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Abstract

Correspondences in point cloud registration are prone to outliers, significantly
reducing registration accuracy and highlighting the need for precise inlier iden-
tification. In this paper, we propose a robust inlier identification algorithm for
point cloud registration by reformulating the conventional registration problem
as an alignment error {y-minimization problem. The /y-minimization problem is
formulated for each local set, where those local sets are built on a compatibility
graph of input correspondences. To resolve the ¢p-minimization, we develop a
novel two-stage decoupling strategy, which first decouples the alignment error into
a rotation fitting error and a translation fitting error. Second, null-space matrices are
employed to decouple inlier identification from the estimation of rotation and trans-
lation respectively, thereby applying Bayes Theorem to £p-minimization problems
and solving for fitting errors. Correspondences with the smallest errors are identi-
fied as inliers to generate a transformation hypothesis for each local set. The best
hypothesis is selected to perform registration. We demonstrate that the proposed
inlier identification algorithm is robust under high outlier ratios and noise through
experiments. Extensive results on the KITTI, 3DMatch, and 3DLoMatch datasets
demonstrate that our method achieves state-of-the-art performance compared to
both traditional and learning-based methods in various indoor and outdoor scenes.

1 Introduction

Point cloud registration is a fundamental task in vision and robotics, playing an important role in
many applications such as 3D perception and reconstruction, simultaneous localization and mapping
(SLAM), and autonomous driving [38| 45, [33]]. It aims to align two partially overlapping point
clouds by estimating a rigid transformation between them. A common registration pipeline involves
extracting features through 3D local descriptors, establishing correspondences based on feature
matching, and estimating the rigid transformation [38|41]]. However, due to the less effectiveness of
3D local descriptors in feature extraction [39], correspondences established through feature matching
are prone to outliers, resulting in inaccurate registration.

Recent works in point could registration with outliers can generally be categorized into three groups:
learning-based, geometry-only, and optimization-based methods. Learning-based methods [[1} 18} [19]
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use networks to estimate confidence for correspondences and select those with high confidence for
transformation estimation. These networks, however, are typically trained on specific scenarios,
leading to limited generalization for outlier removal across various datasets [45]. Geometry-only
methods [6] 43]], such as SC2-PCR [6] and MAC [43], filter out outliers using geometric relations
between correspondences. Such methods [6l 45] rely on effective geometric features and may not
produce acceptable inlier ratios in complex scenes or noisy environments [[18]].

On the other hand, optimization-based methods [4}, 15} 18, 140} 46| solve the registration problem by
formulating some non-convex objectives [[18]. The Branch-and-Bound (BnB) algorithm is widely
used to solve non-convex objectives [4, |5 40] due to its ability to guarantee global optimality.
However, the efficiency of BnB is affected by the dimensions of search space and the bounds on
objectives [[18], which may lead to worst-case exponential time [[18,|39]. An alternative approach is
to relax the non-convex registration problem into a convex semidefinite program [3|39]. However,
semidefinite relaxation is computationally expensive and may introduce outliers or noise, leading to
poor estimation results. Therefore, achieving robust and efficient registration in scenarios with high
outlier ratios and noise remains a challenging problem.

To address these challenges, we propose a robust inlier identification algorithm for point cloud
registration, which reformulates the conventional registration problem as an alignment error ¢g-
minimization problem. More specifically, we define the alignment error and formulate an /-
minimization problem for each local set, where these sets are built from the compatibility graph of
input correspondences. To resolve the non-convex £p-minimization problem effectively, we design a
two-stage decoupling strategy. First, the alignment error is decoupled into a rotation fitting error and
a translation fitting error by calculating the relative positions between points. This decoupling results
in two fitting error £y-minimization problems with respect to rotation and translation, respectively.
Second, null-spaces are introduced to remove rotation or translation from the constraints of fitting
error {yp-minimization problems, thereby decoupling inlier identification from the estimation of
rotation or translation. The final decoupled ¢y-minimization problems are solved for fitting errors
through Bayes Theorem. For each local set, correspondences with the smallest errors are identified as
inliers to generate a transformation hypothesis. The best hypothesis is selected to perform registration.

To the best of our knowledge, we are the first to propose a /g-norm based approach to solve the
registration problem. We experimentally demonstrate that the proposed algorithm is robust to high
outlier ratios and noise, and is efficient with varying numbers of correspondences. Extensive results
on the KITTI, 3DMatch, and 3DLoMatch datasets also demonstrate that our method achieves the
highest registration accuracy while being competitive in time efficiency compared to state-of-the-art
methods. In summary, our main contributions are as follows:

e A novel robust inlier identification algorithm is proposed by reformulating the conventional
registration as an alignment error £y-minimization problem, which can effectively identify
inliers and perform accurate registration under high outlier ratios and noise.

e A two-stage decoupling strategy is designed for the proposed ¢y-minimization problem.
This strategy first decouples rotation and translation, and then decouples inlier identification
from rotation or translation estimation.

e A robust Bayesian-based approach is proposed to solve the decoupled ¢y-minimization
problem and identify inliers, enhancing the algorithm’s performance on noisy data.

2 Related Work

3D local descriptors. Early handcrafted descriptors like PFH [27] and FPFH [26] mainly represent
local features by encoding geometric histograms [38]]. More recent works attempt to encode 3D local
descriptors in a data-driven way. FCGF [9] extracts features through a fully convolutional neural
network. Predator [[17] applies an attention mechanism to extract salient points in overlapping regions
of point clouds. 3DMatch [44]] and 3DSmoothNet [14] build a Siamese deep learning architecture
for extracting local information. Although these feature descriptors achieve significant performance
improvements, it is difficult to establish correspondences that are completely free of outliers [6].
Therefore, robust registration is very important for accurate registration.

Learning-based methods. Inspired by the success of deep learning in 3D perception [34} 132} 137 [29],
recent works have adopted learning networks for point cloud registration [1} 8, [19} 20| 44]. Deep



global registration (DGR)[8] utilizes sparse convolution and point-by-point MLPs to classify input
correspondences. PointDSCJ[1]] explores a spatial consistency-guided non-local inlier classifier
to remove outliers. VBReg [19] introduces a variational non-local network for outlier rejection
and learns features with Bayesian-driven long-range contextual dependencies. Despite significant
advancements in learning-based registration, these methods are designed for specific scenarios and
lack generalization across different datasets, which limits their applicability.

Geometry-only and optimization-based methods. Traditional methods have shown great value
in practical applications because they are generalized and require no training. They are primarily
classified into two categories: geometry-only and optimization-based methods. Geometry-only meth-
ods [16, 45 [12] rely on geometric relations and graph-theory frameworks to estimate transformations.
SC2-PCR [6] uses a second order spatial compatibility measure to compute the similarity between
correspondences. MAC [45]] loosens the maximum clique constraint to mine more local consensus
information in a graph. However, these methods can not guarantee global optimality and may fail
under high outlier ratios or noise. Optimization-based methods [46} |39} 15, [19} 35]] aim to estimate
optimal solutions (in the maximum likelihood sense) for transformations [39]. FGR [46] employs
the Geman-McClure cost function and graduated non-convexity to solve the resulting non-convex
optimization. Although it is fast and simple, it performs poorly with high outlier ratios [39, i45]].
There are also some methods [4} 15, 40| relying on the branch-and-bound (BnB) algorithm for global
registration. However, they suffer from high computational complexity and may require exponential
time in the worst case [45]. Therefore, achieving robust and efficient registration in scenarios with
high outlier ratios and noise remains challenging.

3 Methods

3.1 Conventional Point Cloud Registration Problem Statement

Given the source point cloud P = {p; € R®|i=1,...,N} and target point cloud Q =
{qi ER3|i=1,....M }, the objective of point cloud registration is to align these two point
clouds by estimating an optimal rigid transformation T = {R, t}, where R € SO(3) denotes the
rotation matrix and t € R? denotes the translation vector. The transformation is then solved by the
following registration problem [} 25]:

: 2
min > [Rp;+t - aill; (1)

(pz 7qi)ec
where C = {c; | i = 1,..., N.} is the initial correspondence set. Each correspondence ¢; = (p;, q;)

is formed through feature matching, using descriptors extracted from both point clouds.

3.2 Inlier Identification via /y-minimization

However, the initial correspondence set C contains a large proportion of outliers due to incorrect
feature matching, leading to inaccurate registration. We aim to identify inliers within C by solving the
proposed alignment error £y-minimization problem. The pipeline of our method is shown in Fig.

For the input correspondences, we construct a global compatibility graph using the second-order
compatibility measure [6], where correspondences are represented as nodes and edges link geometri-
cally compatible nodes [45]]. Based on the compatibility scores, we select N7 correspondences as
reliable seeds, denoted as C; = {c; | ¢ = 1,..., N1}. For each seed, we identify Ny compatible
correspondences to form a local set [1]] (refer to Appendix for details). The alignment error
£y-minimization problem is formulated for each local set. Specifically, for correspondences in the
k-th local set {ck, = (Pk,,dk;) | ¢ =1,..., Na}, the £o-minimization problem is defined as follows:

O} = argmin || Oy, ,
" 2
subject to: Oy, = Qi — PRy, — t,17 — &,

where Py, = {p} € R™V2*3 and Qi = {qx} € R"2*3 denote the source and target points in the
k-th local set. Oy represents the introduced alignment error, Ej, represents the Gaussian noise, and
1 is a column vector of ones, ensuring the translation vector t is applied to each point in Pj. The
alignment error Oy, also serves as an inlier indicator. If the i-th correspondence cx, = (P, Qx; ) is
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Figure 1: Pipeline of our method. 1. Define alignment errors and formulate the £y-minimization
problem for each local set. 2. Decouple alignment error into rotation and translation fitting errors
and decouple inlier identification from the estimation of rotation or translation through the Bayes
Theorem. 3. Select the best hypothesis for registration.

an inlier (i.e., it satisfies |Rpy, + t — q,| < &, with the Gaussian noise &, ), oy, should ideally be
a zero vector. Consequently, the indices of zero vectors in the solution O of Eq. (@) correspond to
the inlier indices in the k-th set. The formulations for other local sets are defined in a similar way.

A key insight into our approach is the use of £y, norm to optimize alignment errors. This is based
on the principle that only inliers can be fitted by the same transformation [5]], and the optimal
transformation is estimated as the one that fits the largest number of inlier correspondences. Therefore,
our optimization objective is to maximize the count of zero vectors in the alignment error. Compared
to the common formulations for point cloud registration [[18], such as consensus maximization [3 [7]
and truncated least-squares [39], our formulation reduces the impact of outliers through ¢y, norm.
The focus of this norm is to minimize the number of non-zero vectors rather than their magnitudes,
thereby enhancing the robustness of our method to outliers and noise.

3.3 Two-stage Decoupling Strategy

To resolve the proposed ¢p-minimization problem, we design a two-stage decoupling strategy. The
solution process is described for the k-th local set and similarly applied to other local sets.

Decoupling the alignment error into rotation and translation fitting errors. Simultaneously
estimating the rigid transformation with 6 degrees of freedom (DOF) is time-consuming due to
the high-dimensional parameter space [15, 39]]. To effectively resolve the {y-minimization problem
proposed in Eq. () for each local set, we decouple the 6-DOF transformation into 3-DOF rotation
and 3-DOF translation by computing the relative positions between point pairs. For any two given
points pg, and qk; in the k-th local set, the translation vector t;, cancels out in the subtraction [39]:

ak;, — qk, = Ry (P, — Pri) + (0, — 0k,) + (&, — &) - 3)

Based on Eq. (3)), we define Qk,; = dk; — 9k; and Pg,; = Pk; — Pk, as the relative p9siti0ns. Oy, =
oy, — O, represents the rotation fitting error to minimize, unaffected by translation. &y, = &k, — &k,
is the Gaussian noise. If both the i-th and j-th correspondences are inliers, O, ; should ideally be a
zero vector. Therefore, the rotation fitting error oy, for the correspondence pair cx, = (P, qx;)
and ci; = (Pk,,qx,) is formulated as:



Having decoupled rotation from translation, we can now formulate the £,-minimization problem for
the rotation fitting error Oy, in the k-th local set, focusing on the 3-DOF rotation Ry:

O}, = arg H_lin 10kl )
subject to: O, = Q, — PRy, — By,

where Qy, € RV*3 and P, € RV *3 are relative positions between all point pairs in Qj and Py,
respectively. Here, N = w is the number of relative point pairs in a local set. The Gaussian
noise Ey, is modeled as N(0, AgI), where \g indicates the variance.

Once obtaining the rotation estimate R, by solving Eq. (3), we can substitute it back into Eq. ()

to estimate the translation. The ¢p-minimization problem for the translation fitting error O is
formulated as follows, focusing on the 3-DOF translation tg:

O; = argmin||Oy ||, ,
O (6)
subject to: 0, = Qi — PR} — t,17 — 5,

where Ey; is modeled as A/(0, \;I), where )\; indicates the variance of Gaussian noise. The translation
t; is estimated by solving Eq. (6).

Decoupling rotation estimation from ¢)-minimization. Optimizing the estimation of rotation while
simultaneously identifying inliers is a chicken-and-egg problem, because reliable identification of
inliers depends on the precise rotation estimation (as shown in Eq. (8))). To address this, we further
decouple inlier identification from the estimation of rotation. The inliers that can be fitted by the
same rotation are identified through Bayes Theorem and used for the subsequent rotation estimation.

We incorporate a robust Bayesian approach to solve Eq. (3)), improving the algorithm’s robustness to
noisy data [42]. The key step is to define a null-space matrix ®,, whose rows form a basis for the left
null space of Py,. By left-multiplying each term in the constraint of Eq. () with ®, the component
associated with the rotation R, is eliminated:

0,0, = 0,Q;, — 0,5, @)

where ©, 0}, represents the transformed rotation fitting error. Given that =, is Gaussian noise and
the left-multiplication by @y, is a linear operation, ®; =}, also follows a Gaussian distribution with a
covariance matrix of Ag®y, @{. The likelihood is formulated as:

P(Qi | Or) = N(©404, AgILy) o exp [_2)\3 H 9:01) L (Qu - 6’“0’“)”1 ’
3

where Q;, = ©;,Qy, and ©,07 = II,. Based on the Bayes Theorem and Maximum A Posteriori
(MAP) estimate, the unconstrained optimization for rotation fitting error y-minimization in Eq. (3)
is redefined as:

= — — 2 —
min — 5 H(Qk - 00,) ;' (Q) — (")kok)HF + Ar HOkHZ ; )
k

where \p is the regularization parameter that trades off the fitting error and model complexity.
However, since the formulation incorporating the £y norm is known to be computationally expensive,
we use the following convex relaxation:

2 _
min 2 [|(Qx ~ ©0) T Qi ~ ©,:04) |+ An 0K (10)

Oy

where || - || is the Frobenius norm (F' norm), which is both differentiable and convex. To find the
optimal solution, we set the gradient of the objective function with respect to Oy, to zero:

—OTM; {(Q) — ©,01) + 2230, = 0. (1)

The optimal explicit solution O} can be directly calculated as:

O; = (O], '©;, + 2\xI); 'OF I, 'Q; . (12)



Based on O}, we identify top-Kr correspondences with minimal rotation fitting error for accurate
rotation estimation. These correspondences, indexed by Zp, provide the basis for estimating rotation
from the SVD decomposition of the matrix H = UXV7T € R3*3 [23]]. For the k-th local set, the
rotation hypothesis is estimated as [} 2]]:

H= Y PyQf, Rj=Udiag(1,1,det(UV"))V,
(i,7)€Zr

(13)

Decoupling translation estimation from ¢/;-minimization. Employing a strategy similar to that
used for rotation estimation, we utilize a null-space matrix @, that satisfies @;1 = 0 to isolate the
translation. By applying ®, to the transpose of the constraint in Eq. (6), we eliminate the components
associated with translation t;:

0,0} = 0,(Q, — P;R;)” — ©,=] . (14)

Incorporating the Bayes Theorem, we formulate the following convex relaxation for the unconstrained
optimization problem:
. AT\T 17—1 AT (|2 A |17
min 5 H(Xk — ©,:0;) I (Xy — ©,.0; )H + A HOkH 7 (15)
o, 2 F F

where X, = @k(Qz - (PkR,”;)T) and IT;, = @k(-)f . The explicit solution C)Z is obtained by
solving the gradient of the objective function with respect to Oy:

0; = (2nI+efm e, el 'X,)T, (16)

where I denotes the identity matrix. Using o, top-K; correspondences with the smallest errors
are identified as inliers for translation estimation. Their index set is denoted as Z;. The translation
hypothesis t;; for the k-th local set is estimated based on these inliers (pg,, qx; ), with (i, j) € Z;.

3.4 Hypothesis Selection

Finally, we evaluate and select the best estimation from the transformation hypotheses computed for
all local sets:

N

(R*,t") = arg max > " [|Ryp: + t; — aill, < 7] . (17)
R =1

where N, is the number of input initial correspondences and 7 is a predefined error threshold. For each

transformation hypothesis, we quantify its effectiveness by counting the number of correspondences

that satisfy the constraints within 7. The transformation with the highest inlier count is selected for

registration.

4 Experiments

4.1 Datasets and Experimental Setup

Synthetic dataset. We evaluate the accuracy, robustness, and efficiency of our algorithm using the
Bunny point cloud from the Stanford 3D Scan Repository [10]. Similar to [5,[39], the Bunny model
is downsampled to N,. points and resized to fit a [0, 1]* cube, creating the source point cloud P. To
generate the target point cloud Q, a random transformation (R, t) is applied to P and then Gaussian
noise €; ~ N'(0,0%I3) is added. A pair of the original and moved points defines an inlier. The inliers
are contaminated with outliers generated by random transformations.

Outdoor scenes. For evaluations on outdoor scenes, we conduct experiments on the KITTI
dataset [13]. Following [3} 6], we use 555 pairs of point clouds from scenes 8 to 10 for test-
ing. We construct a 30cm voxel grid to downsample point clouds and form correspondences using
handcrafted FPFH [26] and learned FCGF [9]] descriptors.

Indoor scenes. We conduct experiments on the 3DMatch dataset [44]] to evaluate performance on
indoor scenes. Following [3}16}45], we use RGB-D scans from 8 real indoor scenes for testing. The
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Figure 2: Robustness to outliers. The first row compares the rotation and translation errors as the
outlier ratio increases from 10% to 90% on the Bunny dataset [10]], while the second row focuses
on the scenarios of extreme outliers, i.e., the outlier ratio varies from 91% to 99%. Our method
demonstrates to be more robust to outliers compared to other methods [4} [12} 139, 1451 46].
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Figure 3: Robustness to noise. Comparison results with [4} [12][39] 45| 146]] as the noise standard
deviation increases from 0.01 to 0.09 on the Bunny dataset [10].

point clouds are downsampled using a 5cm voxel grid. We use the hand-crafted FPFH [26] along
with two learned descriptors, FCGF [26] and 3DSmoothNet [[14], for feature extraction. To evaluate
our method in more challenging scenarios, we conduct experiments on 3DLoMatch [17] (overlap
rate between scenes < 30%). Following [5}[19], the Predator descriptor [17] is used in 3DLoMatch.

Evaluation criteria. Following [5, [39]], we use the rotation error (RE), translation error (TE), and
registration recall (RR) as evaluation metrics. The registration is considered successful when the
RE < 15°, TE < 30cm on 3DMatch & 3DLoMatch datasets, and RE < 5°, TE < 60cm on KITTI
dataset. Average RE and TE are computed only on the successfully registered pairs [5. 6].

Implementation details. We implement our method in PyTorch [24]. All the experiments are
conducted on a machine with an Intel Xeon Gold 6134 CPU and a single NVIDIA GTX3090.

4.2 Evaluation on Synthetic Dataset

Robustness to outliers. We evaluate the robustness to outliers by increasing the outlier ratio from
10% to 90%. The Bunny point cloud is downsampled to N, = 500. We add zero-mean Gaussian
noise with a standard deviation set to ¢ = 0.01. For each outlier ratio, we conduct 50 independent
trials and report the average rotation error (RE) and translation error (TE). We compare our method
with state-of-the-art traditional methods [4} [12] 39} 45.46]. As shown in the first row of Fig. E], the
rotation and translation errors of FGR [46]] increase sharply as the proportion of outliers increases.
RANSAC [12] and GORE [4] start failing at an outlier ratio of 60%. Our method remains robust
to outliers up to 90% and produces more accurate estimates than all other methods. We further
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Table 1: Comparison results on KITTI dataset [13]] using the FPFH [26]] and FCGF [9] descriptors.

Numb,

FPFH FCGF Time(s)

RR(%)t REC)| TE(cm)| | RR(%)? RE(C)] TE(cm)]
i) Traditional
FGR [46] 5.23 0.86 43.84 89.54 0.46 25.72 3.88
RANSAC [12] 74.41 1.55 30.20 80.36 0.73 26.79 5.43
TEASER++ [39] 91.17 1.03 17.98 95.51 0.33 22.38 0.03
SC2-PCR [6] 99.46 0.35 7.87 98.02 0.33 20.69 0.31
MAC [435] 97.66 0.41 8.61 97.84 0.34 19.34 3.29
TR-DE [5]] 96.76 0.90 15.63 98.20 0.38 18.00 -
TEAR [18] 99.10 0.39 8.62 - - - -
ii) Deep learned
DGR [8]] 77.12 1.64 33.10 96.90 0.34 21.70 2.29
PointDSC [1]] 98.92 0.38 8.35 97.84 0.33 20.32 0.45
VBReg [19] 98.92 0.45 8.41 98.02 0.32 20.91 0.24
Ours 99.56 0.34 7.85 98.20 0.32 20.73 0.54

compare the performance of different methods under extreme outlier ratios, i.e., when the outlier
ratio increases from 91% to 99%. The second row of Fig. [2| shows that even with outlier ratios as
high as 99%, our method continues to perform well, consistently producing lower transformation
errors than other methods.

Robustness to noise. We further evaluate the robustness against Gaussian noise with different
variances. As the noise standard deviation increases from o0 = 0.01 to ¢ = 0.1, the geometric
structure of the Bunny model is completely destroyed [39] (refer to Appendix [A.5)). Fig.[3|shows
the comparison results as o increases from 0.01 to 0.09. When the noise variance reaches 0.03, the
translation errors of geometric-only method MAC [45]] significantly increase. Both FGR [46] and
RANSAC [[12] show large rotation errors when o increases to 0.05. In contrast, our method achieves
the lowest rotation and translation errors under high noise, demonstrating its robustness to noise.

Efficiency and accuracy. We increase the number of correspondences N, from 250 to 5000 to
compare efficiency and accuracy. We set the noise standard deviation ¢ to 0.01 and the outlier
ratio to 50%. The comparison results are shown in Fig. @(a). As the number of correspondences
increases, the running time of GORE [4] and TEASER++ [39] increases significantly. Notably,
when N, grows to 2500, the running time of GORE is about 10* times longer than that of our
method. Our method solves the /p-minimization problems with explicit solutions, significantly
enhancing efficiency through parallel matrix computations and GPU execution. The curves of FGR,
RANSAC, MAC, and our method in Fig.[(a) are flat and difficult to visually distinguish, indicating
the efficiency of these methods. However, as shown in Appendix [A.6] our method outperforms
FGR [46], RANSAC [12], and MAC [45] in registration accuracy. Therefore, our inlier identification
algorithm via /p-minimization is efficient while maintaining high accuracy.

Effectiveness of the two-stage decoupling strategy. We evaluate the effectiveness of the two-
stage decoupling strategy (TDS) by formulating the ¢y-minimization problem directly on the Bunny
data instead of local sets and estimating the final rotation and translation. Specifically, we set
N, = 100 and o = 0.01. As shown in Fig. @[b), we compare the TDS with optimization-based
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Figure 5: Qualitative comparisons with other methods. Qualitative comparisons on the 3DMatch
(the first row) and 3DLoMatch (the second row) datasets.

Table 2: Comparisons results on 3DMatch [44] using FPFH, FCGF, and 3DSmoothNet descriptors.

FPFH FCGF 3DSmoothNet Time(s)

RR(%)! REC). TE(m), | RR(%)t REC), TE(em)| | RR(%)? RE(C)| TE(cm))
i) Traditional
FGR [46] 40.91 4.96 10.25 78.93 2.90 8.41 73.26 2.51 7.45 0.89
RANSAC 66.10 3.95 11.03 91.44 2.69 8.38 92.30 2.59 7.91 2.86
TEASER++ [39] 75.48 2.48 7.31 85.71 2.73 8.66 92.05 2.23 6.62 0.03
SC2-PCR [6] 83.90 2.12 6.69 93.16 2.06 6.53 94.82 1.76 5.98 0.12
MAC [43] 83.90 2.11 6.80 93.72 2.04 6.54 94.57 2.21 6.52 5.54
TR-DE [3] - - - - - - 91.37 2.71 7.62 -
TEAR - - - - - - 94.52 2.06 6.55
ii) Deep learned
DGR [8] 32.84 2.45 7.53 88.85 2.28 7.02 - - - 1.53
PointDSC 72.95 2.18 6.45 91.87 2.10 6.54 93.65 2.17 6.75 0.10
VBReg [19] 82.57 2.14 6.77 93.53 2.04 6.49 37.09 6.15 15.65 0.20
Ours 83.92 2.12 6.64 93.28 2.04 6.48 95.07 1.75 5.97 0.36

methods [39,146]] at an outlier ratio of 90%. Our TDS achieves the highest registration accuracy,
demonstrating its inlier identification capability. Additional competitive results as the outlier ratio
increases from 0% to 90% are provided in Appendix [A.7]

4.3 Evaluation on Outdoor Scenes

To evaluate our algorithm on real outdoor scenes, we conduct experiments on the KITTI dataset [13].
The comparison results with state-of-the-art traditional [3] 6] 18] 43| [46]) and learning-
based [ 8, [19] methods are reported in Table[I} We first use the FPFH [26] descriptor to generate
initial correspondences. As shown in the left column of Table 2] our method outperforms traditional
and learning-based methods on all metrics. For the most important criterion of registration recall (RR),
our method improves by about 2% over the nearest competitor MAC [45]]. Following [6]], the average
RE and TE are only calculated on successfully registered pairs, which makes methods with high
registration recall more likely to have larger average errors. Nonetheless, our method still achieves the
best results on RE and TE. Besides, we report the comparison results with the FCGF [9] descriptor
in the right column of Table 2] Our method achieves the highest RR and the lowest RE due to its
effective inlier identification algorithm. The superior performance demonstrates the ability of our
method to align sparse and non-uniformly distributed data in outdoor scenes. In addition to its high
accuracy, our method also achieves comparable efficiency, making it highly competitive for practical
applications. The visualizations of registration results on KITTI are provided in Appendix [A.12]

4.4 Evaluation on Indoor Scenes

We further conduct experiments on the 3DMatch [44] and 3DLoMatch [17] datasets to evaluate the
performance in real indoor scenes. The comparison results are reported in Table 2] and Table[3]

Combined with FPFH, FCGF, and 3DSmoothNet descriptors. As shown in the left column of
Table[2] compared to both traditional and learning-based methods, our method achieves the highest
RR with the handcrafted FPFH [26] descriptor. The middle column of Table[2]reports the comparison
results with the learned FCGF [9] descriptor. Our method achieves the lowest RE and TE. Compared
to SC2-PCR [6]], our method improves the RR, RE, and TE by 0.13%, 0.97%, and 0.77% respectively,



True: 45 False: 371 True: 326 False: 90 True: 358 False: 58 True: 385 False: 31

,‘ﬁﬁ&

Alignment TEASET++ SCZ2-PCR MAC Ours

Figure 6: Comparison results on output inlier ratio. We compare the predicted inlier counts of
correct and incorrect correspondences in 3DLoMatch [17]. The first column provides the ground
truth alignment, which shows that overlap is very limited. The significantly larger inlier ratio can be
observed from the incorrect (red lines) and correct (green lines) correspondences.

which benefit from our £y-minimization formulation for inlier identification. Since TR-DE [3]] and
TEAR (18] have not made their code or results for FPFH and FCGF publicly available, their results
are excluded in the left and middle columns of Table 2] Following [18], we also compare the
registration accuracy using the learned 3DSmoothNet [[14] to extract features. The results in the right
column of Table 2] show that our method outperforms all other methods across all evaluation metrics,
demonstrating the robustness of our method to different local descriptors. We show the results of
qualitative comparisons in Fig.[5]and Appendix[A.12] Methods such as MAC may fail in scenes with
ambiguous features or limited overlap. Our algorithm still achieves satisfactory alignment and is
close to the ground truth.

Robust to lower overlap ratios. Fur- Taple 3: Registration rate on the 3DLoMatch dataset [17]
thermore, we report results for amore  ith different number of correspondences.

challenging dataset: 3DLoMatch [17] [ 5000 [ 2500 [ 1000 [ 500 [ 250
(overlap rate < 30%). Following Predator
[19], we use the Predator descrip- "~ FGR [46] 364 | 38.2 | 30.7 | 39.6 | 38.0

tor to generate the initial correspon- RANSAC [12] 62.3 | 62.8 | 62.4 | 61.5 | 58.2
dences. We compare the registra- TEASER++ [39] | 62.9 | 62.6 | 61.9 | 59.0 | 56.7

tion recall (RR) under different num- SC?-PCR [6] 68.9 | 68.4 | 68.7 | 67.1 | 64.9
bers of correspondences. As shown — MAC [45] 69.4 | 69.3 | 68.4 | 67.7 | 64.6
in Table 3} the proposed method im- ~ TR-DE [5] 64.0 | 64.8 | 61.7 | 58.8 | 56.5

PointDSC [T]] 68.1 | 67.3 | 66.5 | 63.4 | 60.5

roves the average RR by 7% over
"Il)"R—DE 131 demgnstrating th;%effec_ VBReg [19] 69.9 | 69.8 | 68.7 | 66.4 | 63.0

. i . . . Ours 69.9 | 69.9 | 69.2 | 67.7 | 65.0
tiveness of our method in dealing with
low-overlap scenarios. In Fig.[6] we compare the output inlier ratio with traditional methods [6l 39, 45]
in the low overlap scenario. Our method is more effective with more correct predicted inliers.

5 Conclusion

In this paper, we propose a robust inlier identification algorithm by reformulating the conventional
registration problem as an alignment error {y-minimization problem. For each local set, we resolve
the £yp-minimization problem using a designed two-stage decoupling strategy. First, the alignment
error is decoupled to a rotation fitting error and a translation fitting error, formulating two decoupled
£y-minimization problems. Second, null-space matrices are introduced to decouple the inlier identifi-
cation from the estimation of rotation or translation respectively, there by applying a robust Bayesian
approach to decoupled ¢y-minimization problems and solving for fitting errors. Correspondences
with the smallest errors are identified as inliers to generate a transformation hypothesis for each local
set. We experimentally demonstrate that the proposed algorithm is robust to high outlier ratios and
noise. Extensive results on the KITTI, 3DMatch, and 3DLoMatch datasets also demonstrate that our
method achieves state-of-the-art registration accuracy while being comparable in efficiency in both
indoor and outdoor scenes. Limitations and broader impact are discussed in Appendix [A.T0]
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A Appendix

In the appendix, we first provide the detailed construction for local sets (Sec. [A.T)), the rigorous
definitions of evaluation metrics (Sec.[A.2)), then describe the pseudocode for key parts (Sec.[A.3)
and the hyper-parameter selection (Sec. [A.4). We further provide additional experimental results
(Sec.[A.3] Sec.[A.6] Sec. and Sec.[A.8), ablation studies on parameters (Sec.[A.9), and discuss
the limitations (Sec. and scalability (Sec. of our work. Finally, we show more qualitative
results of registration on 3DMatch, 3DLoMatch, and KITTT (Sec. m]) and provide the detailed
information for these datasets (Sec. [A-13).

A.1 Local set construction

In this section, we provide the detailed construction for local sets. We first construct a global
compatibility graph for input correspondences. Specifically, we calculate the Euclidean distance
between the correspondence pair (c;, c;) as follows:

diese;) = lIPi = Pl = llai = qyll (18)

where p; and p; denote points in the source point cloud and q; and q; are the corresponding points
in the target point cloud. The first order compatibility score for each pair (c;, c;) is calculated based
on the Euclidean distance, as follows:

S _ d(civcj) 2
(cicj) — 1- dt ) (19)

where d; is the threshold for distance. When the distance difference between two correspondences is
less than d;, they are considered compatible due to the length consistency of rigid transformations [6].
The hard compatibility matrix can be formulated as:

1; di,c) < d
h _ 9 (c“c,) = Uy
(cicj) { 0; d(Ci~,Cj') > dy 20)
However, the first order compatibility measure suffers from outliers due to locality and ambiguity [6].
Following [45]], we calculate the second order compatibility scores [6] as edges in the graph. The
second order compatibility score between the correspondence pair (c;, ¢;) is computed based on the
hard compatibility matrix:

N,

2 __ qh - h h
S(Cmcj) - S(Cmcj) ’ Z S(Cz‘,%) ’ S(ckvcj) ’ 2D
k=1

where N, is the number of input correspondences. Based on the compatibility graph, we select K
reliable correspondences as seeds and construct local sets for each seed. Specifically, following [1} 6],
we use first-order compatibility scores to compute the leading eigenvectors via the power iteration
method [22]]. These leading feature vectors serve as confidence scores for reliable seed selection. For
each seed, we explore its top-/N¢ neighbors in the second order measure space. Then, within each
neighbor set, we recompute the second-order compatibility score and select the top-No (N2 < Ny)
correspondences as the local set for the i-th seed [6].

A.2 Evaluation Metrics

Rotation Error (RE) measures the geometric distance in degrees between the estimated and ground-
truth rotation matrices:

(22)

t RTR,;) — 1
RE = arccos < race ( gt) ) )

2
where R denotes the estimated rotation matrix and Ry; denotes the ground-truth rotation matrix.

Translation Error (TE) measures the Euclidean distance between the estimated and ground-truth
translation vectors:
TE = ||t — tgll, , (23)

where t denotes the estimated translation vector and t,; denotes the ground-truth translation vector.
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Registration Recall (RR) measures the fraction of correctly registered point cloud pairs whose RE
and TE are both below certain thresholds:

N
1
RR3pMatch&3DLOMatch = ~ Zl [RE; < 15° ATE; < 30m] .
N (24)
RRirrr = iZ[RE- < 5° ATE; < 60 m|
KITTE = i i .

=1

Following [} 15} 16} 139]], we compute the mean RE and TE only with the correctly registered point
cloud pairs .
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A.3 Pseudocode for key parts of our algorithm

There are two key parts in our algorithm: Inlier Identification via £yp-minimization and two-stage
decoupling strategy.

Algorithm 1: Inlier Identification via {p-minimization

Data: Source point cloud P = {p; € R® | i = 1,..., N'} and target point cloud
OQ={qeR?|i=1,...,M}
Result: /y-minimization problem of alignment error for each local set

Establish correspondences C through feature matching
Calculate the compatibility score S(Qci <) according to Eq. (18)-Eq. (21)
Select N; seed correspondences with high compatibility scores.
Fori=1,2,..., Ny
Construct ¢-th local set, which containing /No compatible correspondences.
Formulate the ¢, minimization problem of alignment error for the i-th local set according to
Eq. (2)
EndFor
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Algorithm 2: Two-stage decoupling strategy

Data: Given point pairs in the k-th local set P, = {ps, }1% and Qy = {qy, } .=, parameters
)\Rv )\t7 K R> K t
Result: Estimated rotation R, and translation t; hypothesis for the k-th local set

% Decoupling the alignment error into a rotation fitting error and a translation fitting error
Calculate relative positions Py, and Qy, for all pairs: pg,; = Px; — Pk; and Qx,; = Qx; — Ak,
% Decoupling the inlier identification from the rotation estimation
Formulate the £y-minimization problem for the rotation fitting error Oy,:
Oj, = argmin [|Ox |l ,
Or _ _ (25)
subject to: O = Qr — PRy — Ej .

% Bayesian-based inlier identification and rotation estimation

Construct Oy, from the left null-space of Py ©,P.=0
Eliminate the components related to Ry, in the constraints of rotation fitting error

{o-minimization: @0, = ©,Q;, — O,
Define Qi = ©; Q) and ITj, = ©;,OT and formulate the unconstrained problem for rotation
fitting error:

%151% H(ék - @k()k)TﬂZl(ék - @kok)Hi + AR ||OkH§ . (26)
The explicit solution can be calculated directly:

O; = (OITI; 'O}, + 2\x1); 'OF I 'Q; . 7
Solve R using SVD on the identified top K r pairs with the smallest error Pz, and Qz,
% Decoupling the inlier identification from the translation estimation

Based on the estimated R}, the £o-minimization problem for the translation fitting error (o) L 18
formulated as: ) )
Oy, = argmin [[Ox|lg, ,
Ok (28)
subject to: 0, = Qi — PR — t,17 — =,

Define O satisfying @1 = 0. Eliminate the components associated with translation:
0,07 = 0,(Q, — PR)T —0,=" . (29)
% Bayesian-based inlier identification and translation estimation

Define X;, = ©;(Q} — (PxR;)T) and I}, = ©;,©] . Formulate the unconstrained
optimization problem:

o1 N B N 2 L2
min — H(Xk - 0,00 1, 1(X), - @kO;{)H + A\ OfH . (30)
or 2 F F
The explicit solution can be calculated directly:
0; = (enI+ Ol 'e,)tefm, 'X,)T . (31)

Solve t} based on the identified top- K correspondences with the smallest error Pz, and Qz,.

A.4 Hyper-parameter selection

The K; and K are set to 30 and 20 for all experiments. For other hyper-parameters (Ar, \;, Kgr
and K;), we employ a grid search strategy with criterion of maximizing inliers. For a given set of
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parameters (Ar, Kr), the optimization criterion for Ry, is shown as:

max|Igr],
Ry B (32)
subject to: (_lkl.j — Rkl_)kij = &Cij Vi € 1R,

where I ; is the index set of the inlier correspondence pairs and the operation | - | denotes the cardinality
of the set. Similarly, the selection criterion for the translation vector ty, is established as follows:

max|IL; |,
b (33)
subject to: qi, — Rypr, — tp = &k, , Vi € I,

where I is the index set of inlier correspondences.

A.5 Impact of noise standard deviation

In this section, we visually illustrate the impact of noise standard deviation on the point cloud. As
shown in Fig.[7] compared with (a) the clean Bunny model, when the noise standard deviation is
increased to 0.01, the geometric structure of the model in (b) remains mostly recognizable. Therefore,
0.01 is often used as the noise standard. However, as the noise standard deviation increases up to 0.1,
the geometric structure of the Bunny is severely degraded, going beyond the noise levels typically
encountered in robotics and computer vision applications.

(a) Bunny dataset (b) Bunny dataset (c) Bunny dataset
o =0.01 c=0.1

Figure 7: The impact of Gaussian noise changes on the scanning model. Bunny point cloud scaled
inside unit cube [0, 1] and corrupted by different levels of noise and outliers, all viewed from the
same perspective angle. (a) Clean Bunny model point cloud. (b) Bunny dataset, generated from (a)
by adding isotropic Gaussian noise with a standard deviation ¢ = 0.01. (c) Bunny dataset, generated
from (a) by adding isotropic Gaussian noise with ¢ = 0.1.

A.6 Efficiency and accuracy.

In this section, we report the inference time, rotation error, and translation error by increasing the
corresponding number N, from 250 to 5000. The curves of FGR, RANSAC, MAC, and our method
are flat and difficult to distinguish visually, demonstrating their efficiency. In addition, when there
are fewer inputs, the influence of outliers is more obvious. The registration accuracy of FGR and
RANSAC decreases significantly as the number of points decreases. The rotation and translation
errors of our method are less affected by the number of correspondences. Compared with other
methods, our method achieves the most accurate and fast registration for each number of input
correspondences.

A.7 Effectiveness of the two-stage decoupling strategy.

We evaluate the effectiveness of our proposed two-stage decoupling strategy (TDS) by formulating
the alignment error {y-minimization problem directly on the Bunny data instead of local sets. The
rotation and translation are estimated without hypotheses. We provide a comparison with other
optimization-based methods [46] as the outlier ratio increases from 0% to 90%. Our
TDS consistently achieves the highest registration accuracy, demonstrating its inlier identification
capability.
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Figure 8: Comparison results with respect to the number of correspondences.
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Figure 9: Comparison results of our two-stage decoupling strategy with optimization-based
methods. We compare the rotation error and translation error of our proposed two-stage decoupling
strategy (TDS) with optimization-based methods [46} 12,439, 45].

A.8 Additional comparisons.

We also provide a comparison with learning-based registration method EGST [43]], we re-evaluate our
method under the same dataset settings and metrics as EGST. The comparison results on KITTI and
3DMatch are shown in Table 4] below. The results of EGST reported in the table follow its published
paper. Our method shows better performance in rotation error and comparable results in translation
error.

Table 4: Comparison results with EGST.

Method KITTI 3DMatch

Error(R)  Error(t) Error(R)  Error(t)
EGST 0.0168 0.0018 0.2086 0.0087
Ours 0.0059 0.0078 0.0305 0.0059
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A.9 Sensitivity to parameters.

We conduct ablation studies on the KITTI dataset to evaluate the sensitivity of our algorithm to various
parameters. Firstly, we ablate the number of local sets /V; and correspondences N in each local set.
As shown in tables below, our method is insensitive to N7 and Ns, achieving high registration rates
(RR) and low errors (RE and TE). Then, we evaluate the impact of rotation estimation threshold K r
and translation estimation threshold K. As shown in Fig.[I0] the curves of registration metrics (RR,
RE and TE) remain stable when K and K increase, indicating the insensitivity of our method to
these parameters.

Table 5: Ablation of the number of local sets.

RR(%)! RE(°)] TE(cm)|
20 | 98.02 0.33 20.68
25 | 98.02 0.32 20.62
30 | 98.20 0.32 20.73
35 | 98.02 0.33 20.60

Table 6: Ablation of the number of correspondences in each local set.

RR(%)t REC)| TE(cm)|
5 98.02 0.33 20.72
10 | 98.02 0.33 20.69
15 98.02 0.33 20.68
20 | 98.20 0.32 20.73

—+—RR(%) RE(°) TE(cm) —x—RR(%) RE(°) TE(cm)
100 100 h———————————
10 10
1 1
0.1 0.1
5 10 15 20 25 Kp 3 9 12 15 18 K

(a) (b)
Figure 10: Ablation of inlier thresholds K and K.

The results demonstrate that our method is parameter insensitive, making it reliable in practical
implementations.

A.10 Limitations and broader impact.

We propose a £yp-norm based method to solve the point cloud registration problem. The method is
robust to high outlier ratios and noise, and effective for different numbers of correspondences. It
introduces a novel perspective to achieve accurate point cloud registration in practical applications.
Our algorithm is most likely to be used in quality inspection and autonomous driving. It can provide
fast and accurate alignment between workpieces and templates, as well as enhance localization and
scene perception for autonomous vehicles. Furthermore, we wish to test the effectiveness of our
method in other areas involving registration tasks, including multimodal medical image registration.
One possible situation is a quality inspection scenario, where our algorithm may fail when dealing
with large workpiece surfaces without obvious features. Future research will focus on enhancing the
robustness of our algorithm to featureless data.

A.11 Scalability of our algorithm.

Exploring the scalability of our algorithm and its suitability for real-time applications is important for
practical deployment. Existing algorithms struggle to achieve both fast speed and high accuracy. Our
experiments demonstrate that our algorithm not only achieves high accuracy and robustness but also
remains competitive in terms of efficiency, highlighting its potential for real-time applications. The
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speed of our method can be further improved through techniques such as parallel computing and C++
implementation. Notably, the two-stage decoupling strategy (TDS) consumes most of the running
time (95% of the total), and thus, it could particularly benefit from parallelization. In the first stage
of TDS, we compute the relative positions for all point pairs. In the second stage, the computation
of null-space matrices also requires substantial processing time. Therefore, these two components
are the primary targets for acceleration. Regarding scalability, the proposed two-stage decoupling
strategy is a crucial step for inlier identification and can be flexibly combined with other methods to
improve accuracy.

A.12 Qualitative results.

We show qualitative results on 3DMatch [44]] and 3DLoMatch in Fig.[T2l The yellow and blue
point clouds represent the source and target point clouds, respectively. The first column represents
the input point clouds and the second column represents the aligned point clouds transformed with
the ground-truth transformations. Compared to other methods [6} [45]], our approach achieves better
alignment results. We also provide registration results on the KITTI [13] dataset in Fig.[T3] The
input source and target point clouds are in different poses, and the point clouds transformed using our
estimated transformations are successfully registered.

The visualization of failure cases is provided in Fig.[TT]. We observe that when there are repeated
patterns (e.g., similar chairs appearing in different locations) or textureless structures (e.g., walls,
floors), failure cases may occur due to the feature matching ambiguity. These remain challenging
problems in point cloud registration and have not yet been effectively addressed. Potential solutions
include improving feature extraction or applying point cloud completion based on the scene context.

(a) Input (b) Ground Truth (c) Ours (a) Input (b) Ground Truth (c) Ours

Figure 11: Failure cases on the 3DMatch dataset.

A.13 Datasets.

Stanford Bunny The Bunny model from the Stanford 3D Scanning Repository [10] is scanned with a
Cyberware 3030 MS scanner, with licensing restrictions against commercial use.Each scan takes the
form of a range image, described in the local coordinate system of the scanner. These range images
are merged using a modified ICP algorithm [30].

Odometry KITTI KITTI is published under the NonCommercial-ShareAlike 3.0 License. It
contains 11 sequences scanned by a Velodyne HDL-64 3D laser scanner in outdoor driving scenarios.
Following [5} 6], we use sequences 8-10 for testing.

3DMatch and 3DLoMatch 3DMatch [44] comprises 62 scenes from SUN3D [36], 7-Scenes [28]],
RGB-D Scenes v.2 [21]], Analysis-by-Synthesis [31], BundleFusion [11], and Halbel et al. [16]
(Table. [7). These scenes are captured from diverse indoor environments using different sensors
like the Microsoft Kinect and Intel Realsense, and are processed into point cloud fragments by
fusing 50 consecutive depth frames using TSDF volumetric fusion [10]. The dataset contains 46
scenes for training, 8 scenes for validation and 8 scenes for testing. The original 3DMatch [44]
only considers point cloud pairs with > 30% overlap. In addition to this benchmark (3DMatch),

21
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3DLoMatch

Figure 12: Qualitative registration results on the 3DMatch and 3DLoMatch datasets.

we follow [17] to include point cloud pairs with overlaps between 10% and 30% to form another
benchmark (3DLoMatch).

Table 7: Raw data used in the 3DMatch dataset and their licenses.

Datasets | License
SUN3D [36] CCBY-NC-SA 4.0
7-Scenes [28] Non-commercial use only
RGB-D Scenes v.2 (License not stated)
Analysis-by-Synthesis [31]] CCBY-NC-SA 4.0
BundleFusion [11]] CCBY-NC-SA 4.0
Halbel et al. [16] CCBY-NC-SA 4.0
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(a) With the FCGF descriptor (b) With the FPFH descriptor

Figure 13: Visualizations of registration results on the KITTI dataset.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution and scope of the paper are accurately stated in the abstract
and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper provides theorems and formulas in Sec. [3]and theoretical results in
Sec.[.2] However, the paper does not include a full set of assumptions and proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main experimental results of the paper are reproducible, and we will
release our code after the paper is accepted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will make the complete code public following the acceptance of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup and implement details are provided in Sec.[4.1] as well
as in Appendix [A.4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform 50 independent trials for each experiment in Sec.d.2)and report
the average results. Our experiments are stable across multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the compute workers and model efficiency in
Sec.B.Jland Sec.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This article complies in all respects with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive and negative societal impacts of the work are discussed
in Appendix [A.T0]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper uses publicly available datasets and code for training and compar-

ative evaluation, adhering to all protocol restrictions attached to the publication. Detailed
licenses for the datasets used are provided in the appendix [A.T3]

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

28



13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will release the our code under the CC BY-NC-SA 4.0 license after the
acceptance of the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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