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ABSTRACT

We present Cross-View Training (CVT), a simple but effective method for deep
semi-supervised learning. On labeled examples, the model is trained with stan-
dard cross-entropy loss. On an unlabeled example, the model first performs infer-
ence (acting as a “teacher”) to produce soft targets. The model then learns from
these soft targets (acting as a “student”). We deviate from prior work by adding
multiple auxiliary student prediction layers to the model. The input to each aux-
iliary student layer is a sub-network of the full model that has a restricted view
of the input (e.g., only seeing one region of an image). The students can learn
from the teacher (the full model) because the teacher sees more of each example.
Concurrently, the students improve the quality of the representations used by the
teacher as they learn to make predictions with limited data. When combined with
Virtual Adversarial Training, CVT improves upon the current state-of-the-art on
semi-supervised CIFAR-10 and semi-supervised SVHN. We also apply CVT to
train models on five natural language processing tasks using hundreds of millions
of sentences of unlabeled data. On all tasks CVT substantially outperforms su-
pervised learning alone, resulting in models that improve upon or are competitive
with the current state-of-the-art.

1 INTRODUCTION

Deep learning classifiers work best when trained on large amounts of labeled data. However, acquir-
ing labels can be costly, motivating the need for effective semi-supervised learning techniques that
leverage unlabeled examples during training. Many semi-supervised learning algorithms rely on
some form of self-labeling. In these approaches, the model acts as both a “teacher” that makes pre-
dictions about unlabeled examples and a “student” that is trained on the predictions. As the teacher
and the student have the same parameters, these methods require an additional mechanism for the
student to benefit from the teacher’s outputs.

One approach that has enjoyed recent success is adding noise to the student’s input (Bachman et al.,
2014; Sajjadi et al., 2016). The loss between the teacher and the student becomes a consistency cost
that penalizes the difference between the model’s predictions with and without noise added to the
example. This trains the model to give consistent predictions to nearby data points, encouraging
smoothness in the model’s output distribution with respect to the input. In order for the student
to learn effectively from the teacher, there needs to be a sufficient difference between the two.
However, simply increasing the amount of noise can result in unrealistic data points sent to the
student. Furthermore, adding continuous noise to the input makes less sense when the input consists
of discrete tokens, such in natural language processing.

We address these issues with a new method we call Cross-View Training (CVT). Instead of only
training the full model as a student, CVT adds auxiliary softmax layers to the model and also trains
them as students. The input to each student layer is a sub-network of the full model that sees a
restricted view of the input example (e.g., only seeing part of an image), an idea reminiscent of co-
training (Blum & Mitchell, 1998). The full model is still used as the teacher. Unlike when using a
large amount of input noise, CVT does not unrealistically alter examples during training. However,
the student layers can still learn from the teacher because the teacher has a better, unrestricted view
of the input. Meanwhile, the student layers improve the model’s representations (and therefore the
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teacher) as they learn to make accurate predictions with a limited view of the input. Our method can
be easily combined with adding noise to the students, but works well even when no noise is added.

We propose variants of our method for Convolutional Neural Network (CNN) image classifiers,
Bidirectional Long Short-Term Memory (BiLSTM) sequence taggers, and graph-based dependency
parsers. For CNNs, each auxiliary softmax layer sees a region of the input image. For sequence
taggers and dependency parsers, the auxiliary layers see the input sequence with some context re-
moved. For example, one auxiliary layer is trained to make predictions without seeing any tokens to
the right of the current one.

We first evaluate Cross-View Training on semi-supervised CIFAR-10 and semi-supervised SVHN.
When combined with Virtual Adversarial Training (Miyato et al., 2017b), CVT improves upon the
current state-of-the-art on both datasets. We also train semi-supervised models on five tasks from
natural language processing: English dependency parsing, combinatory categorical grammar su-
pertagging, named entity recognition, text chunking, and part-of-speech tagging. We use the 1 bil-
lion word language modeling benchmark (Chelba et al., 2014) as a source of unlabeled data. CVT
works substantially better than purely supervised training, resulting in models that improve upon or
are competitive with the current state-of-the-art on every task. We consider these results particularly
important because many recently proposed semi-supervised learning methods work best on contin-
uous inputs and have only been evaluated on vision tasks (Bachman et al., 2014; Sajjadi et al., 2016;
Laine & Aila, 2017; Tarvainen & Valpola, 2017). In contrast, CVT can handle discrete inputs such
as language very effectively.

2 RELATED WORK

Semi-supervised learning in general has been widely studied (Chapelle et al., 2006). Early ap-
proaches to deep semi-supervised learning pre-train neural models on unlabeled data, which has
been successful for applications in computer vision (Jarrett et al., 2009; LeCun et al., 2010) and
natural language processing (Dai & Le, 2015; Ramachandran et al., 2017). More recent work in-
corporates generative models based on autoencoders (Kingma et al., 2014; Rasmus et al., 2015) or
Generative Adversarial Networks (Springenberg, 2015; Salimans et al., 2016) into the training.

Self-Training. One of the earliest approaches to semi-supervised learning is self-training (Scudder,
1965; Fralick, 1967). Initially, a classifier is trained on labeled data only. In each subsequent round
of training, the classifier, acting as a “teacher,” labels some of the unlabeled data and adds it to the
training set. Then, acting as a “student,” it is retrained on the new training set. The new examples
added each round act as noisy “pseudo labels” (Lee, 2013) that the model can learn from. Many
recent approaches train the student with soft targets from the teacher’s output distribution rather
than a hard label, making the procedure more akin to knowledge distillation (Hinton et al., 2015).

Consistency Training and Distributional Smoothing. Recent works add noise to the student’s
input (Bachman et al., 2014; Sajjadi et al., 2016). This trains the model to give consistent predictions
to nearby data points, encouraging distributional smoothness in the model. Inspired by the success of
adversarial training (Goodfellow et al., 2015), Miyato et al. (2016) extend this idea by adversarially
selecting the perturbation to the input. Other approaches focus on improving the targets provided by
the teacher by tracking an exponential moving average of its predictions (Laine & Aila, 2017) or its
weights (Tarvainen & Valpola, 2017). Our method is complimentary to these previous approaches,
and can be combined with them effectively.

Co-Training. Co-Training (Blum & Mitchell, 1998; Nigam & Ghani, 2000) trains two models with
disjoint views of the input. On unlabeled data, each one acts as a “teacher” for the other model. In
contrast, our approach trains a single unified model where auxiliary prediction layers see different,
but not necessarily independent views of the input.

Auxiliary Prediction Layers. Another way of leveraging unlabeled data is through the addition
of auxiliary “self-supervised” losses. These approaches train auxiliary prediction layers on tasks
where performance can be measured without human-provided labels. Previous work has jointly
trained image classifiers with tasks like relative position and colorization (Doersch & Zisserman,
2017), sequence taggers with language modeling (Rei, 2017), and reinforcement learning agents
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ỹview1
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Figure 1: An overview of Cross-View Training. The model is trained with standard supervised
learning on labeled examples. On unlabeled examples, auxiliary softmax layers with different views
of the input are trained to agree with the primary softmax layer. Although the model takes on
different roles (i.e., as the teacher or the student), only one set of parameters is trained.

with predicting changes in the environment (Jaderberg et al., 2017). Unlike these approaches, our
auxiliary losses are based on self-labeling, not labels deterministically constructed from the input.

Data Augmentation. Data augmentation, such as random translations or crops of input images,
bears some similarity to our method in that it also exposes the model to different views of input ex-
amples. Data augmentation has become a common practice for both supervised and semi-supervised
training of image classifiers (Simard et al., 2003; Krizhevsky et al., 2012).

3 CROSS-VIEW TRAINING

We first provide a general description of Cross-View Training. We then present specific construc-
tions for auxiliary prediction layers that work well for image classification, sequence tagging, and
dependency parsing.

3.1 METHOD

We use Dl = {(x1, y1), (x2, y2), ..., (xN , yN )} to represent a labeled dataset and Dul =
{x1, x2, ..., xM} to represent an unlabeled dataset. We use pθ(y|xi) to denote the output distribu-
tion over classes produced by a model with parameters θ on input xi. Our approach uses a standard
cross-entropy loss over the labeled data:

Lsup(θ) =
1

|Dl|
∑

xi,yi∈Dl

CE(yi, pθ(y|xi))

On unlabeled data, a popular approach is to add a consistency cost encouraging distributional
smoothness in the model. First, the model produces soft targets for the current example: ŷi =
pθ(y|xi). The model is then trained to minimize the consistency cost

Lconsistency(θ) =
1

|Dul|
∑

xi∈Dul

Eη [D(ŷi, pθ(y|xi + η))]

where D is a distance function (we use KL divergence) and η is a perturbation to the input that can
be chosen randomly or adversarially. As is common in prior work, we hold the teacher’s prediction
ŷi fixed during training (i.e., we don’t back-propagate through it) so the student learns to imitate the
teacher, but not vice versa.
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Figure 2: Softmax layers for image classifiers and sequence taggers. Solid red arrows represent
primary softmax layers and dashed blue arrows represent auxiliary ones. To simplify the diagram,
the CNN only produces four feature vectors, the BiLSTM only has a single layer, and we only show
auxiliary layers for the BiLSTM’s second time step. For CNNs, auxiliary layers take a single feature
vector as input. For BiLSTMs, auxiliary layers are attached to the forward and backward LSTMs.
Our dependency parsing models use auxiliary layers analogous to the “forward” and “backward”
sequence tagging ones.

Cross-View Training adds k additional prediction layers p1θ, ..., p
k
θ to the model. Each layer pjθ takes

as input an intermediate representation hj(xi) produced by the model. It outputs a distribution
over labels, usually with a softmax layer (an affine transformation followed by a softmax activation
function) applied to this representation: pjθ(y|xi) = SML(hj(xi)) = softmax(Wjhj(xi) + bj). At
test time, only the main prediction layer pθ is used. Each hj is chosen such that it only uses a part
of each input xi; the particular choice can depend on the task and model architecture. We propose
variants for CNN image classifiers, BiLSTM sequence taggers, and graph-based dependency parsers
in sections 3.2, 3.3, and 3.4. We add the distances between the output distributions of the teacher
and auxiliary students to the consistency loss, resulting in a cross-view consistency (CVC) loss:

LCVC(θ) =
1

|Dul|
∑

xi∈Dul

Eη

D(ŷi, pθ(y|xi + η)) +
λ1
k

k∑
j=1

D(ŷi, p
j
θ(y|xi + η))


We combine the supervised and CVC losses into the total loss, L = Lsup +λ2LCVC, and minimize it
with stochastic gradient descent. At each step, Lsup is computed over a minibatch of labeled exam-
ples and LCVC is computed over a minibatch of unlabeled examples. λ1 and λ2 are hyperparameters
controlling the strength of the auxiliary prediction layers and the strength of the unsupervised loss.
For all experiments we set λ1 = k and λ2 = 1 unless indicated otherwise. See Figure 1 for an
illustration of the training procedure.

Although adding noise or an adversarial perturbation to the input generally improves results, LCVC
can be trained without this enhancement (i.e., setting η = 0). In this case, the first term inside the ex-
pectation disappears (the student will exactly match the teacher, so the distance is zero). In contrast,
Lconsistency requires a nonzero η to make the student and teacher output different distributions.

In most neural networks, a few additional softmax layers is computationally cheap compared to the
portion of the model building up representations (such as a CNN or RNN). Therefore our method
contributes little overhead to training time over consistency training. CVT does not change inference
time because the auxiliary layers are only used during training.

3.2 IMAGE RECOGNITION MODELS

Our image recognition models are based on Convolutional Neural Networks, which produce a set
of features H(xi) ∈ Rn×n×d from an image xi. The first two dimensions of H index into the
spatial coordinates of feature vectors and d is the size of the feature vectors. For shallower CNNs,
a particular feature vector corresponds to a region of the input image. For example, H0,0 would

4



Under review as a conference paper at ICLR 2018

be a d-dimensional vector of features extracted from the upper left corner. For deeper CNNs, a
particular feature vector would be extracted from the whole image, but still only use a “region” of
the representations from an earlier layer. The CNNs in our experiment are all in the first category.

The primary prediction layer for our CNNs take as input the mean ofH over the first two dimensions,
which results in a d-dimensional vector that is fed into a softmax layer:
pθ(y|xi) = SML(global average pool(H)).

We add n2 auxiliary softmax layers to the top of the CNN. The jth layer takes a single feature vector
as input, as shown in the left of Figure 2: pjθ(y|xi) = SML(Hbj/nc,j mod n). We also experimented
with adding auxiliary softmaxes to the outputs of earlier layers in the CNN, but found this did not
improve performance.

3.3 SEQUENCE TAGGING MODELS

In sequence tagging, each example (xi, yi) consists of T tokens x1i , ..., x
T
i and T corresponding

labels y1i , ..., y
T
i . We assume an L-layer bidirectional RNN sequence tagging model, which has

become standard for many sequence tagging tasks (Graves & Schmidhuber, 2005; Graves et al.,
2013). Each layer runs an RNN such as an LSTM (Hochreiter & Schmidhuber, 1997) in the forward
direction (taking xti as input at each step t) and the backward direction (taking xT−t+1

i as input at
each step) and concatenates the results. A softmax layer on top of the outputs of the last BiRNN
layer, hL(xi) = [h1L(xi), ..., h

T
L(xi)], makes the predictions: pθ(yt|xi) = SML(htL(xi)).

The auxiliary softmax layers take
−→
h 1(xi) and

←−
h 1(xi), the outputs of the forward and backward

RNNs in the first BiRNN layer, as inputs. We add the following four softmax layers to the model
(see the right of Figure 2):

pfwd
θ (yt|xi) = SML(

−→
h t1(xi)) pbwd

θ (yt|xi) = SML(
←−
h t1(xi))

pfuture
θ (yt|xi) = SML(

−→
h t−11 (xi)) ppast

θ (yt|xi) = SML(
←−
h t+1

1 (xi))

The “forward” and “backward” prediction layers use the RNN’s current output to predict the current
token. The “future” and “past” layers use the RNN’s previous output (or, equivalently, they predict
the label for the next token). The forward layer makes each prediction without seeing the right
context of the current token. The future layer makes each prediction without the right context or
the current token itself. Therefore it works like a neural language model that, instead of predicting
which token comes next in the sequence, predicts which class of token comes next in the sequence.

3.4 DEPENDENCY PARSING MODELS

In a dependency parse, words in a sentence are treated as nodes in a graph. Typed directed edges
connect the words, forming a tree structure describing the syntactic structure of the sentence. In
particular, each word xti in a sentence xi = x1i , ..., x

T
i receives exactly one in-going edge (u, t, r)

going from word xui (called the “head”) to it (the “dependent”) of type r the (the “relation”). There-
fore a dependency parsing example consists of T tokens xi = x1i , ..., x

T
i and T corresponding labels

yi = y1i , ..., y
T
i where each label yti represents the in-going edge to word xti: y

t
i = (u, t, r). To give

a specific example, in the sentence “The small dog barked”, the correct label for “small” would be
the edge (“dog”, “small”, adjectival-modifier).

We use a neural graph-based dependency parser similar to the one from Dozat & Manning (2017).
It first runs a BiRNN encoder over the sentence as described in section 3.3, producing a sequence of
outputs hL(xi) = [h1L(xi), ..., h

T
L(xi)]. Each output htL(xi) is passed through two separate multi-

layer perceptrons, one producing a representation for xti as a head word and one producing a repre-
sentation for it as a dependent. A bilinear classifier applied to these representations produces a score
for each candidate edge. Lastly, these scores are passed through a softmax layer to produce proba-
bilities. Mathematically, the probability of an edge is given as pθ((u, t, r)|xi) ∝ es(h

u
L(xi),h

t
L(xi),r).

Where s is the scoring function s(z1, z2, r) = MLPhead(z1)(Wr + W )MLPdep(z2). The bilinear
classifier uses a weight matrix Wr specific to the candidate relation as well as a weight matrix W
shared across all relations.
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We add four auxiliary prediction layers to our model for cross-view training:

pfwd-fwd
θ ((u, t, r)|xi) ∝ es(

−→
h u

1 (xi),
−→
h t

1(xi),r) pfwd-bwd
θ ((u, t, r)|xi) ∝ es(

−→
h u

1 (xi),
←−
h t

1(xi),r)

pbwd-fwd
θ ((u, t, r)|xi) ∝ es(

←−
h u

1 (xi),
−→
h t

1(xi),r) pbwd-bwd
θ ((u, t, r)|xi) ∝ es(

←−
h u

1 (xi),
←−
h t

1(xi),r)

Each auxiliary layer has some missing context (not seeing either the preceding or following words)
for the candidate head and candidate dependent. All the parameters for the scoring function of each
auxiliary prediction layer are layer-specific.

4 EXPERIMENTS

To validate our approach, we evaluate Cross-View Training on two semi-supervised learning bench-
marks. These discard most of the labels from standard image image recognition datasets to artifi-
cially make them semi-supervised. As a sterner test of our approach, we also apply CVT to five
tasks from Natural Language Processing (NLP) using hundreds of millions of unlabeled sentences
for semi-supervised learning.

4.1 IMAGE RECOGNITION

Data. We experiment on two semi-supervised image recognition benchmarks. These are constructed
from the CIFAR-10 (Krizhevsky & Hinton, 2009) and Street View House Numbers (SVHN) (Netzer
et al., 2011) datasets. Following previous work, we make the datasets semi-supervised by only using
the provided labels for a subset of the examples in the training set; the rest are treated as unlabeled
examples.

Model. We use the convolutional neural network from Miyato et al. (2017b), adapting their Tensor-
Flow implementation1. Their model, based on Springenberg et al. (2014), contains 9 convolutional
layers and 2 max pooling layers. See Appendix D of Miyato et al.’s paper for details.

We add 36 auxiliary softmax layers to the 6× 6 collection of feature vectors produced by the CNN.
Each auxiliary layer sees a patch of the image ranging in size from 21 × 21 pixels (the corner) to
29 × 29 pixels (the center) of the 32 × 32 pixel images. We optimize L with λ1 = 1 and each
minibatch consisting of 32 labeled and 128 unlabeled examples.

Miyato et al. use Virtual Adversarial Training (VAT), minimizing Lconsistency with the input perturba-
tion η chosen adversarially. We train our cross-view models (which instead use LCVC) both with and
without this adversarial noise. We report results with and without using data augmentation (random
translations for SVHN and random translations and horizontal flipping for CIFAR-10) in Table 1.

Results. CVT works well as semi-supervised learning method without any noise being added to the
student. When random noise is added, it performs close to VAT (the standard-deviation-based con-
fidence intervals intersect) while training much faster (requiring only one backwards pass for each
training minibatch, while VAT requires an additional one to compute the adversarial perturbation).
Our method can easily be combined with VAT, resulting in further improvements and state-of-the-
art results. The benefit of CVT is less when data augmentation is applied, perhaps because random
translations of the input expose the model to different “views” in a similar manner as with CVT.
We believe the gains on SVHN are smaller than CIFAR-10 because the digits in SVHN occur in the
center of the image, so the auxiliary softmaxes seeing the sides and corner do not learn as effectively.
We also note that incorporating auxiliary softmax layers into the supervised loss Lsup does not im-
prove results (see Appendix C). This indicates that the benefit of CVT comes from the improved
self-training mechanism, not the additional losses regularizing the model.

Model Analysis. To understand why CVT produces better results, we compare the behavior of the
VAT and CVT (with adversarial noise) models trained on CIFAR-10. First, we record the average
value of each feature vector produced by the CNNs when they run over the test set. As shown in the
left of Figure 3, the CVT model has higher activation strengths for the feature vectors corresponding
to the edges of the image. We hypothesize that the VAT model fits to the data while primarily using

1https://github.com/takerum/vat_tf
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Method SVHN SVHN+ CIFAR-10 CIFAR-10+
1000 labels 4000 labels

GANa – 8.11 ± 1.3 – 18.63 ± 2.32
Stochastic Transformationsb – – – 11.29 ± 0.24
Π modelc 5.43 ± 0.25 4.82 ± 0.17 16.55 ± 0.29 12.36 ± 0.31
Temporal Ensemblec – 4.42 ± 0.16 – 12.16 ± 0.24
Mean Teacherd – 3.95 ± 0.19 – 12.31 ± 0.28
Complement GANe 4.25 ± 0.03 – 14.41 ± 0.30 –
VATf 4.28 3.86 13.15 10.55

Supervised 10.68 ± 0.51 10.10 ± 0.48 23.61 ± 0.60 19.61 ± 0.56
VAT* 4.11 ± 0.13 3.83 ± 0.16 13.29 ± 0.33 10.90 ± 0.31
CVT, no noise 4.48 ± 0.09 4.37 ± 0.12 14.63 ± 0.20 12.44 ± 0.27
CVT, random noise 4.11 ± 0.08 4.04 ± 0.16 13.80 ± 0.30 11.10 ± 0.26
CVT, adversarial noise 3.79 ± 0.08 3.70 ± 0.15 12.01 ± 0.11 10.11 ± 0.15

aSalimans et al. (2016) bSajjadi et al. (2016) cLaine & Aila (2017) dTarvainen & Valpola (2017)
eDai et al. (2017) fMiyato et al. (2017b)
*We found Miyato et al.’s implementation produces slightly different results than the ones they
report in their paper.

Table 1: Error rates on semi-supervised learning benchmarks. We report means and standard devia-
tions from 5 runs. + after a dataset means data augmentation was applied.

1.35 1.24 1.29 1.31 1.23 1.31

1.13 0.88 0.86 0.86 0.87 1.11

1.16 0.86 0.82 0.82 0.83 1.09

1.15 0.87 0.82 0.82 0.83 1.07

1.02 0.87 0.88 0.88 0.85 0.98

1.28 1.22 1.31 1.32 1.25 1.30

Average Activation of Feature Vectors
 (Ratio of CVT/VAT)

0.68 0.73 0.75 0.75 0.73 0.67

0.74 0.78 0.81 0.81 0.78 0.74

0.77 0.81 0.83 0.83 0.81 0.76

0.76 0.80 0.82 0.82 0.80 0.76

0.73 0.78 0.79 0.79 0.77 0.73

0.68 0.72 0.74 0.74 0.72 0.68

CVT Auxilliary Prediction
 Layer Accuracies

0.39 0.45 0.49 0.49 0.46 0.39

0.47 0.57 0.61 0.61 0.57 0.48

0.52 0.62 0.66 0.66 0.62 0.52

0.53 0.63 0.67 0.66 0.63 0.53

0.51 0.58 0.62 0.62 0.58 0.50

0.43 0.49 0.51 0.51 0.48 0.43

VAT Auxilliary Prediction
 Layer Accuracies

Figure 3: Left: Ratio between the average activation of feature vectors from final layer of the CVT
CNNs divided by the average from the VAT CNNs. Each square in a grid represents a single feature
vector. Brighter means the feature vectors from the CVT model are more activated. Center, Right:
Accuracy of prediction layers taking a single feature vector as input. The CVT model makes more
use of the outside of the image and produces better representations for those regions

the center of the image, where the most discriminative information is contained. This results in
less effective feature vectors for the outside regions. In contrast, the model with CVT must learn
meaningful representations for the edge regions in order to train the corresponding auxiliary softmax
layers. As these feature vectors are more useful, their magnitude become larger so they contribute
more to the final representation produced by the global average pool.

To compare to discriminatory power of the feature vectors, we freeze the weights of the CNNs and
add auxiliary softmax layers that are trained from scratch. We then measure the accuracies of the
added layers (see the center and right of Figure 3). Unsurprisingly, the VAT model, which only
learns representations that will be useful after the average pool, has much lower accuracies from
individual feature vectors. The difference is particularly striking in the sides and corners, where
CVT accuracies are around 50% higher (they are about 25% higher in the center). This finding
further indicates that CVT is improving the model’s representations, particularly for the outside
parts of images.
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4.2 NATURAL LANGUAGE PROCESSING TASKS

Data. Although the widely-used benchmarks in the previous section provide validation of our ap-
proach, they are small datasets that are artificially made to be semi-supervised. In this section, we
show CVT is successful on well-studied tasks where semi-supervised learning is rarely applied. In
particular, we train semi-supervised models on the following NLP tasks:

• Combinatory Category Grammar (CCG) Supertagging: Labeling words with CCG su-
pertags: lexical categories that encode information about the predicate-argument structure
of the sentence. CCG is widely used in syntactic and semantic parsing. We use data from
CCGBank (Hockenmaier & Steedman, 2007) and report word-level accuracy.

• Text Chunking: Dividing a sentence into syntactically correlated parts (e.g., a noun phrase
followed by a verb phrase). We use the CoNLLL-2000 shared task data (Tjong Kim Sang
& Buchholz, 2000) and report the F1 score over predicted chunks.

• Named Entity Recognition (NER): Identifying and classifying named entities (organiza-
tions, places, etc.) in a sentence. We use the CoNLL-2003 dataset (Tjong Kim Sang &
De Meulder, 2003) and report entity-level F1 score.

• Part-of-Speech (POS) Tagging: Labeling words with their syntactic categories (e.g., de-
terminer, adjective, etc.). We use the Wall Street Journal (WSJ) portion of the Penn Tree-
bank (Marcus et al., 1993) and report word-level accuracy.

• Dependency Parsing: Inferring a tree-structure describing the syntactic structure of a sen-
tence. We use the Penn Treebank converted to Stanford Dependencies (version 3.3.0) and
report unlabeled and labeled attachment score (UAS and LAS).

We use the 1 Billion Word Language Model Benchmark (Chelba et al., 2014) as a pool of unlabeled
sentences for semi-supervised learning.

Models. We use a CNN-BiLSTM sequence tagging model (Chiu & Nichols, 2016; Ma & Hovy,
2016). The model first represents each word as the sum of a word embedding and the output of a
character-level CNN. This sequence of word representations is then fed through two BiLSTM layers
and a softmax layer to produce predictions. See Appendix A for details about the model.

Our dependency parser uses the same CNN-BiLSTM encoder as our sequence tagger. As described
in Section 3.4, a MLP-Bilinear classifier on top of the encoder makes the predictions. Although it
is common for dependency parsers to take words and part-of-speech tags as inputs, our model only
takes words as inputs. See Appendix B for details about the model.

Miyato et al. (2017a) were able to apply Virtual Adversarial Training to document classification, but
we found VAT ineffective for our word-level tasks. Although we experimented with constraining
the word embeddings to unit length and adding random or adversarial perturbations to them during
training, it did not improve performance. This is perhaps because, unlike with RGB values in an
image, words are discrete, so adding noise to their representations is less meaningful. Instead, we
add dropout to the student but not the teacher.

Recent work (Rei, 2017; Liu et al., 2017) has shown that jointly training a neural language model
with sequence taggers improves results. We report accuracies with and without this enhancement
(training the language model on the unlabeled data). See Table 2 for sequence tagging results and
Table 3 for dependency parsing results.

Results. CVT significantly improves over the supervised baseline on all tasks, both with and without
the auxiliary language modeling objective. We report a new state-of-the-art for CCG-supertagging
and pure dependency parsing (i.e., without using constituency parse annotations) and results com-
petitive with the current state-of-the-art on the other tasks. Our dependency parsing result is particu-
larly important because our model does not include part-of-speech tags as input, which other works
have shown to improve performance notably (Dozat & Manning, 2017; Chen & Manning, 2014).
Of the prior results listed in the Table 2, only TagLM from Peters et al. (2017) is semi-supervised.
However, their approach relies on pre-training rather than self-training: their model incorporates
representation produced by an enormous separately-trained language model with 8192 hidden units.
Our models use 1024 hidden units in their largest LSTMs, so they are many times faster to run.
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Method CCG Chunk NER POS

C2W + LSTMa – – – 97.78
LSTM-CNN-CRFb – – 91.21 97.55
Tri-Trained LSTMc 94.7 – – –
Shortcut LSTMd 95.08 – – 97.53
JMTe – 95.77 – 97.55
TagLM-2048f* – – 91.66 ± 0.23 –
TagLMf – 96.37 ± 0.05 91.93 ± 0.19 –
LM-LSTM-CNN-CRFg – 95.96 ± 0.08 91.71 ± 0.10 97.53 ± 0.03

Baseline (supervised) 94.98 ± 0.05 95.03 ± 0.02 90.86 ± 0.03 97.65 ± 0.02
Baseline + LM 95.08 ± 0.05 95.64 ± 0.07 91.35 ± 0.07 97.70 ± 0.01
Consistency 95.05 ± 0.03 94.82 ± 0.05 90.84 ± 0.14 97.61 ± 0.02
CVT, no pfuture

θ or ppast
θ 95.34 ± 0.04 95.63 ± 0.08 91.21 ± 0.07 97.67 ± 0.02

CVT, no pfwd
θ or pbwd

θ 95.43 ± 0.07 95.88 ± 0.09 91.62 ± 0.09 97.76 ± 0.01
CVT 95.49 ± 0.04 96.10 ± 0.12 91.66 ± 0.10 97.76 ± 0.01
CVT + LM 95.49 ± 0.03 96.15 ± 0.09 92.08 ± 0.10 97.76 ± 0.01

aLing et al. (2015) bMa & Hovy (2016) cLewis et al. (2016) dWu et al. (2017) eHashimoto et al.
(2017) fPeters et al. (2017) gLiu et al. (2017)
*The full TagLM model has many times more parameters than ours. TagLM-2048 is of more com-
parable size to our models, although still larger.

Table 2: Results for sequence tagging tasks. We report the means and standard deviation of 5 runs.
“Baseline” trains with Lsup, “Consistency” trains with” Lsup + Lconsistency, and “CVT” trains with
Lsup + LCVC. +LM means language modeling is added as an auxiliary task on the unlabeled data.

Method Depparse UAS Depparse LAS

Hashimoto et al. (2017) 94.67 92.90
Ma & Hovy (2017) 94.9 93.0
Shi et al. (2017) 95.33 –
Dozat & Manning (2017) 95.74 94.08

Baseline (supervised) 95.04 ± 0.04 93.22 ± 0.05
Baseline + LM 95.53 ± 0.06 93.79 ± 0.05
Consistency 95.31 ± 0.06 93.39 ± 0.07
CVT 95.73 ± 0.06 94.00 ± 0.04
CVT + LM 95.99 ± 0.07 94.30 ± 0.06

Table 3: Results for dependency parsing. We omit results from Choe & Charniak (2016), Kuncoro
et al. (2017), and Liu & Zhang (2017) because these train constituency parsers and convert the sys-
tem outputs to dependency parses. They produce higher scores, but have access to more information
during training and do not apply to datasets without constituency annotations.

Although the large TagLM model is competitive with ours for Chunking and NER, reducing the size
of TagLM to having 2048 hidden units already causes it to perform worse than our model.

Although there has been a large body of work successfully applying consistency-cost-based learning
to vision tasks, we find it does not provide the same gains for NLP. Training a model with the
consistency loss Lconsistency did not improve over the baseline for sequence tagging and only slightly
improved over the baseline for dependency parsing. This result is perhaps due to the lack of benefit
from adding noise when the input consists of discrete tokens as discussed earlier. CVT, on the other
hand, works well as a semi-supervised learning method for NLP.

Importance of Auxiliary Prediction Layers. To determine which of the auxiliary prediction layers
are most valuable for sequence tagging, we do a brief ablation study by training models without the
pfwd
θ /pbwd

θ or pfuture
θ / ppast

θ auxiliary softmax layers. We find that both kinds of layers improve perfor-
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Figure 4: Accuracy vs. size of the LSTMs in the first BiLSTM layer; the ones in the second layer
(and MLPs in the case of dependency parsing) are half the size of the ones in the first layer. Points
and error bars correspond to means and standard deviations over 5 runs.

mance, but the “future” and “past” layers are more beneficial than the “forward” and “backward”
ones, perhaps because theses provide a more distinct and challenging view of the input.

Training Larger NLP Models. Most sequence taggers and dependency parsers in prior use work
small LSTMs (hidden state sizes of at most 500 units) because larger models yield little to no gains
in performance (Reimers & Gurevych, 2017). We found our own supervised approaches and, to a
lesser extent, our models when only using language modeling as the auxiliary task to also not benefit
from increasing the model size. In contrast, when using CVT accuracy scales much better with
model size (see Figure 4). This result suggests the appropriate semi-supervised learning methods
may enable the development of larger, more sophisticated models for natural language processing
tasks with limited amounts of labeled data.

5 CONCLUSION

We propose Cross-View Training, a new method for semi-supervised learning. Our approach allows
models to effectively leverage their own predictions on unlabeled data. We report excellent results
on semi-supervised image recognition benchmarks and five tasks from natural language processing.
We see the development of CVT architectures for other tasks and theoretical analysis of CVT as
potential areas of future work.
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A SEQUENCE TAGGING MODEL DETAILS

Our sequence tagging model is a two layer CNN-BiLSTM (Chiu & Nichols, 2016; Ma & Hovy,
2016; Lample et al., 2016). The model produces a representation for each word in the input sentence
as follows. First, the characters in the word are embedded, resulting in a sequence of vectors. Then
a 1-dimensional convolution over these vectors followed by a max-pooling operation produces a
character-level representation of the word. Lastly, this character-based representation is added to a
word vector from an embedding matrix. The resulting sequence of word embeddings is then fed
through two BiLSTM layers and a softmax layer to produce an output distribution over labels for
each token.

We apply dropout (Hinton et al., 2012) to the word embeddings and outputs of each BiLSTM. We
apply label smoothing (Szegedy et al., 2016; Pereyra et al., 2017) to the target labels. We use an
exponential-moving-average (EMA) of the model weights during training as the final model; we
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found this to slightly improve accuracy and significantly reduce the variance in accuracy between
models trained with different random initializations. For Chunking and Named Entity Recognition,
we use a BIOES tagging scheme. The model is trained using SGD with momentum (Polyak, 1964;
Sutskever et al., 2013). Word embeddings are initialized with GloVe vectors (Pennington et al.,
2014). During training, we alternate minimizing Lsup over a minibatch of supervised examples and
minimizing LCVC over a minibatch of unlabeled examples. The full set of model hyperparameters
are listed below.

Parameter Value

Word Embeddings Initializiation 300d GloVe2

Character Embedding Size 100
Character CNN Filter Widths [2, 3, 4]
Character CNN Num Filters 300 (100 per filter width)
LSTM sizes 1024 for the first layer, 512 for the second one
Language model vocabulary size 10,000 (only applies to the +LM models)
Dropout 0.5 for labeled examples, 0.8 for unlabeled examples
Label Smoothing 0.1 for labeled examples, none for unlabeled examples
EMA coefficient 0.998
Learning rate 0.5/(1 + 0.005t0.5) (t is number of SGD updates so far)
Momentum 0.9
Batch size 64
Stopping criteria 150,000 updates

Table 4: Hyperparemters for NLP models.

B DEPENDENCY PARSING MODEL DETAILS

We use the same 2-layer CNN-BiLSTM encoder and the same hyperparameters as listed in Appendix
A. The MLPs used to produce representations for candidate head and dependent words have one
hidden layer of size 512 with a ReLU activation and an output layer of size 256. We apply dropout
to the output of the hidden layer. We omit punctuation from evaluation, which is standard practice
for the PTB-SD 3.3.0 dataset.

C CROSS-VIEW AUXILIARY LOSSES FOR SUPERVISED LEARNING

In initial experiments, we explored whether cross-view losses could benefit purely supervised clas-
sifiers. To do this, we trained models with the following objective:

Lsup-cv =
1

|Dl|
∑

xi,yi∈Dl

CE(yi, pθ(y|xi)) +
λ1
k

k∑
j=1

CE(yi, p
j
θ(y|xi))


See Section 3.1 for an explanation of the notation. We hoped that adding auxiliary softmax layers
with different views of the input would act as a regularizer on the model. However, we found little to
no benefit from this approach. For sequence tagging, results improved slightly on CCG and POS but
degraded on NER and Chunking. For image recognition, we augmented WideResNet (Zagoruyko &
Komodakis, 2016) with auxiliary softmax layers and evaluated it on CIFAR-10 and CIFAR-100. On
both datasets, the augmented model performed slightly worse (by ∼0.2% on CIFAR-10 and ∼0.9%
on CIFAR-100).

We also experimented with using Lsup-cv instead of of Lsup on semi-supervised CIFAR-10 and
CIFAR-10+. Surprisingly, it (slightly) decreased performance for all of the methods we experi-
mented with: supervised training, VAT, CVT, and CVT with adversarial noise. We note we only
tried these experiments with λ1 = 1, but this value of λ1 did work well for the semi-supervised set-
ting. These negative results suggest that the gains are from CVT are from the improved self-training
mechanism, not the additional prediction layers regularizing the model.
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