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1 INTRODUCTION

Imagine a self-driving car with a recognition system trained in mostly sunny weather conditions.
Gradually, it starts to rain, and the self-driving agent must adapt to this change and continue to
navigate the roads safely. We think of this weather change as a domain shift (Gretton et al., 2009)
from a source domain, sunny weather, to a target domain, rainy weather. The typical supervised
learning solution to this problem is to further fine-tune the recognition model on labeled datasets of the
target, rainy, domain. However, these labels are often unavailable and it can be prohibitively difficult
or expensive to obtain enough labeled data to properly fine-tune the large number of parameters
employed by deep, multilayer networks. As such, we would like the network to adapt to the new
domain in an unsupervised manner, without any need for labeled target data.

Domain adaptation methods mitigate the harmful effects of domain shift by learning transformations
that map the labeled source and the unlabeled target domains to a common embedding. This mapping
is often achieved by optimizing the representation to minimize some measure of domain shift, such
as maximum mean discrepancy (Tzeng et al., 2014; Long & Wang, 2015) or correlation distances
(Sun & Saenko, 2016). More recently, adversarial approaches minimize the discrepancy between
domains by training a generator to fool a discriminator by producing transformed source images that
are indistinguishable from target images (Ganin et al., 2015; Tzeng et al., 2017).

Although these methods transfer well between similar domains, they produce poor results when the
covariate shift is too large (Wulfmeier et al., 2017). We posit that, in many scenarios, domains vary
continuously and the shift cannot be effectively captured by two static domains. Instead, we adapt
iteratively from one source to many gradually shifted target domains by exploiting the continuity
in the shift. A notable line of work is that of continuous manifold learning (Hoffman et al., 2014),
where they adapt to evolving visual domains by learning a sequence of transformations on a fixed
source representation. One issue that arises from this continuous adaptation procedure is catastrophic
forgetting (Ratcliff, 1990) – a neural network’s general tendency to forget past knowledge as it
specializes its weights to the current domain. Our method corrects this issue by ensuring that at every
adaptation stage the model continues to consistently classify previously seen examples. Thus, a single
model can perform continuous adaptation while maintaining strong performance across all domains.

2 CONTINUOUS UNSUPERVISED ADAPTATION

In continuous adaptation, we are presented with a source domain S, and multiple target domains Ti
that represent continuous shifts of S at time i. We assume access to source images Xs and labels Ys
drawn from a source domain distribution ps(x, y), as well as target images Xti drawn from target
distributions pti(x, y), with no labeled observations. We additionally assume that the source domain
is similar to the target domain at time t0, that the target domain is smoothly varying, and that pt0 is
more similar to ps than pt1 is to ps. Since direct supervised learning on the target domains is not
possible, continuous adaptation instead learns a source representation mapping, Ms, and a source
classifier, Cs, and then adapts that model for use in the stream of target domains.

We present a general framework for continuous adaptation with replay, where we evolve the model to
the new distribution while simultaneously guiding it to not deviate too far from how it previously
performed on prior distributions. Figure 1 illustrates the structure of the proposed replay model. It is
comprised of two major components: sequential unsupervised adaptation to adapt models to new
domains, described in Section 2.1, and continuous replay adaptation to maintain performance on
previously seen domains, described in Section 2.2
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2.1 SEQUENTIAL UNSUPERVISED ADAPTATION
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Figure 1: Proposed continuous replay model. At
each stage, we save part of the adaptation predic-
tions and use them as “soft” labels for the current
domain. We enforce these past soft labels to be
matched using a replay loss.

We introduce an adaptation model that pro-
gressively evolves to correctly classify multiple
shifted domains. Standard unsupervised adapta-
tion effectively adapts between a single source
distribution ps(x, y) and a single target distri-
bution pt(x, y) by aligning features from both
domains. In other words, they learn the source
and target mappings, Ms and Mt, so as to min-
imize the distance between the empirical source
and target mapping distributions:

Mt ← argmin
Mt

d(Ms(Xs),Mt(Xt)). (1)

Our method is general and any distance func-
tion d can be used. Common choices in recent
works include the Kullback-Leibler divergence
(Yang et al., 2012), Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2008), correlation alignment (Sun & Saenko, 2016), and adversarial loss
(Liu & Tuzel, 2016; Tzeng et al., 2015; 2017).

When the distance between distributions is minimized, the source classification model, Cs, may be
directly applied to the target representation; we can, thus, denote both as C, and eliminate the need to
learn a separate target classifier. We can now find Ms and C by optimizing the supervised objective:

Ms, C ← arg min
Ms,C

Lcls(C(Ms(Xs)), Ys), (2)

where Lcls is commonly chosen to be the cross-entropy loss.In the continuous problem statement, we
minimize the distance between one source and multiple targets:

Mt ← argmin
Mt

d(Ms(Xs),Mt(∪Ni=1Xti)). (3)

The above mentioned domain alignment methods would simply conglomerate all target domains
together and perform single source to single target adaptation. Unfortunately, standard unsupervised
adaptation on a batch of target domains produces poor solutions for the posed optimization problem.
Our first step towards improvement is adopting, instead, a sequential approach, where at every
stage the model adapts to the next target domain. At each stage, Ti, we initialize the current target
representation, MTi , using the adapted model from the previous stage, MTi−1 . We then further adapt
between the current target domain data, XTi

, viewed under the current target model, and the source
domain data, Xs, viewed under the original source model.

M ←MTi−1
;MTi

← argmin
M

d(Ms(Xs),M(XTi
)) (4)

By continuing this process at every stage, we ensure successful adaptation to the next target domain.
However, while staging enables models to more easily adapt, it does not solve catastrophic forgetting.

2.2 CONTINUOUS REPLAY ADAPTATION

We address the issue of forgetting previous domains by saving the scores for a few previously seen
examples and introducing a replay loss, Lreplay , to enforce the response to be the same in the current
stage model. We use the cross-entropy loss for Lreplay . This process is illustrated in Figure 1, where
every stage’s version of the adaptation model produces a mini-dataset with a few selected observations
from their specific domain, together with the predicted classification scores.

Thus, Mt can be updated at every stage via a joint optimization of both the sequential unsupervised
adaptation update together with the replay objective:

Mt ← argmin
Mt

[d(Ms(Xs),Mt(Xti)) + λ · Lreplay(C(Mt(Xp)), Yp)] (5)

where Xp and Yp are the random samples and their predicted scores saved from previous domains,
and λ is a replay weight that controls how much to optimize for past domain efficiency.
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Method 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ Average (%)

Source 99.2 61.7 17.2 29.1 39.4 29.8 15.8 51.7 43.0 ± 0.8
ADDA 80.8 70.4 20.8 28.6 42.1 40.2 23.8 41.2 43.5 ± 1.2
DANN 98.6 64.7 19.9 28.4 41.4 32.9 24.2 67.3 47.2 ± 1.6
CUA - no replay (Ours) 51.6 15.1 32.7 38.7 30.4 27.1 73.6 96.0 45.7 ± 1.4
CUA (Ours) 90.4 84.4 82.0 77.3 85.8 88.2 92.7 96.5 90.4 ± 1.6

Target Supervised (Oracle) 96.9 96.7 96.8 97.4 96.6 96.5 96.8 96.4 97.0

Table 1: Rotated MNIST results for various adaptation methods. We evaluate each row on test data at
rotations in 45◦ intervals. The last column contains the average over all test rotations.

Algorithm 1 CUA for continuous adaptation.

1: Ms, C ← argminMs,C Lcls(C(Ms(Xs)), Ys)
2: {Xp, Yp} ← sample({Xs, Ys}, α)
3: Mt ←Ms

4: for i ∈ {1...N} do
5: Mt ← argminMt d(Ms(Xs),Mt(Xti))
6: +λ · Lreplay(C(Mt(Xp)), Yp)

7: Ŷti ← C(Mt(Xti))

8: {Xp, Yp} ← {Xp, Yp} ∪ sample({Xti , Ŷti}, α)
9: end for

Algorithm 1 shows the Continuous Unsuper-
vised Adaptation (CUA) procedure, which
sequentially adapts to an evolving target dis-
tribution while using replay of past examples
to retain prior performance. The method ini-
tializes a supervised source model using the
labeled source data, and subsamples a few ex-
amples from the source data as replay data. A
parameter α controls the subsampling rate by
deciding how large of a fraction of the data
to store. For every new target domain, we fit
a new target representation Mt by adapting with distance metric d and replay loss Lreplay. Finally,
we subsample α-rate data from the current target domain together with the predicted classification
scores obtained under this stage’s model. 1

3 EXPERIMENTS

We evaluate CUA for unsupervised classification adaptation to continuously shifting domains. For
our continuous shifts, we consider the setting of MNIST digits being gradually rotated. This setting
causes traditional unsupervised adaptation methods to fail when attempting to adapt to all variations
together. We compare our model CUA against multiple state-of-the-art unsupervised adaptation
methods that perform adaptation to a batch of target domains. Our method significantly outperforms
the competing approaches and nearly reaches fully supervised performance.

Our goal is to adapt from unrotated MNIST digits to MNIST digits of various rotations. We designate
rotation by 0◦ to be the labeled source domain, and rotations 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and
315◦ to be unlabeled target domains. We randomly split the training set in half, assigning 30000
images to the source domain. The remaining 30000 images are further split equally between the
seven rotations which comprise the target domain variations. We use LeNet (Cun et al., 1990) as
our base architecture in all experiments. As our unsupervised domain adaptation method to adapt
between sequential domains we choose the recently proposed ADDA method (Tzeng et al., 2017).

In Table 1, we compare the source only classification (no adaptation); two unsupervised adaptation
methods ADDA and DANN (Ganin et al., 2015); CUA with no replay; our full CUA method; and the
result of supervised training on all domains. All competing methods that do not use our framework
fail catastrophically to adapt to the variety of target domains. The source model, DANN, and ADDA
have high accuracy when tested on the source domain 0◦, but fail to adapt to domains that are more
distinct (i.e. 90◦ and larger rotations). CUA without replay is able to perform remarkably well on
the current target domain, but fails when evaluated on past target domains, in other words suffers
from catastrophic forgetting. Finally, our full method, CUA, clearly outperforms all other methods,
with high accuracy both on the current and on past domains. On average, our method achieves 90.4%
accuracy, a larger than 40% raw improvement over the next competing approach and nearing the
performance of a fully supervised model.

1For a full set of references to related work, discussion of the method, and additional experiments, please see
the long version of this paper available on arXiv.
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