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Abstract

Recurrent neural networks (RNNs) have been shown to perform better than feedfor-
ward architectures in visual object categorization tasks, especially in challenging
conditions such as cluttered images. However, little is known about the exact
computational role of recurrent information flow in these conditions. Here we test
RNNSs trained for object categorization on the hypothesis that recurrence iteratively
aids object categorization via the communication of category-orthogonal auxiliary
variables (the location, orientation, and scale of the object). Using diagnostic linear
readouts, we find that: (a) information about auxiliary variables increases across
time in all network layers, (b) this information is indeed present in the recurrent
information flow, and (c) its manipulation significantly affects task performance.
These observations confirm the hypothesis that category-orthogonal auxiliary vari-
able information is conveyed through recurrent connectivity and is used to optimize
category inference in cluttered environments."
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Figure 1: In cluttered images, the feedforward sweep (FF) of a recurrent neural network, trained
for view-invariant object recognition, could learn to infer the location of the intact object (category-
orthogonal, auxiliary variable) in addition to its category to filter out information from the irrelevant
locations in the image (through feedback, FB), to improve the inference of the object’s category.
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1 Introduction

While feedforward neural networks (FNNs) have demonstrated far-reaching success in the task
of visual object categorization, recurrent neural networks (RNNs), inspired by the abundance and
usefulness of recurrent connectivity in the primate visual system (Kar et al.,|2019; Kietzmann et al.,
2019), have been shown to outperform them in some settings (Spoerer et al., [2020; Kubilius et al.|
2018). This advantage manifests particularly under challenging conditions such as partial object
occlusion and clutter (Spoerer et al.|| 2017 |[Ernst et al.| |2019). However, beyond the empirical finding
that recurrence can help object categorization, it remains unclear what information is conveyed by
recurrent connections and what its functional role is.

In contrast to FNNs, unit activations in RNNs are a function of both their input and their prior
activations. This enables these networks to process input in time-varying, context-dependent, and
conditional manner. The usefulness of these conditional computations has been observed, for example,
in networks processing natural language, in which contextual words, such as negations, can ‘steer’
a network’s trajectory in state space to process subsequent words differently (Maheswaranathan &
Sussillol 2020). In the primate visual cortex, recurrence is believed to underlie computations that can
benefit from contextual signals, such as assigning local features to a figure or the background based
on global shape consistency (Roelfsema et al., [ 2007; |van Bergen & Kriegeskorte, 2020).

In object categorization, contextual modulations would likely take advantage of the structure of
real-world data, similar to how recurrence can exploit the part-whole hierarchy of visual shapes in
figure-ground segmentation or the branching structure of phrases in natural language. In particular,
natural images are a function of both the categories of objects therein and other category-orthogonal
auxiliary variables, such as the objects’ location, orientation or scale. A potential role of recurrent
connectivity could be to aid the selection of information that is most relevant for object categorization,
by first extracting auxiliary variables about the object and subsequently to condition information
processing on that information. That is, such a mechanism could iteratively focus on the location and
features corresponding to the object in the image and filter out irrelevant noise such as clutter. That is,
auxiliary, category-orthogonal information would not be discarded due to it being non-diagnostic
for the category identity, but rather recurrent connectivity would use this information to guide and
improve performance of the main task of object categorization (Fig. [I)).

To test this hypothesis, we trained and tested multiple instances of an RNN on an object categorization
task while presenting target objects in cluttered environments. We used diagnostic readouts across lay-
ers and time to characterise the presence of information related to auxiliary variables, and performed
in-silico causal experiments to further elucidate their computational role in object categorization.

2 Methods

Primary details about the network architecture and the datasets are mentioned below. Please refer to
the Appendix for exhaustive details.

2.1 Network architecture

The recurrent network architecture used for training and subsequent analyses consisted of two
convolutional layers and one fully connected layer, as illustrated in Fig.[2JA. The architecture contained
both lateral and top-down recurrent connections. Top-down connections were sent from a given
layer to all the previous layers, including the input. The RNN was unrolled for 4 timesteps. The
activations of the fully-connected layers at the end of each timestep were concatenated and mapped
to the classification output with a fully-connected layer.

2.2 Combining the feedforward and recurrent information flow

We operationalize the effect of recurrent connectivity in terms of gain modulation (multiplicative
interaction). For this, we summed the incoming lateral and top-down recurrent activations, and
multiplied them, element-wise, with the feedforward activations. We refer to the summed recurrent
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Figure 2: (A) Network architecture. Our RNN instances with multiplicatively interacting feedforward
and recurrent information flows were unrolled for 4 timesteps. (B) Two example images from the
dataset with corresponding transformations along the auxiliary variables.

activations fed to a layer as the recurrent information flow to that layer. For a layer [ at timestep ¢ the
activation was given by:

yh = ReLU(Cr(yi ™)) © (1 + Crar(ylr) + . Cl(yi™y)) (1)

m>l

Recurrent information flow to layer [ at timestep ¢

where Cr, Cjqr and Cyq correspond to the feedforward, lateral and top-down transformations
corresponding to layer [ respectively. Activations at the Input layer were clipped between 0 and 1, to
ensure the modulated input images always remained in the same range across timesteps.

2.3 Dataset and task

In order to study the effects of recurrent information flow, we trained our RNNs under challenging
visual conditions. Specifically, we generated a dataset in which target objects were manipulated
according to a number of category-orthogonal variables. Object categories were taken from the
MNIST (LeCun et al., [ 1998) and Fashion-MNIST (Xiao et al.,2017) datasets - corresponding to 20
categories in total. The objects were randomly varied in location, orientation and scale. In addition,
structured clutter, i.e. randomly sampled fragments of other objects in the dataset, was added to
the images. Each of the auxiliary variables (horizontal and vertical locations, orientation and scale;
Fig.[2B) had two possible values. In the results, the measures for the vertical and horizontal locations
are averaged and summarized as one auxiliary variable (location).

The RNN was trained for 20-way classification. 5 instances of the RNN were trained from random
initializations to assess the robustness of our findings (Mehrer et al., [2020).

3 Results

The networks’ accuracy (averaged across 5 trained instances of the network) on a test set (10, 000
images) was 81.2% (chance performance for 20-way classification is 5%), implying that the network
successfully learned to classify the images in the dataset. Next, we analyzed the networks’ activations
to assess whether auxiliary variables were extracted or suppressed, and how those variables affected
information flow and network performance.
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Figure 3: (A) Auxiliary variable information is observed in all the layers of the RNN at all the
timesteps. 95% confidence intervals of the average (across 5 RNN instances) accuracies are shown.
(B) Clutter-reduction at the Input - an emergent phenomenon.

3.1 Category-orthogonal information is expressed incrementally over time in the RNN

To test for the presence of category-orthogonal information in the RNN activation patterns across
layers and timesteps, we trained linear diagnostic readouts targeting auxiliary variables (i.e. predicting
the location, scale, and orientation of the object), in addition to determining the presence of category
information in the network activations. Results are shown in Fig. BJA.

First, our analyses revealed that category information increased with both layer depth (related to
hierarchical processing) and time, indicating that the recurrent information flow carried information
relevant to categorization at each timestep. Importantly, the values of all auxiliary variables could
be decoded in all layers and at all timesteps, with increasing performance with increasing timesteps
(averaged across layers, network instances, and auxiliary variables: 65.2%, 73.0%, 82.5%, 84.9% for
timesteps 1-4). In summary, our analyses revealed that, instead of filtering out the category-orthogonal
information, the RNNs extracted auxiliary variable information incrementally across time.

Importantly, auxiliary variable information (and also category information) could also be decoded
increasingly well from the input image. This is due to the fact that the RNNs were set up to feed
back information all the way down to the input, and as a result, the corresponding feedback effects
can be easily visualised. As can be seen in Fig. 3B, incremental decoding of auxiliary variables was
accompanied by clutter-reduction over time.

3.2 Recurrent information flow includes category-orthogonal information that guides
subsequent network inference

To determine whether the auxiliary variable information was encoded in the recurrent information
flow, we decoded all variables at each timestep from recurrent information only (starting from the
second timepoint at which recurrence comes into effect). We found that the information about both
auxiliary variables and category increased over time in the recurrent information flow to all layers,
consistent with the information in the layers’ activations reported earlier (see Fig. [ST).

Does successful decoding of auxiliary variables from recurrent information flow imply functional
impact, or is it a side-effect of layer activations with no causal role in the networks’ categorization
performance? To answer this question, we conducted a perturbation analysis in which we exchanged
the feedback to a given layer and timepoint with feedback extracted from another, systematically
perturbed, image from the dataset (Fig.[dJA), i.e. feedback signalling the wrong value of the auxiliary
variable. As any manipulation may alter network performance, we furthermore included a control
condition in which we exchanged the original feedback signal with a randomly rotated version of the
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Figure 4: (A) An example perturbation: perturbing the object’s location and injecting the resulting
recurrent information flow into the network, at Convl, processing the original image at timestep
t. (B) Illustration of a control perturbation matched in magnitude to the systematic perturbation
corresponding to a specific variable (location). (C) Functional importance = (Performance of the
control perturbation - Performance of the systematic perturbation) / Original performance. (D)
Functional importance of perturbing the auxiliary variables at different layers and timesteps. Location
information is functionally important in the recurrent information flow to the Input at later stages of
processing. In addition to location, orientation, scale, and category are functionally important in the
recurrent information flow to the convolutional layers. Average data across 5 RNN instances shown
together with 95% confidence intervals.

perturbation vector (Fig.[dB corresponding to the systematic perturbation, see Appendix for details).
This control perturbation signals different, but not entirely misleading, information about the auxiliary
variables (as it does not consistently align with changes in any of the auxiliary variables).

The functional importance of a variable in the recurrent information flow was quantified as follows:
first, we contrasted the networks’ task performance following two types of recurrent information flow
perturbation: systematic and control. That is, we computed how much more a systematic perturbation
affected task accuracy compared to a control perturbation. This difference was then normalised
based on the original network performance. As a result, functional importance was computed as

(Accuracycom‘/rol - Accuracysystematic)/Accuracyoriginal (Flg )

This analysis demonstrated that location information in the recurrent information flow to the Input
was functionally important at timesteps 3 and 4 (Fig. D), which corresponded to the major part of the
clutter-reduction observed in Fig. [3B. In addition to location, information about other auxiliary object
features - orientation, scale, and category - was functionally relevant in the recurrent information



flow to the convolutional layers. Neither the auxiliary variables nor category information in the
lateral information flow to FC were functionally important (data not shown). In line with this
observation, ablating that lateral connection from the trained RNN led to no performance reduction.
In summary, auxiliary variable information in the recurrent information flows seems to causally guide
the information processing in the network to support object categorization.

4 Discussion

We investigated the role of recurrent information flow in RNNss trained for object categorization in
cluttered environments. We hypothesized that, to improve categorization performance, category-
orthogonal variables are extracted, rather than filtered out, and subsequently used by the RNN to
constrain later information processing. Consistent with this hypothesis, we found that (i) informa-
tion about all auxiliary variables was present at all network layers, (ii) this information became
more prominent across time, and (iii) perturbing this information in the recurrent information flow
significantly reduced network performance.

The task of object categorization has traditionally been cast in terms of extracting representations
invariant to all category-orthogonal variables. However, extracting auxiliary variables from visual
input might be important for natural organisms, who must also be able to keep track of the location
and other properties of objects in order to survive (for instance, where a predator is and whether it
is asleep or awake). This can explain the finding that primate inferior temporal cortex does contain
such auxiliary variable information (Hong et al., 2016). In that study, surprisingly, information
about the auxiliary variables was also found in a feedforward neural network trained exclusively for
object categorization. That finding, and our current results, echo several proposals that suggest that
optimally separating object categories might in fact require explicitly extracting auxiliary variables
that characterize the variation of the objects in their images (DiCarlo & Coxl 2007} [Patel et al., 2016).

As proposed in the introduction, once auxiliary variable information has been extracted, it can
be used to improve categorization performance by conditioning category inference on the values
of the auxiliary variables (Fig.[I). RNNs are particularly suited for this, since their architecture
provides separate channels for inference (feedforward information flow) and conditioning (recurrent
information flow) - an inductive bias that matches the proposed interaction between auxiliary variables
and category inference. This inductive bias might be the reason recurrent architectures outperform
parameter-matched feedforward architectures, particularly when the category inference is ambiguous
- such as in the presence of clutter - where iterative conditioning from the auxiliary variables might be
beneficial (Spoerer et al.l2017; Ernst et al.,2019). Additionally, fop-down recurrent connections
might be advantageous by allowing the networks to condition the inference at different hierarchical
levels. This might be particularly important in the case of cluttered images since the lower spatial
resolution of later layers might not allow the disentanglement of the target object from the clutter,
and information selection might thus be more effective at earlier layers.

Relatedly, residual blocks, a popular architectural pattern in feedforward models, might provide an
inductive bias similar to recurrence (Liao & Poggio} 2016, enabling an equivalent form of iterative
processing, which could explain their increased efficacy in categorization (compared to vanilla
feedforward models), especially for ambiguous images (Jastrzebski et al.|[2017)).

Another relevant inductive bias in our networks is the way in which feedforward and recurrent
information interact. We focused our main analyses on an RNN architecture with multiplicative
feedback interaction. In an RNN with additive interactions, we observed similar results in terms
of the decodability of auxiliary variables across time and layers (see Appendix). The usefulness of
the extraction of auxiliary variables therefore seems to be independent of the mode of interaction.
However, with the additive interactions, we could not observe similarly strong clutter reduction in
the input over time. The solution found by the multiplicative interactions for combining recurrent
and feedforward information was therefore different, aligning more closely with our intuitive notion
of information selection. An exact characterization of this distinction between the two types of
interactions is beyond the scope of this study. However, it is useful to note that multiplicative
interactions have been proposed to be a useful inductive bias for conditional computations (Jayakumar
et al.,|2020)), so characterizing their unique role in how information can be conditioned with auxiliary
variables for object categorization, is a promising avenue for future research.
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A Appendix

A.1 Dataset generation

Each image in our dataset was 100 x 100 pixels in size. Each image contained one intact target object
(originally 28 x 28 px), rotated and scaled. 7 other scrambled objects comprised the clutter, each
of which were also rotated and scaled, then divided into 9 square blocks, and permuted randomly.
The image was divided into four quadrants, corresponding to the two horizontal and two vertical
locations. Each quadrant contained two objects - one overlaid on top of the other. One of the quadrants
contained the intact object which was always overlaid on the scrambled object, to ensure it wouldn’t
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Figure S1: Auxiliary variable and category information is observed in all recurrent information flow,
targeting all layers at all timesteps. To assess if the auxiliary variable and category information
observed influences the subsequent feedforward sweep, the perturbation analysis shown in Fig.[d] was
performed. 95% confidence intervals of the average (across 5 RNN instances) accuracies are shown.

be completely occluded while still being challenging to parse from the background. Both target and
scrambled objects could be drawn with equal probability from either the MNIST or Fashion-MNIST
dataset.

The horizontal and vertical location of the target object was chosen randomly for each image, meaning
that the object would be located at the center of one of the four quadrants, jittered both horizontally
and vertically between —2.5 and 2.5 pixels (uniform distribution). The orientation of the objects (both
target and scrambled) was randomly chosen to be either 30 degrees clockwise or counterclockwise,
with a uniformly distributed jitter of 45 pixels. Scaling was either 0.9 or 1.5 times the original object
size, with a jitter of £0.1.

The split between train, validation and test sets was done by randomly drawing images only from
the corresponding splits of the original datasets. The datasets provided the 110, 000 possible source
images for the training set (MNIST and Fashion-MNIST combined), 10, 000 for the validation set
and 20, 000 for the test set. Training images were generated on the fly for each training batch. The
test set contained 10, 000 images.

A.2 Architecture details

The RNN contained two convolutional layers, both with 5 x 5 kernels, stride of 1, no padding, and
with 8 and 16 channels respectively, and one fully-connected layer with 128 units. 3 x 3 max pooling
was applied after each convolutional layer. The lateral recurrent connections from each convolutional
layer to itself were convolutional layers with the same number of input and output channels (8 and
16), kernel size 5 x 5, stride 1 and padding 2. The lateral connection for the fully connected layer
was a fully connected layer with 128 units. The top-down connections from convolutional layers to
the input and other convolutional layers were transposed convolutional layers, upsampling to the size
of the target feature map: Convl to Input had kernel size 7 x 7, stride 3, and no padding; Conv2 to
Input had kernel size 20 x 20 stride 10 and no padding; Conv2 to Conv1 had kernel size 16 x 16,
stride 10 and no padding. Top-down connections from the fully-connected layer were fully-connected
layers whose outputs were restructured to match the convolutional layers.

A.3 Training the RNN

The network was trained for 20-way classification using a cross-entropy loss between the network’s
output and the correct object category. The training images were generated on the fly. We used the
Adam optimizer for training, with a batch size of 32, and learning rate of 10~ (after manual tuning
to get the best validation accuracy). The network was trained for 300, 000 iterations. Before training,
the weights were initialized using Xavier initialization and the biases were initialized as zeros.

A4 Decoding approach

To measure the amount of explicit information about a given variable present in the activations, at
each layer and at each timestep, we trained and tested a linear classifier (a support vector machine,
SVM) to classify the correct value of that variable. We used the Python scikit-learn function



svm.LinearSVC(), with default parameters, which is able to handle binary as well as multi-class
classification, which was needed to decode category. Each classifier was trained with 800 images and
tested on 200 images (all randomly drawn from the test set). This procedure was repeated 10 times
(accuracies averaged), for each of the 5 RNN instances.

A.5 Perturbation analysis

To generate the perturbed feedback to the network at a given timestep ¢ and layer /, we ran two
copies of the network. One was fed the original input image, and the other the same image, altered
in one particular variable (auxiliary or category). For example, vertical location could be changed
from top to bottom (Fig. @]A). From this network we extracted the perturbed recurrent information
flow to [ at ¢, and then fed this recurrent information flow, at timestep ¢, to layer ! of the network
which had received the original image, thus combining the activations for the original image with the
recurrent information flow resulting from the perturbed image. We then compared this network’s
systematically perturbed classification accuracy to the network’s accuracy for the same image without
any perturbations.

To control for the unique role of the variables in determining network performance, we also measured
the accuracy of a network that received the same perturbed recurrent information flow, but with the
elements of the recurrent information flow vector randomly permuted (control recurrent information
flow). This corresponds to a recurrent information flow that differs from the original one by the same
amount (vector length) as the relevant perturbed recurrent information flow, but along a direction that,
on average, does not align with any of the relevant variables (Fig. dB).

The functional importance score (£22roL= sysii;’;‘;:{flp criurbation gig @) for each variable manipu-

lation was computed as the average across 1000 images (randomly drawn from the test set). This
procedure was repeated 5 times (scores averaged), for each of the 5 RNN instances.

In the case of category, two types of perturbations were analyzed. Either the category of the intact
object was changed within its dataset (within-domain perturbation, e.g. 3 changed to a 4, or ’trouser’
changed to *dress’) or the category was changed across datasets (between-domain perturbation, e.g. 3
changed to a "trouser’). In the results shown in the main text and in Fig.[S2[C, the averaged functional
importance scores of these two types of category perturbations were shown. For both the additive
and multiplicative interactions, the functional importance of the domain information of the category
(indexed by the between-domain perturbation) was equivalent or higher than the within-domain
information of the object category (which was functionally important at all the layers and timesteps
where domain information was functionally relevant).

A.6 Results for additive recurrent interactions

The additive interactions between the feedforward and recurrent information flow were implemented
as follows: for a layer [ at timestep ¢ the activation was given by:

yi = ReLU(Cyrp(yi™") + Clar(yi—1) + Z td (V1)) 2

m>1

Recurrent information flow to layer [ at timestep ¢

where Cyr, Ciqr and Cyq correspond to the feedforward, lateral and top-down transformations
corresponding to layer [ respectively. All the other details of the network architecture and training
were identical to the network with multiplicative interactions.

The profile of results for the network with additive recurrent interactions had both similarities and
differences to the multiplicative ones. The decoding of variables at all layers and timesteps showed
a similar profile (Fig.[S2JA), but in visualizing the modulation at the input image level, no clutter
reduction comparable to that in the multiplicative network was visible (Fig.[S2B). Consistent with
this observation, no variable was found to be functionally important in the recurrent information flow
to the input, while other layers showed a pattern of variable importance similar to that of the network
with multiplicative recurrent interactions (Fig.[S2|C).
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(A) Representation of auxiliary variables: Decoding from modulated activations
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Figure S2: (A) Auxiliary variable information in all layers of the network with additive recurrent
interactions, at all timesteps. 95% confidence intervals of the average (across 5 RNN instances)
accuracies are shown. (B) No clutter reduction is observed at the Input. (C) Functional importance of
the variables at each layer and timestep. Consistent with the lack of clutter reduction, no variable was
found to be functionally important in the recurrent information flow to the Input.
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Multiplicative interaction
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Figure S3: (A) More examples of input-level modulation for the RNN with multiplicative interactions.
(B) Examples for the RNN with additive interactions. Both the RNNs with multiplicative or additive
interactions classified both these images correctly, but with different strategies.
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