clusters (Matilla et al., 2020).
An example is illustrated in Figure 3, where voids are large regions that are under-dense
relative to the mean density and appear as dark, while clusters are over-dense and appear as
bright dots.

To quantify the interpretability of an expert feature in the mass maps, we develop an
implicit expert alignment scoring function. Intuitively, a group that is purely void or purely
cluster is more interpretable in cosmology, while a group that is a mixture is less interpretable.
We thus develop the purity metric based on the entropy among void/cluster pixels (Zhang
et al., 2003) weighted by the ratio of interpretable pixels in the expert feature. We give
additional details in Appendix A.1.

ExpertAlign(ĝ, x) = Purityvc(ĝ, x) · Ratiovc(ĝ, x) (4)

4.2 Supernova Dataset

Motivation. The astronomical time-series classification, as mentioned in (Team et al., 2018),
involves categorizing astronomical sources that change over time. Astronomical sources
include transient phenomena (e.g., supernovae, kilonovae) and variable objects (e.g., active
galactic nuclei, Mira variables). This task analyzes simulation datasets that emulate future
telescope observations from the Legacy Survey of Space and Time (LSST) (Željko Ivezić
et al., 2019). Given the vastness of the universe, it is essential to identify the time periods
that have the most significant impact on the classification of astronomical sources to optimize
telescope observations. Time periods with no observed data are less useful. To avoid costly
searching over all timestamps for high-influence time periods, we aim to identify significant
timestamps that are linearly consistent in specific wavelengths.

Problem Setup. We take parts of the dataset from the original PLAsTiCC challenge
(Team et al., 2018). The input data are simulated LSST observations comprising four columns:
observation times (modified Julian days), wavelength (filter), flux values, and flux error. The
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Figure 4: An example with expert features for supernova classification, showing (left) the
original time-series dataset and (right) an example of the interpretable expert feature group.
We highlight the expert feature groups with the highest ExpertAlign scores.

dataset encompasses 7 distinct wavelengths that work as filters, and the flux values and
errors are recorded at specific time intervals for each wavelength. The classification task is
to predict whether or not each of 14 different astronomical objects exists. The supernova
dataset contains train/validation/test splits of sizes 6274/728/792, respectively.

Expert Features. A feature with linearly consistent flux for each wavelength is consid-
ered more interpretable in astrophysics. An illustration of expert features used for supernova
classification is presented in Figure 4. This example showcases the flux value and error
for various wavelengths, each represented by a different color. We colored the timestamp
of expert features with the wavelength color with the highest linear consistency score. For
timestamps where there are no data points, we do not recognize them as expert features.
We create a linear consistency metric to assess the expert alignment score of a proposed
feature in the context of a supernova. Our linear consistency metric uses p, the percentage
of data points that display linear consistency, penalized by d, the percentage of time stamps
containing data points:

ExpertAlign(ĝ, x) = max
w∈W

p(ĝ, xw) · d(ĝ, xw). (5)

where W is the set of unique wavelength. Further details are provided in Appendix A.2.

4.3 Multilingual Politeness Dataset

Motivation. Different cultures express politeness differently (Leech, 2007; Pishghadam and
Navari, 2012). For instance, politeness in Japan often involves acknowledging the place of
others (Spencer-Oatey and Kádár, 2016), whereas politeness in Spanish-speaking countries
focuses on establishing mutual respect (Placencia and Garcia-Fernandez, 2017). Therefore,
grounding interpretable features that indicate politeness is language-dependent. Previous work
from Danescu-Niculescu-Mizil et al. (2013) and Li et al. (2020) use past politeness research to
create lexica that indicate politeness/rudeness in English and Chinese, respectively. A lexicon
is a set of categories where each category contains a curated list of words. For instance, the
English politeness lexicon contains categories like Gratitude: “appreciate”, “thank you”, et
cetera, and Apologizing : “sorry”, “apologies”, etc. Havaldar et al. (2023a) expand on these
theory-grounded lexica to include Spanish and Japanese.
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Example Expert Features with High Alignment

[Politeness] I was running my
spellchecker and totally didn’t re-
alize that this was a vandalized page.
Please accept my apology. I will
spellcheck a little slower next time.

g1 = I, my, I
g2 = spellchecker, vandalized, little, slower
g3 = will
g4 = my, apology

[Emotion] This was potentially the most
dangerous stunt I have ever seen someone
do. One minor mistake and you die.

g1 = dangerous, die
g2 = potentially, minor
g3 = mistake, stunt
g4 = I, someone, you

Table 1: Examples and expert features with high expert alignment for Multilingual Politeness
(top) and Emotion (bottom) settings. These expert features correspond to low distance
within the emotion circumplex and high similarity with politeness lexica, respectively.

Problem Setup. The multilingual politeness dataset from (Havaldar et al., 2023a)
contains 22,800 conversation snippets from Wikipedia’s editor talk pages. The dataset
spans English, Spanish, Chinese, and Japanese, and native speakers of these languages have
annotated each conversation snippet for politeness level, ranging from -2 (very rude) to 0
(neutral) to 2 (very polite).

Expert Features. When extracting interpretable features for a task like politeness
classification across multiple languages, it is useful to ground these features using prior
research from communication and psychology. If extracted politeness features from an LLM
are interpretable and domain-aligned, they should match what psychologists have determined
to be key politeness indicators. Examples of expert-aligned features are shown in Table 1.
Concretely, for each lexical category, we use an LLM to embed all the contained words and
then average the resulting embeddings to get a set C of k centroids: C = {c1, c2, . . . , ck}.
See Appendix A.3 for more details. Then, a proposed expert feature ĝ ∈ {0, 1}d indicates
whether or not each of the d words w1, w2, ..., wd ∈ x are included in the feature, and the
expert alignment score for the proposed feature ĝ can be computed as follows:

ExpertAlign(ĝ, x) = max
c∈C

1

|ĝ|

d∑
i=1

ĝi · cos(embedding(wi), c) (6)

4.4 Emotion Dataset

Motivation. Emotion classification involves inferring the emotion (e.g., Joy, Anger, etc.)
reflected in a piece of text. Researchers study emotion to build systems that can understand
emotion and thus adapt accordingly when interacting with human users. For extracted
features to be useful for such systems, they must be relevant to emotion. For example, a
word like “puppy” may be used more frequently in comments labeled with Joy vs. other
emotions; therefore, it may be extracted as a relevant feature for the Joy class. However,
this is a spurious correlation — emotional expression is not necessarily tied to a subject, and
comments containing “puppy” may also be angry or sad.
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(a) Full image (b) Right lung (c) Left lung

Figure 5: An example with expert features for Chest X-Ray dataset. (a) The full X-ray
image where the following pathologies are present: effusion, infiltration, and pneumothorax;
(b-c) Expert-interpretable anatomical structures of the left and right lungs.

Problem Setup. The GoEmotions dataset from Demszky et al. (2020) contains 58,000
English Reddit comments labeled for 27 emotion categories, or “neutral” if no emotion is
applicable. The input is a text utterance of 1-2 sentences extracted from Reddit comments,
and the output is a binary label for each of the 27 emotion categories. The dataset contains
train/validation/test splits of sizes 43,400/5,430/5,430, respectively.

Expert Features. Example expert features are shown in Table 1. To measure how
emotion-related a feature is, we use the circumplex model of affect (Russell, 1980). The
circumplex model assumes that all emotions can be projected onto the 2D unit circle with
respect to two independent dimensions – arousal (the magnitude of intensity or activation)
and valence (how negative or positive). By projecting features onto the unit circle, we can
quantify emotional relations. In particular, we calculate the following two attributes of
the features with a group: (1) their emotional signal, i.e., mean distance to the circumplex
and (2) their emotional relatedness, i.e., mean pairwise distance within the circumplex. We
then calculate the following: Signal(ĝ, x), which measures the average Euclidean distance to
the circumplex for every projected feature in ĝ, and Relatedness(ĝ, x), which measures the
average pairwise distance between every projected feature in ĝ (details in Appendix A.4).
For an extracted feature ĝ, the expert alignment score can then be computed by:

ExpertAlign(ĝ, x) = tanh(exp[−Signal(ĝ, x) · Relatedness(ĝ, x)]) (7)

4.5 Chest X-Ray Dataset

Motivation. Chest X-ray imaging is a common procedure for diagnosing conditions such
as atelectasis, cardiomegaly, and effusion, among others. Although radiologists are skilled
at analyzing such images, modern machine learning models are increasingly competitive in
diagnostic performance (Ahmad, 2021). Therefore, ML models may prove useful in assisting
radiologists in making diagnoses. However, in the absence of an explanation, radiologists
may only trust the model output if it matches their own predictions. Moreover, inaccurate
AI assistants are shown to negatively affect diagnostic performance (Yu et al., 2024). To
address this problem, explainability could be employed as a safeguard to help radiologists
decide whether or not to trust the model. As such, it is important for machine learning
models to provide explanations for their diagnoses.

Problem Setup. We use the NIH-Google dataset (Majkowska et al., 2020) available
from the TorchXRayVision library (Cohen et al., 2022). This is a relabeling of the NIH
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(a) Full image (b) Safe region (c) Gallbladder

Figure 6: An example with expert features of Laparoscopic Cholecystectomy Surgery
Dataset: (a) The view of the surgeon sees; (b) The safe region for operations; (c) The
gallbladder, a key anatomical structure for the critical view of safety.

ChestX-ray14 dataset (Wang et al., 2017) which improved the quality of the original labels. It
contains 28,868 chest X-ray images labeled for 14 common pathology categories: atelectasis,
calcification, cardiomegaly, etc. We randomly partition the dataset into train/test splits of
sizes 23,094/5,774, respectively. The task is a multi-label classification problem for identifying
the presence of each pathology.

Expert Features. Radiology reports commonly refer to anatomical structures (e.g.,
spine, lungs), which allows radiologists to perform and communicate accurate diagnoses to
patients. We provide these expert-interpretable features in the form of anatomical structure
segmentations. However, because we could not find datasets with both pathology labels and
anatomical segmentations, we used a pre-trained model from TorchXRayVision to generate
the structure labelings for each image. We use explicit expert alignment as described in
Equation 3 to compute alignment of an extracted feature ĝ and the 14 predicted anatomical
structure segments, including the left clavicle, heart, etc. Details of the Chest X-Ray dataset
can be found in Appendix A.5.

4.6 Laparoscopic Cholecystectomy Surgery Dataset

Motivation. Laparoscopic cholecystectomy (gallbladder removal) is one of the most common
elective abdominal surgeries performed in the US, with over 750,000 operations annually (Stin-
ton and Shaffer, 2012). A common complication of laparoscopic surgery is bile duct injury,
which is associated with an 8-fold increase in mortality (Michael Brunt et al., 2020) and
accounts for more than $1B in US healthcare annual spending (Berci et al., 2013). Notably,
97% of such complications result from human visualization errors (Way et al., 2003). The
surgery site commonly contains obstructing tissues, inflammation, and other patient-specific
artifacts — all of which may prevent the surgeon from getting a perfect view. Consequently,
there is growing interest in harnessing advanced vision models to help surgeons distinguish
safe and risky areas for operation. However, experienced surgeons rarely trust model outputs
due to their opaque nature, while inexperienced surgeons might overly rely on model pre-
dictions. Therefore, any safe and useful machine learning model must be able to provide
explanations that align with surgeons’ expectations.

Problem Setup. The task is to identify the safe and unsafe regions for incision. We use
the open-source subset of the data from (Madani et al., 2022), wherein the authors enlist
surgeons to annotate surgery video data from the M2CAI16 workflow challenge (Stauder
et al., 2016) and Cholec80 (Twinanda et al., 2016) datasets. This dataset consists of 1015
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Vision Time Series Language
Method Cholec ChestX MassMaps Method Supernova Method Politeness Emotion

Domain-
specific

Identity 0.4648 0.2154 0.5483 Identity 0.0152 Identity 0.6070 0.0103
Random 0.1084 0.0427 0.5505 Random 0.0358 Random 0.6478 0.0303
Patch 0.0327 0.0999 0.5555 Slice 5 0.0337 Words 0.6851 0.1182
Quickshift 0.2664 0.3419 0.5492 Slice 10 0.0555 Phrases 0.6351 0.0198
Watershed 0.2806 0.1452 0.5590 Slice 15 0.0554 Sentences 0.6109 0.0120
SAM 0.3642 0.3151 0.5521
CRAFT 0.0278 0.1175 0.3996

Domain-
agnostic

Clustering 0.2839 0.2627 0.5515 Clustering 0.2622 Clustering 0.6680 0.0912
Archipelago 0.3271 0.2148 0.5542 Archipelago 0.2574 Archipelago 0.6773 0.0527

Table 2: Baselines scores of different FIX settings. We report the mean score and give a
more comprehensive table in Appendix C. We describe baseline implementations in Section 5.
One thing to note is that FIXScore is not comparable for different tasks (e.g. between
Mass Maps and Supernova) as the data and specific expert alignment metrics are different
for different tasks.

annotated images that are randomly split by video sources, with train/test splits of sizes
785/230, respectively.

Expert Features. In cholecystectomy, it is a common practice for surgeons to identify
the critical view of safety before performing any irreversible operations (Strasberg and Brunt,
2010; Hashimoto et al., 2019). This view identifies the location of vital organs and structures
that inform the safe region of operation and is incidentally what surgeons often need as
part of an explanation. We provide these expert-interpretable labels in the form of organ
segmentations (liver, gallbladder, hepatocystic triangle). We use explicit expert alignment as
described in Equation 3 to compute alignment of an extracted feature ĝ and the surgeon-
annotated organ labels taken from Madani et al. (2022). Details of the Cholecystectomy
dataset can be found in Appendix A.6.

5 Baseline Algorithms & Discussion

We evaluate standard techniques widely used within the vision, text, and time series domains
to create higher-level features. We provide a brief summary below, with additional details in
Appendix C.

Domain-specific Baselines. We consider the following domain-centric baselines, which
are standard in the literature for the respective domains. (Image) For image data, we consider
three segmentation methods (Kim et al., 2024). Patches (Dosovitskiy et al., 2021) divides
the image into grids where each cell is the same size. Quickshift (Grady, 2006) connects
similar neighboring pixels into a common superpixel. Watershed (Levner and Zhang, 2007)
simulates flooding on a topographic surface. Segment Anything Model (SAM) (Kirillov et al.,
2023) is a large foundation model for generating image segmentations. CRAFT (Fel et al.,
2023) generates concept attribution maps. (Time-series) For time series data, we take equal
size slices of the data across time as patches (Schlegel et al., 2021). We use different slice
sizes to see how they impact multiple baselines. We take various slice sizes, such as 5, 10, and
15, separately to evaluate the results of multiple baselines. (Text) For text data, we present
three baselines for extracting features (Rychener et al., 2022). At the finest granularity, we
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treat each word as a feature. The second baseline considers each phrase as a feature. Phrases
are comprised of groups of words that are separated by some punctuation in the original
text. At the coarsest granularity, we treat each sentence as a feature.

Domain-agnostic Baselines. We additionally consider the following domain-agnostic
baselines for feature extraction. (Identity) We combine all elements into one single group.
(Random) We select features at random, up to the maximum baseline results for the
group. The group maximum is calculated as: (group maximum) ≈ (scaling factor) ×
(number of expert features). The size of the distinct expert feature varies depending on
the setting, and further details for each setting can be found in Appendix C. We use a scaling
factor of about 1.5 to allow for flexibility. (Clustering) For images, we first use Quickshift
to generate segments and then pass each segment through a feature extractor (ResNet-18
by default). For time series, we use raw features from each time segment. We then apply
K-means clustering on the extracted/raw features to relabel and merge segments. For text,
we use BERTopic (Grootendorst, 2022) to obtain the clusters. (Archipelago) We adapt the
implementation of Archipelago (Tsang et al., 2020) to use ResNet-18 with quickshift for
feature extraction.

Results and Discussions. We show results on the baselines in Table 2. For image
datasets, Quickshift has the best performance compared to Patch and Watershed on both
the Cholecystectomy dataset and the Chest X-ray dataset, since they have natural images.
All baselines perform similarly for the Mass Maps dataset. That the range of mass maps
is different from other tasks is potentially because they are not natural images, but rather
similar to topographic surfaces, and also the implicit ground truth expert features do not
have full coverage. For the Supernova time-series dataset, larger slices score yield higher
expert alignment scores. For both Multilingual Politeness and Emotion datasets, individual
words appear to be the most expert-aligned features. Generally, however, we see that the
domain-agnostic neural baselines tend to also perform better than or close to the best
domain-centric baseline. The main benefit of using a neural approach is that it can more
easily automatically discover relevant features.

6 Conclusion

We propose FIX, a curated benchmark of datasets with evaluation metrics for extracting
expert features in diverse real-world settings. Our benchmark addresses a gap in the literature
by providing researchers with an environment to study and automatically extract interpretable
features for experts, designed by experts.

Limitations and Future Work. The FIX benchmark is not an exhaustive specification
of all expert features, and may fail to capture others types. The ones we included are
generally non-controversial and well-accepted by the domain’s expert community, but we can
foresee that there are cases where this may not be true. Dealing with potential conflicting
expert opinions may need a more nuanced approach, which is left for future work to address.
Furthermore, although we cover cosmology, psychology, and medicine domains in this work,
the metrics for these domains may not be appropriate for all settings. We encourage
prospective users to consider and implement metrics most appropriate to their particular
settings. Future work includes the development of new, general purpose techniques that can
extract expert features from data and models without supervision. Additionally, future work
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could also include training machine learning models on just the features that are deemed to
be aligned with domain experts and reporting the accuracy of the trained models.

7 Broader Impact and Ethics Statement

The goal of the FIX benchmark is to enable researchers and practitioners to develop more
transparent machine learning systems that are applicable in real-world problems. However,
because our datasets contain text scraped from Internet forums, as well as visuals of human
anatomy, it is possible that some contents may be considered objectionable. It is possible
that such objectionable content may be misused, but we do not believe that our datasets
would be of particular interest to malicious users because dedicated natural-language toxicity
and more graphic medical datasets exist.
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Appendix A. Dataset Details

All datasets and their respective Croissant metadata records and licenses are available on
HuggingFace at the following links.
• Mass Maps:

https://huggingface.co/datasets/BrachioLab/massmaps-cosmogrid-100k
• Supernova:

https://huggingface.co/datasets/BrachioLab/supernova-timeseries
• Multilingual Politeness:

https://huggingface.co/datasets/BrachioLab/multilingual_politeness
• Emotion:

https://huggingface.co/datasets/BrachioLab/emotion
• Chest X-Ray:

https://huggingface.co/datasets/BrachioLab/chestx
• Laparoscopic Cholecystectomy Surgery:

https://huggingface.co/datasets/BrachioLab/cholec

A.1 Mass Maps Dataset

Problem Setup. We randomly split the data to consist of 90,000 train and 10,000 validation
maps and maintain the original 10,000 test maps. We follow the post-processing procedure
in Jeffrey et al. (2021); You et al. (2023) for low-noise maps. Following previous works (Ribli
et al., 2019; Matilla et al., 2020; Fluri et al., 2022; You et al., 2023), we use a CNN-based
model for predicting Ωm and σ8.

Metric. Let x ∈ Rd be the input mass map with d = H ×W pixels, and g ∈ {0, 1}d be a
boolean mask g that describes which pixels belong to the group, where gi = 1 if the ith pixel
belongs to the group, and 0 otherwise.

We can compute the purity score of each group to void and cluster. We say a pixel is a
void (underdensed) pixel if its intensity is below 0, and a cluster (overdensed) pixel if its
intensity is above 3σ(x), following previous works (Matilla et al., 2020; You et al., 2023). We
first compute the proportion of void pixels and cluster pixels in feature g

Pv(g, x) =

∑d
i=1 1[gixi < 0]

g⊺1
, Pc(g, x) =

∑d
i=1 1[gixi > 3σ(x)]

g⊺1
(8)

where 1 ∈ 1d is the identity matrix, the numerators count the number of underdensed or
overdensed pixels, and g⊺1 is the number of pixels in the feature. In practice, we add a small
ϵ = 10−6 to Pv and Pc and renormalize them, to avoid taking the log of 0 later. Next, we
compute the proportion of pixels that are void or cluster, only among the void/cluster pixels:

P ′
v(g, x) =

Pv(g, x)

Pv(g, x) + Pc(g, x)
, P ′

c(g, x) =
Pc(g, x)

Pv(g, x) + Pc(g, x)
(9)

Then, we compute the ExpertAlign score for the predicted feature ĝ by computing
the void/cluster-only entropy reversed and scaled to [0, 1], weighted by the percentage of
void/cluster pixels among all pixels.

Purityvc(ĝ, x) =
1

2
(2 + P ′

v(ĝ, x) log2 P
′
v(ĝ, x) + P ′

c(ĝ, x) log2 P
′
c(ĝ, x)) (10)
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where −(P ′
v(ĝ, x) log2 P

′
v(ĝ, x) + P ′

c(ĝ, x) log2 P
′
c(ĝ, x)) is the entropy computed only on void

and cluster pixels, a close to 0 score indicating that the interpretable portion of the feature
is mostly void or cluster. Purityvc(ĝ, x) is 0 if among the pixels in the proposed feature that
are either void or cluster pixels, half are void and half are cluster pixels, and 1 if all are
void or all are cluster pixels, regardless of how many other pixels there are in the proposed
feature.

We also have the ratio

Ratiovc(ĝ, x) = (Pv(ĝ, x) + Pc(ĝ, x)) (11)

which is the total proportion of the feature that is any interpretable feature type at all.
We then have our ExpertAlign for Mass Maps:

ExpertAlign(ĝ, x) = Purity(ĝ, x) · Ratio(ĝ, x) (12)

which is then 0 when all the pixels in the feature are neither void or cluster, and 1 if all
pixels are void pixels or all pixels are cluster pixels, and somewhere in the middle if most
pixels are void or cluster pixels but there is a mix between both.

A.2 Supernova Dataset

Problem Setup. We extracted data from the PLAsTiCC Astronomical Classification
challenge (Team et al., 2018). * PLAsTiCC dataset was designed to replicate a selection of
observed objects with type information typically used to train a machine learning classifier.
The challenge aims to categorize a realistic simulation of all LSST observations that are
dimmer and more distorted than those in the training set. The dataset contains 15 classes,
with 14 of them present in the training sample. The remaining class is intended to encompass
intriguing objects that are theorized to exist but have not yet been observed.

In our dataset, we split the original training set into 90/10 training/validation, and
the original test set was uploaded unchanged. We made these sets balanced for each class.
The class includes objects such as tidal disruption event (TDE), peculiar type Ia supernova
(SNIax), type Ibc supernova (SNIbc), and kilonova (KN). The dataset contains four columns:
observation times (modified Julian days, MJD), wavelength (filter), flux values, and flux
error. Spectroscopy measures the flux with respect to wavelength, similar to using a prism
to split light into different colors.

Due to the expected high volume of data from upcoming sky surveys, it is not possible to
obtain spectroscopic observations for every object. However, these observations are crucial
for us. Therefore, we use an approach to capture images of objects through different filters,
where each filter selects light within a specific broad wavelength range. The supernova dataset
includes 7 different wavelengths that are used. The flux values and errors are recorded at
specific time intervals for each wavelength. These values are utilized to predict the class that
this data should be classified into.

Metric. We use the following expert alignment metric to measure if a group of features is
interpretable:

ExpertAlign(ĝ, x) = max
w∈W

LinearConsistency(ĝ, xw) (13)

* https://www.kaggle.com/c/PLAsTiCC-2018
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where W is the set of unique wavelength, ĝ is the feature group, and xw is the subset of x
within wavelength w. In the supernova setting, there are three parameters: ϵ, the parameter
for how much standard deviation σ is allowed, window size λ and the step size τ . Therefore,
we formulate the LinearConsistency function as follows:

LinearConsistency(ĝ, xw) = p(ĝ, xw) · d(ĝ, xw) (14)

p(ĝ, xw) is the percentage of data points that display linear consistency, penalized by d(ĝ, xw),
which is the percentage of time steps containing data points.

Let β(x, y) = argminβ(X
Tβ − y)2, where X =

[
x 1

]
and β =

[
β1 β0

]
. Here, β1 is the

slope and β0 is the intercept. M is the number of data points in xw, and ŷw,i = xw,i · β.
Then, we have

p(ĝ, xw) =
1

M

M∑
i=1

1[ŷw,i ∈ [yw,i − ϵ · ωw,i, yw,i + ϵ · ωw,i]] (15)

Let t1, ..., tN be time steps at step size intervals. Then ti = tstart + i ∗ τ , and N is the
number of time steps. We also have

d(ĝ, xw) =
1

N

N∑
i=1

1[∃i : xw,i ∈ [ti, ti + λ]] (16)

A higher ExpertAlign(ĝ, x) ∈ [0, 1] value means the flux slope at each wavelength is
consistently linear and there are not many time intervals without data.

A.3 Multilingual Politeness Dataset

Problem Setup. This politeness dataset from Havaldar et al. (2023b) is intended for
politeness classification, and would likely be solved via a fine-tuned multilingual LLM. Namely,
this would be a regression task, using a trained LLM to output the politeness level of a given
conversation snippet as a real number ranging from -2 to 2.

The dataset is accompanied by a theory-grounded politeness lexica. Such lexica built
with domain expert input have been promising for explaining style (Danescu-Niculescu-Mizil
et al., 2013), culture (Havaldar et al., 2024), and other such complex multilingual constructs.

Metric. Assume a theory-grounded Lexica L with k categories: L = ℓ1, ℓ2, ...ℓk, where
each set ℓi ⊆ W, where W is the set of all words. For each category, we use an LLM to
embed all the contained words and then average the resulting embeddings, to get a set C of
k centroids: C = c1, c2, ...ck. We define this formally as:

C :

 1

|ℓi|
∑
w∈li

embedding(w) for all i ∈ [1, k]

 (17)

For a group ĝ containing words w1, w2, ..., the group-level expert alignment score can be
computed as follows:

ExpertAlign(ĝ, x) = max
c∈C

1

|ĝ|
∑
w∈ĝ

cos(embedding(w), c) (18)

Note that each language has a different theory-grounded lexicon, so we calculate a unique
domain alignment score for each language.
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A.4 Emotion Dataset

Problem Setup. This dataset is intended for emotion classification and is currently solved
with a fine-tuned LLM (Demszky et al., 2020). Namely, this is a classification task where
an LLM is trained to select some subset of 28 emotions (including neutrality) given a 1-2
sentence Reddit comment.

Axis Anchor Russell Emotions

Positive valence (PV) Happy, Pleased, Delighted, Excited, Satisfied
Negative valence (NV) Miserable, Frustrated, Sad, Depressed, Afraid
High arousal (HA) Astonished, Alarmed, Angry, Afraid, Excited
Low arousal (LA) Tired, Sleepy, Calm, Satisfied, Depressed

Table 3: Emotions used to define the valence and arousal axis anchors for projection into the
Valence-Arousal plane. We select the 5 emotions from the circumplex closest to each axis
point.

Projection onto the Circumplex. To define the valence and arousal axes, we first
generate four axis-defining points by averaging the contextualized embeddings ("I feel
[emotion]") of the emotions listed in Table 3. This gives us four vectors in embedding space
– positive valence (v⃗pos), negative valence(v⃗neg), high arousal(⃗ahigh), and low arousal(⃗alow).
We mathematically describe our projection function below:

1. We define the valence axis, V , as v⃗pos − v⃗neg and the arousal axis, A, as a⃗high − a⃗low.
We then normalize V and A and calculate the origin as the midpoints of these axes:
(v⃗middle, a⃗middle).

2. We then scale the axes so v⃗pos, v⃗neg, a⃗high, and a⃗low anchor to (1, 0), (−1, 0), (0, 1),
and (0,−1) respectively. This enforces the circumplex to be a unit circle in the
valence-arousal plane.

3. We compute the angle θ between the valence-arousal axes by solving cos θ = V ·A
∥V ∥·∥A∥

4. For each embedding vector x⃗ in the set {xi}ni=1 we want to project into our defined
plane, we compute the valence and arousal components for xi as follows:
xvi = (xi − v⃗middle) · V⃗
xai = (xi − a⃗middle) · A⃗.

5. We calculate the x and y coordinates to plot, enforcing orthogonality between the axes:
x̃vi = xvi − xai · cos θ
x̃ai = xai − xvi · cos θ

6. Finally, we plot (x̃vi , x̃
v
i ) in the Valence-Arousal plane. We then calculate the shortest

distance from (x̃vi , x̃
v
i ) to the circumplex unit circle.
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Figure 7: The circumplex model of affect Russell (1980).

Metric. We calculate the following two values for a proposed feature ĝ containing words
w1, w2, ..., where n is the number of words in ĝ:

Signal(ĝ) =
1

n

∑
w∈ĝ

|∥Proj(w)∥2 − 1| (19)

Relatedness(ĝ) =
1

n2

n∑
i

n∑
j

∥Proj(wi)− Proj(wj)∥2 (20)

where Signal(ĝ, x) measures the average Euclidean distance to the circumplex for every
projected feature in ĝ, and Relatedness(ĝ, x) measures the average pairwise distance between
every projected feature in ĝ. We formalize the expert alignment metric as follows. For a
group ĝ, the expert alignment score can be computed by:

ExpertAlign(ĝ, x) = tanh(exp[−Signal(ĝ, x) · Relatedness(ĝ, x)]) (21)

A.5 Chest X-Ray Dataset

We used datasets and pretrained models from TorchXRayVision (Cohen et al., 2022).* In
particular, we use the NIH-Google dataset (Majkowska et al., 2020), which is a relabeling
of the NIH ChestX-ray14 dataset (Wang et al., 2017). This dataset contains 28,868 chest
X-ray images labeled for 14 common pathology categories, with a train/test split of 23,094
and 5,774. We additionally used a pre-trained structure segmentation model to produce 14
segmentations. The task is a multi-label classification problem for identifying the presence of
each pathology. The 14 pathologies are:

* https://github.com/mlmed/torchxrayvision
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Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Fibrosis,
Hernia, Infiltration, Mass, Nodule, Pleural Thickening, Pneumonia, Pneumotho-
rax

The 14 anatomical structures are:

Left Clavicle, Right Clavicle, Left Scapula, Right Scapula, Left Lung, Right Lung,
Left Hilus Pulmonis, Right Hilus Pulmonis, Heart, Aorta, Facies Diaphragmatica,
Mediastinum, Weasand, Spine

A.6 Laparoscopic Cholecystectomy Surgery Dataset

We use the open-source subset of the data from (Madani et al., 2022), which consists of
surgeon-annotated video data taken from the M2CAI16 workflow challenge (Stauder et al.,
2016) and Cholec80 (Twinanda et al., 2016) datasets. The task is to identify the safe/unsafe
regions of where to operate. Specifically, each pixel of the image has one of three labels:
background, safe, or unsafe. The expert labels provide each pixel with one of four labels:
background, liver, gallbladder, and hepatocystic triangle.

Appendix B. Interpretable Feature Extraction Details

Figure 8 illustrates a graphical model representing the Interpretable Feature Extraction
pipeline for a given FIX dataset.

ℒ
ℓ

m
g

̂ℓ
m′ 

g ̂

ϵ

y

x

n

Interpretable Feature 
Extraction≈ FIXScore Metric

Figure 8: We illustrate a graphical model representing the Interpretable Feature Extraction
pipeline for a given FIX dataset, with FIXScore metric in its general form. There are m
true feature groups g and m latent features ℓ, and m′ proposed feature groups ĝ and m′

proposed latent features ℓ̂. m does not have to equal m′. Moreover, n indicates the number
of examples in the dataset. The person figure on near the closest arrow indicates that a
domain expert would be able to infer the variable on the right-hand side of the arrow from
the variable on the left-hand side arrow. In addition, ϵ is included to account for noise.
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Appendix C. Baselines Details

The FIX benchmark is publicly available at: https://brachiolab.github.io/fix/

Bootstrapping. For each setting’s baselines experiments, we use a bootstrapping method
(with replacement) to estimate the standard deviation of the sample means of FIXScore.

Group Maximum. For the number of groups, we take the scaling factor multiplied by
the size of the distinct expert feature, which differs for each setting. The scaling factor we
choose across all setting is 1.5 (and round up to the next nice whole number).

In the case of a supernova setting, we consider a distinct expert feature size of 6. This
is because the maximum number of distinct expert features we can obtain is 6, given that
there are a maximum of 3 humps in the time series dataset. For each hump, there are both
peaks and troughs, leading to a potential maximum of 6 distinct expert features.

For the multilingual politeness setting, the group maximum would be 40, which is the
total number of lexical categories, 26, with the scaling factor multiplied in to give some
flexibility.

For the emotion setting, the group maximum would be , which is the total number of
lexical categories, 26, with the scaling factor multiplied in to give some flexibility.

For mass maps, the group maximum would be 25. We compute the maximum number of
local maximums 7 on mass maps blurred with σ = 3 and local minimums 7 on mass maps
blurred with σ = 5, which sums up to be 14. We can then multiply with the scaling factor
to give some flexibility and then we round up to 25.

Baseline Parameters. For mass maps, we use the following parameters for baselines. For
patch, we use 8×8 grid. For QuickShift, we use kernel size 5, max dist 10, and sigma 0.2. For
watershed, we use min dist 10, compactness 0. For SAM, we use ‘vit_h’. For Archipelago,
we use the same Quickshift parameters for the Quickshift segmenter.

Baseline Results. We report the full baseline results with standard deviations in Table 4.

Appendix D. Representative Examples of Extracted Features.

Here, we include representative examples of features extracted by existing baseline methods,
along with commentary on how they differ from expert-aligned features.

D.1 Mass Maps Dataset

Example Features. As MassMaps does not have annotated expert features, we only show
example of generated features with corresponding percent void and cluster and alignment
scores in Figure 9. We can see that the 6th feature (3rd image on the second row) achieves
the highest alignment score with a large percentage of void (86.3%) and a very small percent
of cluster (0.8%), while the 5th features (2nd image on the second row) has the lowest
alignment of (57.3%), as it is not fully aligned to either void or cluster.

D.2 Supernova Dataset

See Figure 10.
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Method Cholecystectomy Chest X-ray Mass Maps

Image

Identity 0.4648 ± 0.0045 0.2154 ± 0.0027 0.5483 ± 0.0015
Random 0.1084 ± 0.0004 0.0427 ± 0.0001 0.5505 ± 0.0014
Patch 0.0327 ± 0.0001 0.0999 ± 0.0008 0.5555 ± 0.0013
Quickshift 0.2664 ± 0.0036 0.3419 ± 0.0025 0.5492 ± 0.0009
Watershed 0.2806 ± 0.0049 0.1452 ± 0.0017 0.5590 ± 0.0017
SAM 0.3642 ± 0.0092 0.3151 ± 0.0064 0.5521 ± 0.0009
CRAFT 0.0278 ± 0.0003 0.1175 ± 0.0011 0.3996 ± 0.0023

Domain-Agnostic Clustering 0.2839 ± 0.0024 0.2627 ± 0.0039 0.5515 ± 0.0014
Archipelago 0.3271 ± 0.0076 0.2148 ± 0.0009 0.5542 ± 0.0014

Supernova

Time Series

Identity 0.0152 ± 0.0011
Random 0.0358 ± 0.0021
Slice 5 0.0337 ± 0.0015
Slice 10 0.0555 ± 0.0044
Slice 15 0.0554 ± 0.0032

Domain-Agnostic Clustering 0.2622 ± 0.0037
Archipelago 0.2574 ± 0.0082

Multilingual Politeness Emotion

Text

Identity 0.6070 ± 0.0015 0.0103 ± 0.0001
Random 0.6478 ± 0.0012 0.0303 ± 0.0004
Words 0.6851 ± 0.0010 0.1182 ± 0.0003
Phrases 0.6351 ± 0.0010 0.0198 ± 0.0003
Sentences 0.6109 ± 0.0006 0.0120 ± 0.0002

Domain-Agnostic Clustering 0.6680 ± 0.0048 0.0912 ± 0.0005
Archipelago 0.6773 ± 0.0006 0.0527 ± 0.0008

Table 4: Baselines of different FIX settings. We report the mean FIXScore for all examples
in each setting, with standard deviations.

D.3 Multilingual Politeness Dataset

Example Features. Since the multilingual politeness dataset does not have annotated
expert features, we use semantic similarity with the politeness lexica in Havaldar et al.
(2023a), adapted from the Stanford Politeness Lexicon (Danescu-Niculescu-Mizil et al., 2013).

A feature for the multilingual politeness dataset is a single word. We choose to not
further break down words into tokens, as it is unclear what the cosine similarity between a
token and a word in a lexicon would mean. In this vein, feature groups are a collection of
words in the input that need not appear consecutively.

Expert Features. An expert feature is a lexical category from the Stanford Politeness
Lexicon (Danescu-Niculescu-Mizil et al., 2013). Such categories include apology words,
greetings, positive sentiment words, etc., where each category is either an indicator of
politeness or an indicator of rudeness. see Table 5 for examples of such expert features.
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Quickshift Features

Original Image

% Void 0.71018
% Cluster 0.00838
Alignment 0.68563

% Void 0.86363
% Cluster 0.04546
Alignment 0.77891

% Void 0.76542
% Cluster 0.01432
Alignment 0.72822

% Void 0.84141
% Cluster 0.01498
Alignment 0.80196

% Void 0.64885
% Cluster 0.04580
Alignment 0.57289

% Void 0.86258
% Cluster 0.00846
Alignment 0.83669

% Void 0.78151
% Cluster 0.00280
Alignment 0.77091

Figure 9: MassMaps features from quickshift with void, cluster, and expert alignment scores.

Original Image Clustering Feature1

Clustering Feature2 Clustering Feature3

Figure 10: Supernova features from clustering.

D.4 Emotion Dataset

Example Features. The emotion dataset also does not have annotated expert features,
so we use valence and arousal signal (Russell, 1980).
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Input Example Feature Expert Feature

I was running my spellchecker and
totally didn’t realize that this was a
vandalized page. Please accept my
apology. I will spellcheck a little slower
next time.

“my” First-person pronouns: I,
my, mine, etc.

“vandalized” Negative sentiment: bad,
ugly, terrorized, etc.

“apology” Apologizing: sorry, apol-
ogy, my bad, etc.

Table 5: Example features and corresponding expert features for the multilingual politeness
dataset.

Input Example Feature Expert Feature

This was potentially the most
dangerous stunt I have ever seen
someone do. One minor mistake and
you die.

“dangerous” Low Valence: death, horri-
ble, scary, etc.

“minor” Low Arousal: calm, tired,
unexciting, etc.

“stunt” High Arousal: furious, ex-
cited, surprised, etc.

Table 6: Example features and corresponding expert features for the emotion dataset.

A feature for the emotion dataset is a single word. We choose to not further break
down the words into tokens, as it is unclear what the projection of a single token onto the
valence-arousal plane would mean. A group is a collection of words in the input that need
not appear consecutively.

Expert Features. An expert feature is a word that is extremely close to an axis point on
the valence arousal plane - see Table 3 or Table 6 for examples of such expert features.

D.5 Chest X-Ray Dataset

See Figure 11.

D.6 Laparoscopic Cholecystectomy Surgery Dataset

See Figure 12.

Appendix E. Adding a New Setting.

Here, we provide a step-by-step walkthrough for adding a new setting to the FIX benchmark,
so that the process may be more accessible to future researchers.

1. Determine if the new setting has explicit or implicit expert alignment.

2. If the setting has explicit expert alignment, i.e. there are explicit annotations for expert
features available, one can use the explicit’s case’s ExpertAlign function, as shown
in Equation 3.
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3. Otherwise, if the setting has implicit expert alignment, one must define a custom expert
alignment scoring function for that setting.
Note: We suggest consulting with experts of that domain so that the criteria incorpo-
rated in the formulation of the scoring function aligns well with expert judgment.

4. Once the expert alignment scoring function is defined, we can plug this into the FIX
framework, as defined in Equations 1 and 2, to obtain the FIXScore for the setting.

5. Depending on the data modality of the setting, one can run relevant baseline methods,
including those we provide in Section 5.

Appendix F. Compute Resources

All experiments were conducted on two server machines, each with 8 NVIDIA A100 GPUs
and 8 NVIDIA A6000 GPUs, respectively.

Appendix G. Safeguards

The datasets and models that we use in this work are not high risk and are previously
open-source and publicly available. In particular, for our medical settings which would pose
the most potential safety concern, the datasets we sourced our FIX datasets from are already
open-source and consists of de-anonymized images.

Appendix H. Datasheets

We follow the documentation framework provided by Gebru et al. (2021) to create datasheets
for the FIX datasets. We address each section per dataset.

H.1 Motivation

For what purpose was the dataset created?
• Mass Maps: The original dataset, CosmoGridV1 (Kacprzak et al., 2023), was created

to help predict the initial states of the universe in cosmology.
• Supernova: The original dataset PLAsTiCC for Kaggle competition (Allam Jr et al.,

2018), was created to classify astronomical sources that vary with time into different
classes.

• Multilingual Politeness: The Multilingual Politeness dataset (Havaldar et al., 2023a)
was created to holistically explore how politeness varies across different languages.

• Emotion: The original dataset, GoEmotions (Demszky et al., 2020), was created to help
understand emotion expressed in language.

• Chest X-Ray: The NIH-Google dataset (Majkowska et al., 2020), which is a relabeling
of the NIH ChestX-ray14 dataset (Wang et al., 2017), was created to help identify the
presence of common pathologies.

• Laparoscopic Cholecystectomy Surgery: The original datasets from M2CAI16
workflow challenge (Stauder et al., 2016) and Cholec80 (Twinanda et al., 2016) were
created to help identify the safe and unsafe areas of surgery.
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Who created the dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organization)?
• Mass Maps: The original dataset CosmoGridV1 (Kacprzak et al., 2023) was created

by Janis Fluri, Tomasz Kacprzak, Aurel Schneider, Alexandre Refregier, and Joachim
Stadel at the ETH Zurich and the University of Zurich. The simulations were run at the
Swiss Supercomputing Center (CSCS) as part of the project “Measuring Dark Energy
with Deep Learning”, hosted at ETH Zurich by the IT Services Group of the Department
of Physics. We adapt the dataset and add a validation split.

• Supernova: The original dataset PLAsTiCC was created by Team et al. (2018). We
adapt the dataset, add a validation split, and balance the sets for each class.

• Multilingual Politeness: The Multilingual Politeness dataset (Havaldar et al., 2023a)
was created by Shreya Havaldar, Matthew Pressimone, Eric Wong, and Lyle Ungar at
the University of Pennsylvania.

• Emotion: The original GoEmotions (Demszky et al., 2020) dataset was created by
Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade,
and Sujith Ravi at Stanford University, Google Research and Amazon Alexa.

• Chest X-Ray: The NIH-Google dataset (Majkowska et al., 2020) was created by Anna
Majkowska, Sid Mittal, David F Steiner, Joshua J Reicher, Scott Mayer McKinney, Gavin
E Duggan, Krish Eswaran, Po-Hsuan Cameron Chen, Yun Liu, Sreenivasa Raju Kalidindi,
et al., at Google Health, Stanford Healthcare and Palo Alto Veterans Affairs, Apollo
Radiology International, and California Advanced Imaging.

• Laparoscopic Cholecystectomy Surgery: The M2CA116 workflow challenge dataset (Stauder
et al., 2016) was created by Ralf Stauder, Daniel Ostler, Michael Kranzfelder, Sebastian
Koller, Hubertus Feußner, and Nassir Navab at Technische Universität München in
Germany and Johns Hopkins University. The Cholec80 dataset (Twinanda et al., 2016)
was created by Andru P Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux,
Michel De Mathelin, and Nicolas Padoy, at ICube, University of Strasbourg, CNRS, IHU,
University Hospital of Strasbourg, IRCAD and IHU Strasbourg, France.

Who funded the creation of the dataset?
• Please refer to each setting’s respective papers for funding details.

H.2 Composition

• The answers are described in our paper. Please refer to Section 4 and Appendix A for
more details.

H.3 Collection Process

• We defer the collection process to the relevant works that created them. Please refer to
Section 4 and Appendix A for more details.

H.4 Preprocessing/cleaning/labeling

• The answers are described in our paper. Please refer to Section 4 and Appendix A for
more details.
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H.5 Uses

• The answers are described in our paper. Please refer to Section 4 and Appendix A for
more details.

H.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created?
• No. Our datasets will be managed and maintained by our research group.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
• The FIX datasets are released to the public and hosted on Huggingface (please refer to

links in Appendix A).

When will the dataset be distributed?
• The datasets have been released now, in 2024.

Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)?
• Mass Maps: The Mass Maps dataset is distributed under CC BY 4.0, following the

original dataset CosmoGridV1 (Kacprzak et al., 2023).
• Supernova: The Supernova dataset is distributed under the MIT license.
• Multilingual Politeness: The Multilingual Politeness dataset is distributed under the

CC-BY-NC license.
• Emotion: The Emotion dataset is distributed under the Apache 2.0 license.
• Chest X-Ray: The Chest X-Ray dataset is distributed under the Apache 2.0 license.
• Laparoscopic Cholecystectomy Surgery: The Laparoscopic Cholecystectomy Surgery

dataset is distributed under the CC by NC SA 4.0 license.

Appendix I. Author Statement

We bear all responsibility for any potential violation of rights, etc., and confirmation of data
licenses.
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Expert Features

Quickshift Features

Figure 11: Chest X-ray features from experts (top) and some samples from quickshift
(bottom).
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Expert Features

Quickshift Features

Figure 12: Laparoscopic Cholecystectomy features from experts (top) and some samples
from quickshift (bottom).

43


	Introduction
	Related Work
	Expert Feature Extraction
	Measuring Alignment of Extracted Features with Expert Features

	FIX Datasets
	Mass Maps Dataset
	Supernova Dataset
	Multilingual Politeness Dataset
	Emotion Dataset
	Chest X-Ray Dataset
	Laparoscopic Cholecystectomy Surgery Dataset

	Baseline Algorithms & Discussion
	Conclusion
	Broader Impact and Ethics Statement
	Dataset Details
	Mass Maps Dataset
	Supernova Dataset
	Multilingual Politeness Dataset
	Emotion Dataset
	Chest X-Ray Dataset
	Laparoscopic Cholecystectomy Surgery Dataset

	Interpretable Feature Extraction Details
	Baselines Details
	Representative Examples of Extracted Features.
	Mass Maps Dataset
	Supernova Dataset
	Multilingual Politeness Dataset
	Emotion Dataset
	Chest X-Ray Dataset
	Laparoscopic Cholecystectomy Surgery Dataset

	Adding a New Setting.
	Compute Resources
	Safeguards
	Datasheets
	Motivation
	Composition
	Collection Process
	Preprocessing/cleaning/labeling
	Uses
	Distribution

	Author Statement

