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Abstract

Recent State Space Models (SSMs) such as S4, S5, and Mamba have shown re-
markable computational benefits in long-range temporal dependency modeling.
However, in many sequence modeling problems, the underlying process is inher-
ently modular and it is of interest to have inductive biases that mimic this modular
structure. In this paper, we introduce SlotSSMs, a novel framework for incorpo-
rating independent mechanisms into SSMs to preserve or encourage separation
of information. Unlike conventional SSMs that maintain a monolithic state vec-
tor, SlotSSMs maintains the state as a collection of multiple vectors called slots.
Crucially, the state transitions are performed independently per slot with sparse
interactions across slots implemented via the bottleneck of self-attention. In experi-
ments, we evaluate our model in object-centric learning, 3D visual reasoning, and
long-context video understanding tasks, which involve modeling multiple objects
and their long-range temporal dependencies. We find that our proposed design
offers substantial performance gains over existing sequence modeling methods.
Project page is available at https://slotssms.github.io/

1 Introduction

State space models (SSMs) have recently emerged as a promising class of sequence models, achieving
remarkable success in language modeling [27, 58, 24, 50, 9] due to their long-term memory capability
and computational efficiency. Compared to Transformers [4] whose attention mechanisms also
facilitate capturing long-range dependencies, SSMs are more efficient during both training and
inference. Notably, SSMs offer parallel training with sub-quadratic complexity, and recurrent
generation with constant cost per time step. These benefits have motivated the application of SSMs
to sequences of other modalities such as audio [19] and video [10].

Typically, SSMs use a monolithic state vector to summarize all past information. This design can
struggle to model sequences with modular underlying structures, which are common in physical
processes and real-world dynamics. For example, physical objects largely follow independent
dynamics based on their own properties, with strong interactions happening only sparsely (e.g., when
objects come in close contact). A monolithic state vector would excessively entangle the dynamics of
different entities, thereby hurting generalization. It could be beneficial to incorporate inductive biases
for independent mechanisms [20] into the sequence modeling architecture.

Recent progress in object-centric learning [46, 54, 36] has led to several methods for discovering
modular object-centric structures and modeling their dynamics from videos with no or only weak
supervision [39, 13, 57]. Similar to RIMs [20], they build modularity into the RNN architecture
to separately keep track of the dynamics of each object. However, RNNs are prone to vanishing
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Figure 1: SlotSSMs vs existing models. (a) SlotSSMs incorporate modularity through independent state
transitions and sparse interactions via self-attention. (b) Traditional SSMs utilize a monolithic state vector for
all past information. (c) Multi-slot Transformer-based models offer modularity but with high computational
complexity. (d) Multi-slot RNN-based models have modular states but can’t parallelize training (red lock).
SlotSSMs combine parallelizable training, memory efficiency, and modularity for efficient temporal modeling.

gradients [51] and are not amenable to parallel training, making it hard to scale these methods up to
modeling long-range effects that span hundreds of time steps.

In this paper, we propose Slot State Space Models (SlotSSMs), a novel and general SSM framework
that have built-in inductive biases for discovering and maintaining independent mechanisms. Instead
of using monolithic state vectors, SlotSSMs maintain a set of modular slot states whose transition
dynamics are designed to be largely independent, with only sparse interaction across slots introduced
through the bottleneck of self-attention. The number of slots can be flexible across the layers of
SlotSSMs, allowing slots to have a different level of abstraction at each layer. Furthermore, SlotSSMs
inherit the strengths of SSMs, namely parallelizable training, memory efficiency, and long-range
reasoning capabilities, giving it an advantage over methods based on RNNs and Transformers.

Our contributions are summarized as follows. First, we propose SlotSSMs, a novel and general
architecture that incorporates independent mechanisms into SSMs for modeling inherently modular
physical processes. Second, we show that SlotSSMs can be specialized to solve object-centric
learning tasks. It achieves comparable or better performance than existing RNN-based methods and
the Transformer baseline that we develop, while being more computationallly efficient. Third, we
further investigate the abilities of SlotSSMs as a general sequence modeling framework, demonstrating
its advantages in video understanding and prediction, long-range reasoning, and 3D visual reasoning.

2 Preliminaries

A state space model (SSM) defines a mapping between an input sequence e1:T ∈ RT×D and an
output sequence y1:T ∈ RT×D via the recurrence [28, 27, 58, 50]:

ht = Atht−1 +Btet ,

yt = Ctht .
(1)

Here, T is the sequence length; et,yt ∈ RD are input and output vectors at time t; and ht ∈ RH

is the hidden state summarizing the history e≤t. The matrices At ∈ RH×H , Bt ∈ RH×D, and
Ct ∈ RD×H are designed with learnable parameters in specific ways that encourage modeling
long-range dependencies while maintaining computational efficiency. For example, At commonly
takes a diagonal or block-diagonal form, with its (complex) eigenvalues distributed close to the unit
circle at initialization [25, 27, 29, 26, 58, 50].

When At,Bt,Ct are time-invariant (constant over t), the computation of y1:T can be parallelized,
enabling efficient training. Recent works [24, 9] further show that conditioning these matrices
on the input et does not hinder training efficiency. They employ learnable functions A : RD →
RH×H ,B : RD → RH×D,C : RD → RD×H to generate input-dependent matrices:

At = A(et) , Bt = B(et) , Ct = C(et) . (2)
This allows the model to selectively emphasize or ignore information based on the input, leading to
more flexible sequence modeling.
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Figure 2: SSM vs SlotSSM. SlotSSM encourages modularity by maintaining a set of separate slot state
representations, each updated independently using separate transition matrices and input matrices, allowing for
more efficient and scalable modeling of complex sequences with inherent modular structures.

Due to the (block-)diagonal structure of At limiting cross-dimensional information flow, SSMs are
typically interleaved with mixing layers (e.g., linear projections or MLPs) to mix information across
dimensions. Alternatively, using dense Bt and Ct matrices can also enhance mixing.

3 Slot State Space Models (SlotSSMs)

Standard SSMs use monolithic vectors for inputs, outputs, and hidden states, and mix information
across all dimensions. This lack of modularity could cause difficulties in modeling real-world
dynamics such as object interactions, where the underlying process consists of multiple entities and is
inherently modular [20]. In this section, we present slot state space models (SlotSSMs), a new class
of SSMs with built-in inductive biases for encouraging and preserving modularity.

Our key idea is to maintain a set of separate slot state representations (called slots in short), and
process the slots independently and symmetrically. To do this, we format the input vector et ∈ RD as
a concatenation of K slot representations {skt ∈ RDs}Kk=1, where Ds = D/K. The output yt ∈ RD

and hidden state ht ∈ RH are formatted similarly:

et = concat
[
s1t , . . . , s

K
t

]
, yt = concat

[
y1
t , . . . ,y

K
t

]
, ht = concat

[
h1
t , . . . ,h

K
t

]
, (3)

where yk
t ∈ RDs and hk

t ∈ RHs are the output and the hidden state corresponding to slot skt , with
Hs = H/K. In this section, we focus on preserving modularity when the input already complies with
the slot format. When coupled with a slot encoder, the SlotSSM can help encourage the emergence
of modularity from unstructured inputs such as video frames, as we will discuss in Section 4.

To preserve modularity, we make sure that SlotSSM do not mix information across different slots.
More precisely, the hidden state hk

t and output yk
t only integrate information from the history of

the corresponding input slot sk≤t. As illustrated in Figure 2 (Right), this can be achieved by making
At,Bt,Ct block-diagonal, where the k-th block is only conditioned on the k-th slot:

At = diag
(
{A(skt )}Kk=1

)
, Bt = diag

(
{B(skt )}Kk=1

)
, Ct = diag

(
{C(skt )}Kk=1

)
. (4)

Implementation details. The SlotSSM formulation in Equation 4 is general and can accommodate
various choices of the A,B,C functions. In our implementation, we adopt those from Mamba [24].
Specifically, A(skt ),B(skt ),C(skt ) are themselves block-diagonal matrices with Ds blocks, one for

each slot dimension. The i-th blocks A
(i)
(skt ) ∈ RN×N and B

(i)
(skt ) ∈ RN×1 are obtained by

discretizing their continuous-time counterparts A(i) and B(i)(skt ) using the time step ∆(i)(skt ) and
the zero-order hold (ZOH) rule:

A
(i)
(skt ), B

(i)
(skt ) = ZOH

(
∆(i)(skt ), A

(i), B(i)(skt )
)
, i = 1, . . . , Ds . (5)

Here, N = Hs/Ds is the hidden state size per slot dimension, A(i) ∈ RN×N is an input-independent
learnable model parameter, and ∆(i) : RD → R,B(i) : RD → RN×1 are learnable functions imple-
mented as neural networks. Similarly, the i-th block C(i)(skt ) is computed by the learnable function

3
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<latexit sha1_base64="0ui6pyGdrNZ3fy4CFBC0lrU3bt4=">AAACWHicbZFNSwMxEIan61etX63iyUuwCIJYdv0+Cl48Ktgq2Fqy6VRDk82SzKpl6Y/xqr9If41p7UFrBwIvzzsDM2/iVElHYfhZCGZm5+YXioulpeWV1bVyZb3hTGYF1oVRxt7F3KGSCdZJksK71CLXscLbuHcx9G+f0Tppkhvqp9jS/DGRXSk4edQubzZjnb8O2jmxppYdpvajwcNhu1wNa+Go2H8RjUUVxnXVrhT2mh0jMo0JCcWdu4/ClFo5tySFwkGpmTlMuejxR7z3MuEaXSsf7T9gO550WNdY/xJiI/p7Iufaub6Ofafm9OQmvSGc6sV6OjamRzx2f9bKNe+hQKUmaKZIWvMycQJ1z1q5TNKMMBE/F3QzxciwYcqsIy0KUn0vuLDSh8DEE7dckP+Lko83mgzzv2gc1KKT2vH1UfX8YBx0EbZgG3YhglM4h0u4gjoIyOEN3uGj8BVAsBAs/rQGhfHMBvypYP0brW61Ug==</latexit>
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<latexit sha1_base64="iLzs7GokSiJGmzXnzvz+L0oELrw=">AAACWHicbZFNSwMxEIan60e1flXFk5dgEQSx7Jb6cRS8eFSwtmBryaZTDU02SzKrlqU/xqv+Iv01prUHrQ4EXp53BmbexKmSjsLwoxDMzS8sFpeWSyura+sb5c2tW2cyK7AhjDK2FXOHSibYIEkKW6lFrmOFzXhwMfabT2idNMkNDVPsaP6QyL4UnDzqlnfasc5fRt2cWFvLHlNH0ei+3i1Xwmo4KfZXRFNRgWlddTcLh+2eEZnGhITizt1FYUqdnFuSQuGo1M4cplwM+APeeZlwja6TT/YfsX1PeqxvrH8JsQn9OZFz7dxQx75Tc3p0s94Y/uvF+n9szIB47H6tlWs+QIFKzdBMkbTmeeYE6p91cpmkGWEivi/oZ4qRYeOUWU9aFKSGXnBhpQ+BiUduuSD/FyUfbzQb5l9xW6tGJ9Xj63rlvDYNegl2YQ8OIIJTOIdLuIIGCMjhFd7gvfAZQFAMlr9bg8J0Zht+VbD1Ba9MtVM=</latexit>
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<latexit sha1_base64="IIHKFAqjUKk6izvCuuUyoE9lYYI=">AAACWnicbVHLSgMxFE3HZ1sf9QEu3ASLIAhlpvhaFrpx4aKitYW2lkx6q6HJZEjuqGWYr3GrHyT4Maa1C60eCBzOuRfuOQljKSz6/kfOW1hcWl5ZzReKa+sbm6Wt7TurE8OhybXUph0yC1JE0ESBEtqxAaZCCa1wVJ/4rScwVujoFscx9BR7iMRQcIZO6pf2uggvmNavbrJ+irSrxIDK7D7ol8p+xZ+C/iXBjJTJDI3+Vu64O9A8URAhl8zaTuDH2EuZQcElZIVuYiFmfMQeoONoxBTYXjpNkNFDpwzoUBv3IqRT9edGypS1YxW6ScXw0c57E/FfL1T/y1qPkIX211mpYiPgIOWcmkgURj/PRcDhRS8VUZwgRPw7wTCRFDWd9EwHwgBHOXaEcSNcCZQ/MsM4ut8ouHqD+TL/krtqJTirnF6flGvVWdGrZJ8ckCMSkHNSI5ekQZqEk4y8kjfynvv0PC/vFb9HvdxsZ4f8grf7BecltmY=</latexit>

CLS1
t|l

<latexit sha1_base64="QqtmoglAFv2M8RgPiecKDIV6Sy0=">AAACWnicbVHLSgMxFE3Hd+ujPsCFm2ARBKHMFF9LwY0LF4q2Cm0tmfS2hiaTIbmjlmG+xq1+kODHmD4W9nEgcDjnXrjnJIylsOj7PzlvYXFpeWV1LV9Y39jcKm7v1KxODIcq11Kb55BZkCKCKgqU8BwbYCqU8BT2rgf+0xsYK3T0iP0Ymop1I9ERnKGTWsX9BsIHpte3D1krRdpQok1l9lJpFUt+2R+CzpJgTEpkjLvWdu6k0dY8URAhl8zaeuDH2EyZQcElZPlGYiFmvMe6UHc0YgpsMx0myOiRU9q0o417EdKh+n8jZcravgrdpGL4aqe9gTjXC9V8WesestBOnJUq1gMOUk6piURh9PtUBOxcNlMRxQlCxEcJOomkqOmgZ9oWBjjKviOMG+FKoPyVGcbR/Ube1RtMlzlLapVycF4+uz8tXVXGRa+SA3JIjklALsgVuSF3pEo4ycgn+SLfuV/P89a8wmjUy413dskEvL0/6QO2Zw==</latexit>

CLS2
t|l

<latexit sha1_base64="smdRA1P3UAganlW5x+R0vNhiOyc=">AAACWHicbZHbSgMxEIan67H1VBWvvAkWQRDLbvF0KXjjpYKtgq0lm041NNksyaxalj6Mt/pE+jSmhwtbHQj8fP8MzPyJUyUdheFXIZibX1hcWi6WVlbX1jfKm1sNZzIrsC6MMvY+5g6VTLBOkhTepxa5jhXexb3LoX/3gtZJk9xSP8WW5k+J7ErByaN2eacZ6/xt0M6JNbXsMHUUDR6jdrkSVsNRsb8imogKTOq6vVk4bHaMyDQmJBR37iEKU2rl3JIUCgelZuYw5aLHn/DBy4RrdK18tP+A7XvSYV1j/UuIjejviZxr5/o69p2a07Ob9YbwXy/W/2NjesRjN7VWrnkPBSo1QzNF0prXmROoe97KZZJmhIkYX9DNFCPDhimzjrQoSPW94MJKHwITz9xyQf4vSj7eaDbMv6JRq0an1ZOb48pFbRL0MuzCHhxABGdwAVdwDXUQkMM7fMBn4TuAYCkojluDwmRmG6Yq2PoBqbK1UA==</latexit>
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<latexit sha1_base64="UdgmS54fos+GMPVqt7X2/v8np3o=">AAACWHicbZFNSwMxEIan63f9qoonL8EiCGLZLX4dBS8eFawttLVk06mGJpslmVXL0h/jVX+R/hrT2oPWDgRenncGZt7EqZKOwvCzEMzNLywuLa8UV9fWNzZLW9v3zmRWYE0YZWwj5g6VTLBGkhQ2Uotcxwrrcf9q5Nef0TppkjsapNjW/DGRPSk4edQp7bZinb8OOzmxlpZdpo6j4UO1UyqHlXBc7L+IJqIMk7rpbBWOWl0jMo0JCcWda0ZhSu2cW5JC4bDYyhymXPT5Iza9TLhG187H+w/ZgSdd1jPWv4TYmP6eyLl2bqBj36k5PblpbwRnerGejY3pE4/dn7VyzfsoUKkpmimS1rxMnUC9i3YukzQjTMTPBb1MMTJslDLrSouC1MALLqz0ITDxxC0X5P+i6OONpsP8L+6rleiscnp7Ur6sToJehj3Yh0OI4Bwu4RpuoAYCcniDd/gofAUQLAUrP61BYTKzA38q2P4Gq5C1UQ==</latexit>
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<latexit sha1_base64="0ui6pyGdrNZ3fy4CFBC0lrU3bt4=">AAACWHicbZFNSwMxEIan61etX63iyUuwCIJYdv0+Cl48Ktgq2Fqy6VRDk82SzKpl6Y/xqr9If41p7UFrBwIvzzsDM2/iVElHYfhZCGZm5+YXioulpeWV1bVyZb3hTGYF1oVRxt7F3KGSCdZJksK71CLXscLbuHcx9G+f0Tppkhvqp9jS/DGRXSk4edQubzZjnb8O2jmxppYdpvajwcNhu1wNa+Go2H8RjUUVxnXVrhT2mh0jMo0JCcWdu4/ClFo5tySFwkGpmTlMuejxR7z3MuEaXSsf7T9gO550WNdY/xJiI/p7Iufaub6Ofafm9OQmvSGc6sV6OjamRzx2f9bKNe+hQKUmaKZIWvMycQJ1z1q5TNKMMBE/F3QzxciwYcqsIy0KUn0vuLDSh8DEE7dckP+Lko83mgzzv2gc1KKT2vH1UfX8YBx0EbZgG3YhglM4h0u4gjoIyOEN3uGj8BVAsBAs/rQGhfHMBvypYP0brW61Ug==</latexit>

x3
t|l�1

<latexit sha1_base64="iLzs7GokSiJGmzXnzvz+L0oELrw=">AAACWHicbZFNSwMxEIan60e1flXFk5dgEQSx7Jb6cRS8eFSwtmBryaZTDU02SzKrlqU/xqv+Iv01prUHrQ4EXp53BmbexKmSjsLwoxDMzS8sFpeWSyura+sb5c2tW2cyK7AhjDK2FXOHSibYIEkKW6lFrmOFzXhwMfabT2idNMkNDVPsaP6QyL4UnDzqlnfasc5fRt2cWFvLHlNH0ei+3i1Xwmo4KfZXRFNRgWlddTcLh+2eEZnGhITizt1FYUqdnFuSQuGo1M4cplwM+APeeZlwja6TT/YfsX1PeqxvrH8JsQn9OZFz7dxQx75Tc3p0s94Y/uvF+n9szIB47H6tlWs+QIFKzdBMkbTmeeYE6p91cpmkGWEivi/oZ4qRYeOUWU9aFKSGXnBhpQ+BiUduuSD/FyUfbzQb5l9xW6tGJ9Xj63rlvDYNegl2YQ8OIIJTOIdLuIIGCMjhFd7gvfAZQFAMlr9bg8J0Zht+VbD1Ba9MtVM=</latexit>
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t|l�1

<latexit sha1_base64="IIHKFAqjUKk6izvCuuUyoE9lYYI=">AAACWnicbVHLSgMxFE3HZ1sf9QEu3ASLIAhlpvhaFrpx4aKitYW2lkx6q6HJZEjuqGWYr3GrHyT4Maa1C60eCBzOuRfuOQljKSz6/kfOW1hcWl5ZzReKa+sbm6Wt7TurE8OhybXUph0yC1JE0ESBEtqxAaZCCa1wVJ/4rScwVujoFscx9BR7iMRQcIZO6pf2uggvmNavbrJ+irSrxIDK7D7ol8p+xZ+C/iXBjJTJDI3+Vu64O9A8URAhl8zaTuDH2EuZQcElZIVuYiFmfMQeoONoxBTYXjpNkNFDpwzoUBv3IqRT9edGypS1YxW6ScXw0c57E/FfL1T/y1qPkIX211mpYiPgIOWcmkgURj/PRcDhRS8VUZwgRPw7wTCRFDWd9EwHwgBHOXaEcSNcCZQ/MsM4ut8ouHqD+TL/krtqJTirnF6flGvVWdGrZJ8ckCMSkHNSI5ekQZqEk4y8kjfynvv0PC/vFb9HvdxsZ4f8grf7BecltmY=</latexit>
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<latexit sha1_base64="QqtmoglAFv2M8RgPiecKDIV6Sy0=">AAACWnicbVHLSgMxFE3Hd+ujPsCFm2ARBKHMFF9LwY0LF4q2Cm0tmfS2hiaTIbmjlmG+xq1+kODHmD4W9nEgcDjnXrjnJIylsOj7PzlvYXFpeWV1LV9Y39jcKm7v1KxODIcq11Kb55BZkCKCKgqU8BwbYCqU8BT2rgf+0xsYK3T0iP0Ymop1I9ERnKGTWsX9BsIHpte3D1krRdpQok1l9lJpFUt+2R+CzpJgTEpkjLvWdu6k0dY8URAhl8zaeuDH2EyZQcElZPlGYiFmvMe6UHc0YgpsMx0myOiRU9q0o417EdKh+n8jZcravgrdpGL4aqe9gTjXC9V8WesestBOnJUq1gMOUk6piURh9PtUBOxcNlMRxQlCxEcJOomkqOmgZ9oWBjjKviOMG+FKoPyVGcbR/Ube1RtMlzlLapVycF4+uz8tXVXGRa+SA3JIjklALsgVuSF3pEo4ycgn+SLfuV/P89a8wmjUy413dskEvL0/6QO2Zw==</latexit>

CLS2
t|l
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<latexit sha1_base64="QxCQfDgjqAKGFkKSFjxFB8mixBM=">AAACVnicbZFNSwMxEIazq7Vav1o9egkWQRDKbvHrWPDiUcF+QFtLNp22oclmSWaVsvS3eNV/pH9GTGsPtnUg8PK8MzDzJkqksBgEX56/sZnbym/vFHb39g8Oi6WjhtWp4VDnWmrTipgFKWKoo0AJrcQAU5GEZjS+m/nNFzBW6PgJJwl0FRvGYiA4Q4d6xeNOpDI77WVIO0r0qZw+h71iOagE86LrIlyIMlnUQ6/kXXT6mqcKYuSSWdsOgwS7GTMouIRpoZNaSBgfsyG0nYyZAtvN5ttP6ZkjfTrQxr0Y6Zz+nciYsnaiItepGI7sqjeD/3qR+h9rPUYW2aW1MsXGwEHKFZpKFEa/rpyAg9tuJuIkRYj57wWDVFLUdJYx7QsDHOXECcaNcCFQPmKGcXQ/UXDxhqthrotGtRJeV64eL8u16iLobXJCTsk5CckNqZF78kDqhJMJeSPv5MP79L79nJ//bfW9xcwxWSq/+AO8vLXY</latexit>
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<latexit sha1_base64="p1cvhqDB+37kR4udZBeVN+s18aA=">AAACVnicbZHbSgMxEIaz66nWU7WX3gSLIAhlt3i6LHjjZQWrhW4t2XSqoclmSWaVZemzeKtvpC8jpocLWx0I/Hz/DMz8iVMpLAbBl+evrK6tb5Q2y1vbO7t7lf2De6szw6HNtdSmEzMLUiTQRoESOqkBpmIJD/HoeuI/vICxQid3mKfQU+wpEUPBGTrUr1SjWBV23C+QRkoMqBw/NvqVWlAPpkX/inAuamRerf6+dxoNNM8UJMgls7YbBin2CmZQcAnjcpRZSBkfsSfoOpkwBbZXTLcf02NHBnSojXsJ0in9PVEwZW2uYtepGD7bZW8C//Vi9T/WeoQstgtrFYqNgIOUSzSTKIx+XToBh1e9QiRphpDw2QXDTFLUdJIxHQgDHGXuBONGuBAof2aGcXQ/UXbxhsth/hX3jXp4UT+/Pas1G/OgS+SQHJETEpJL0iQ3pEXahJOcvJF38uF9et/+mr8xa/W9+UyVLJRf+QG+mrXZ</latexit>
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<latexit sha1_base64="tMrodLU+Vp01ZMLtnEwuidE3zUg=">AAACVnicbZHbSgMxEIazq7W1nqq99CZYBEEou+LpUvDGywr2AG0t2XRaQ5PNkswqy9Jn8VbfSF9GTA8XWh0I/Hz/DMz8iRIpLAbBp+evrRc2iqXN8tb2zu5eZf+gZXVqODS5ltp0ImZBihiaKFBCJzHAVCShHU1uZ377GYwVOn7ALIG+YuNYjARn6NCgUu1FKs+mgxxpT4khldPHcFCpBfVgXvSvCJeiRpbVGOx7p72h5qmCGLlk1nbDIMF+zgwKLmFa7qUWEsYnbAxdJ2OmwPbz+fZTeuzIkI60cS9GOqc/J3KmrM1U5DoVwye76s3gv16k/sdaT5BF9tdauWIT4CDlCk0lCqNfVk7A0XU/F3GSIsR8ccEolRQ1nWVMh8IAR5k5wbgRLgTKn5hhHN1PlF284WqYf0XrrB5e1i/uz2s3Z8ugS+SQHJETEpIrckPuSIM0CScZeSVv5N378L78gl9ctPrecqZKfpVf+QbIRLXe</latexit>
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<latexit sha1_base64="ERX3NCad36W6tqc2G8AmSJoKJ6g=">AAACVnicbZFNSwMxEIazq7W1frV69BIsgiCU3eLXseDFo4KthbaWbDrV0GSzJLPKsvS3eNV/pH9GTD8OtjoQeHneGZh5EyVSWAyCL89fWy9sFEub5a3tnd29SnW/bXVqOLS4ltp0ImZBihhaKFBCJzHAVCThIRpfT/2HFzBW6PgeswT6ij3FYiQ4Q4cGlYNepPJsMsiR9pQYUjl5bAwqtaAezIr+FeFC1MiibgdV77Q31DxVECOXzNpuGCTYz5lBwSVMyr3UQsL4mD1B18mYKbD9fLb9hB47MqQjbdyLkc7o74mcKWszFblOxfDZrnpT+K8Xqf+x1mNkkV1aK1dsDBykXKGpRGH068oJOLrq5yJOUoSYzy8YpZKiptOM6VAY4CgzJxg3woVA+TMzjKP7ibKLN1wN869oN+rhRf387qzWbCyCLpFDckROSEguSZPckFvSIpxk5I28kw/v0/v2C35x3up7i5kDslR+5QfKIrXf</latexit>
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<latexit sha1_base64="orS6HW2w/QtXglEcmVZ1/kT473c=">AAACVnicbZFNSwMxEIazq9Vav6o9egkWQRDKbvHrWPDisYK1gq0lm041NNksyaxalv4Wr/qP9M+Iad2D/RgIvDzvDMy8iRIpLAbBt+evrBbW1osbpc2t7Z3d8t7+ndWp4dDiWmpzHzELUsTQQoES7hMDTEUS2tHwauK3X8BYoeNbHCXQVewpFgPBGTrUK1c6kcrexr0MaUeJPpXjx7BXrga1YFp0UYS5qJK8mr0976TT1zxVECOXzNqHMEiwmzGDgksYlzqphYTxIXuCBydjpsB2s+n2Y3rkSJ8OtHEvRjql/ycypqwdqch1KobPdt6bwKVepJZjrYfIIjuzVqbYEDhIOUdTicLo17kTcHDZzUScpAgx/7tgkEqKmk4ypn1hgKMcOcG4ES4Eyp+ZYRzdT5RcvOF8mIvirl4Lz2tnN6fVRj0PukgOyCE5JiG5IA1yTZqkRTgZkXfyQT69L+/HL/jrf62+l89UyEz55V/GWLXd</latexit>
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<latexit sha1_base64="3ZjBmco9Rs9PXcYgka1EpW0YjVk=">AAACVnicbZFNSwMxEIaz60dr/ar26CVYBEEou8Wvo+DFYwVrC7aWbDqtoclmSWbVsvS3eNV/pH9GTNs9aOtA4OV5Z2DmTZRIYTEIvjx/ZXVtvVDcKG1ube/slvf2761ODYcm11KbdsQsSBFDEwVKaCcGmIoktKLR9dRvPYOxQsd3OE6gq9gwFgPBGTrUK1c6kcpeJ70MaUeJPpWTx3qvXA1qwazosghzUSV5NXp73kmnr3mqIEYumbUPYZBgN2MGBZcwKXVSCwnjIzaEBydjpsB2s9n2E3rkSJ8OtHEvRjqjvycypqwdq8h1KoZPdtGbwn+9SP2PtR4hi+yftTLFRsBBygWaShRGvyycgIPLbibiJEWI+fyCQSopajrNmPaFAY5y7ATjRrgQKH9ihnF0P1Fy8YaLYS6L+3otPK+d3Z5Wr+p50EVyQA7JMQnJBbkiN6RBmoSTMXkj7+TD+/S+/TW/MG/1vXymQv6UX/4ByDa13g==</latexit>
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Figure 3: Sequence modeling with SlotSSM. Each layer includes a Slot Encoder, SlotSSM, and Slot Mixer.
The Slot Encoder uses a Transformer to extract slots from inputs. The SlotSSM independently updates the slots
via separate state transitions. The Slot Mixer introduces inter-slot interactions through self-attention.

C(i) : RD → R1×N . For simplicity and efficiency, B(i) and C(i) are shared across all 1 ≤ i ≤ Ds,
and A(i) is parameterized as a diagonal matrix.

4 Modular Sequence Modeling with SlotSSM

The SlotSSM proposed in Section 3 are designed to preserve modularity when the input is already
separated into slots. In this section, we complement SlotSSM with a slot encoder that extracts
slot representations from unstructured inputs (Section 4.1), and a slot mixer that introduces sparse
interactions across slots (Section 4.2). We then present a sequence modeling architecture (Section 4.3)
that encourages discovery of underlying modular processes by stacking these components.

4.1 Slot Encoder

We assume the unstructured input xt at each time step t is represented as a sequence of M tokens:

xt = (x1
t , . . . , x

M
t ) , xm

t ∈ RDx . (6)

For example, image inputs can be CNN feature maps (M is the number of cells in the feature map),
or as embeddings of non-overlapping image patches (M is the number of patches), as proposed in
ViT [12]. To extract K slot representations from xt, we use K learnable CLS 2 tokens {CLSk

t ∈
RDx}Kk=1 as queries and perform cross-attention with the input tokens through a Transformer [63]:

{CLSk
t }Kk=1 ← Transformer

(
q = {CLSk

t }Kk=1, kv = {xm
t }Mm=1

)
. (7)

The Transformer also includes self-attention within the CLS tokens, allowing them to communicate
with each other and capture information from different parts of the input, thereby facilitating the
emergence of modularity. The slot representations are then obtained by applying a linear projection
to the corresponding output embeddings of the CLS tokens:

skt = Linear(CLSk
t ) , k = 1, . . . ,K . (8)

4.2 Slot Mixer

The slot encoder obtains slot decomposition purely based on single time steps, which can be subop-
timal. In addition, the SlotSSM processes each slot fully independently, making it hard to correct
mistakenly decomposed slots or model interarctions across slots. To resolve both issues, we interleave
SlotSSM with slot mixers.

2Following the tradition of ViT, we use “CLS” to distingish learnable tokens from observation tokens.
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The slot mixer consists of two residual blocks, and is applied to the outputs {yk
t }Kk=1 of the SlotSSM.

The first block introduces interaction across slots through self-attention [63], whereas the second
block uses MLP to further process the gathered information within each slot:(

y1
t , . . . , y

K
t

)
←

(
y1
t , . . . , y

K
t

)
+ SelfAttn

(
LN(y1

t ), . . . , LN(yK
t )

)
, (9)(

y1
t , . . . , y

K
t

)
←

(
y1
t , . . . , y

K
t

)
+

(
MLP(LN(y1

t )), . . . , MLP(LN(yK
t ))

)
. (10)

Here, LN(·) denotes layer normalization [2]. Because yk
t carries information from the entire history

of each slot, it provides the opportunity to refine the slot representations based on temporal dynamics.

4.3 Sequence Modeling Architecture

We now present a generic architecture for modeling sequences with modular underlying processes.
Given a sequence of unstructured inputs x1:T , our goal is to obtain a set of Kl modular representations
at each time step t and at each layer l that summarizes all underlying processes up to time t.

In general, the number of slots Kl at each layer can be different, potentially allowing fewer but more
abstract slots at higher layers. To accommodate this, we insert a slot encoder wherever the number of
slots changes, and repurpose it to extract a different number of slots from existing slot representations.
This is achieved by treating the slots output from the previous layer as keys and values in Equation 7.
When the number of slots does not change, we can simply copy the slots from the previous layer.

As shown in Figure 3, our proposed architecture stacks the (optional) slot encoder, SlotSSM, and slot
mixer together at each layer. Variables at layer l are denoted with the subscript ‘|l’. The slot mixer’s
output from layer l−1, {xk

t|l−1}
Kl−1

k=1 , serves as input to layer l. The initial input is {xk
t|0}K0

k=1, where
K0 := M . The computations at each layer l = 1, . . . , L are:

{skt|l}Kl

k=1 = SlotEncoder
(
{xk

t|l−1}
Kl−1

k=1

)
, (11)

{yk
t|l}Kl

k=1, {hk
t|l}Kl

k=1 = SlotSSM
(
{skt|l}Kl

k=1, {hk
t−1|l}Kl

k=1

)
, (12)

{xk
t|l}Kl

k=1 = SlotMixer
(
{yk

t|l}Kl

k=1

)
. (13)

The final output {xk
t|L}KL

k=1 can be used for various tasks, such as predicting the next observation and
the properties of underlying processes (e.g., position, velocity).

5 Object-Centric Learning with SlotSSM

In this section, we present a concrete example of adapting the generic sequence modeling architecture
proposed in Section 4 to solve a specific task. We consider the task of object-centric representation
learning from unannotated videos of interacting objects, a typical example of sequences with modular
underlying structures. The goal is to obtain a representation for each individual object that captures
relevant attributes such as object position, size, shape, color, etc. without any object-level annotation.

5.1 Object-Centric SlotSSMs (OC-SlotSSMs)

Inspired by previous works [46, 67], we make slight modifications to our sequence modeling archi-
tecture to facilitate the discovery of modular structures. We call the resulting model OC-SlotSSMs.
First, we use the same number of slots across all layers. It is thus unnecessary to have a slot encoder
per layer. However, we find it helpful to still have it, but in another form that encourages iterative
refinement of the slots. Specifically, we use the slots output from the previous layer {xk

t|l−1}Kk=1

as queries, and provide the input tokens {xm
t|0}Mm=1 as keys and values. Second, we introduce

competition among slots in the attention layers of the slot encoder. We achieve this by using inverted
attention [61, 67], which is essentially cross attention with the Softmax operation performed over the
queries instead of the keys. This has the effect of softly assigning each input token to a slot, thereby
promoting modularity. The computation at each layer l = 1, . . . , L can be summarized as follows:
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{skt|l}Kk=1 = InvAttn
(
q = {xk

t|l−1}Kk=1, kv = {xm
t|0}Mm=1

)
, (14)

{yk
t|l}Kk=1, {hk

t|l}Kk=1 = SlotSSM
(
{skt|l}Kk=1, {hk

t−1|l}Kk=1

)
, (15)

{xk
t|l}Kk=1 = SlotMixer

(
{yk

t|l}Kk=1

)
. (16)

We note that the queries in the first inverted attention layer are the learnable CLS tokens {CLSk
t|0}Kk=1.

5.2 Training Pipeline

Following previous works in object-centric learning [46, 39, 57], we adopt an auto-encoding training
pipeline. Given a sequence of video frames {ot ∈ RH×W×3}Tt=1, we obtain the input xt|0 to our
sequence modeling architecture by applying a CNN encoder to each frame ot and adding a positional
embedding for each feature map cell. The output slots {xk

t|L}Kk=1 are each decoded into an object
image ôk

t ∈ RH×W×3 and an alpha mask αk
t ∈ RH×W×1 by a spatial broadcast decoder [66]. The

final reconstruction ôt ∈ RH×W×3 is given by the alpha-composition of the object images:

ôk
t ,α

k
t = Decoder(xk

t|L) , ôt =

K∑
k=1

exp(αk
t )∑K

j=1 exp(α
j
t )
· ôk

t . (17)

The training objective is to minimize the reconstruction error L = 1
T

∑T
t=1 ∥ôt − ot∥22.

6 Related Work

State Space Models (SSMs). Popularized by S4 [27], SSMs have attracted growing interest in
language modeling and as a sequence modeling framework in general. The original S4 follows
the HiPPO theory [25] to parameterize and initialize the state transition matrices, which is quite
mathematically involved. Most recent works have proposed simplified versions that use diagonal tran-
sition matrices [29, 26, 58] and pure RNN formulation (i.e., without reliance on ODE discretization)
[30, 50, 9]. Several works have proposed hybrid architectures of SSMs and Transformers to incorpo-
rate their complementary strengths [75, 48, 17, 32, 24]. In addition to language modeling, SSMs have
been applied to various domains, including time-series generation [73], audio generation [19], visual
classificiation and generation [49, 40, 32, 65, 74, 71], and reinforcement learning [8, 47, 10, 52]. Our
study introduces the first SSM with inductive biases for modeling inherently modular processes.

Object-Centric Learning. Object-centric learning seeks to discover modular structures and indepen-
dent mechanisms [20] such as objects and their relations from multi-object images and videos with
weak or no supervision [3, 22, 38, 23, 15, 14, 16, 7, 45, 35, 41, 37, 6, 44, 11, 1, 64, 68, 53, 34]. Recent
works are predominantly based on the Slot Attention [46] model, which uses a GRU [5] and compet-
itive attention mechanisms to iteratively refine slot representations [54, 57, 39, 13, 69, 55, 36, 70].
However, GRUs and RNNs in general are prone to vanishing gradient issues [51], and the train-
ing must be done in a sequential way. These weaknesses render them incapable of scaling up to
long-range videos. Additionally, hardware parallelization for video object-centric learning has been
explored in [56], however, it incurs quadratic cost unlike ours. Our SlotSSMs framework can be
specialized to address object-centric learning tasks effectively. By integrating SSMs at its core,
SlotSSMs benefit from parallelizable training and possess remarkable long-term memory capabilities.
Moreover, as a versatile framework, SlotSSMs are well-suited to tackle other tasks such as long-range
visual reasoning.

7 Experiments

We present an extensive evaluation of our models across a variety of tasks. Section 7.1 illustrates the
need for modular latent states through a multi-object video prediction task. Section 7.2 demonstrates
the advantages of SlotSSMs over Transformers and RNNs using a newly proposed long-context rea-
soning benchmark. Section 7.3 investigates the object-centric learning capabilities of OC-SlotSSMs.
Finally, Section 7.4 showcases the 3D visual reasoning capabilities using the CATER benchmark [18].
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Figure 4: Multi-Object Video Prediction Task. Left: Generated video frames at every second step, showing 10
of the 20 total frames generated. Green color indicates ground-truth and red color indicates predictions. Right:
MSE over a 20-frame autoregressive rollout, given 10 context frames. SlotSSM demonstrates its efficiency in
modeling multi-object dynamics.

7.1 Multi-Object Video Prediction

We begin with a multi-object video modeling task to demonstrate the benefit of incorporating
modularity into state space.

Dataset and Task. We utilize the bouncing balls video dataset introduced by [62], which consists
of videos of white balls bouncing off each other in an empty window. Each ball has random
initial positions, velocities, and masses, governing their interactions. The task is conditional video
generation, specifically p(xT+1:T+W |x1:T ). This task is inherently modular as it requires models to
remember each object’s attributes and interaction rules.

Experimental Setup. We train models on 20-frame sequences using teacher-forcing and binary
cross-entropy loss. At test time, given T = 10 context frames, the model autoregressively predicts
W = 20 future frames using its own outputs. Performance is evaluated using Mean Squared Error
(MSE) between predicted and ground-truth images.

Models. We employ the SlotSSM architecture described in Section 4.3 We use the same number of
slots across layers and apply the Slot Encoder only at the first layer. We compare our model against
several baselines: Single State SSM, which shares the same architecture but uses a monolithic state;
Single State SSM (Split), which uses a Single State SSM with multi-slot encoder and decoder—slots
are concatenated in SSM, then split into multiple slots for the decoder; RIM[20], a slot-based RNN
model with separate RNN weights per slot that introduces sparse slot updates and interactions based
on input attention values; Transformer, a vanilla Transformer model with a single input embedding
per time step; and SlotTransformer, a Transformer model with multiple input slots at each time step.

All models share the same encoder and decoder architectures. The encoder is a Transformer described
in Section 4.1, using a single CLS token for single-state models. The decoder consists of three
Transformer layers with self-attention for image patches and cross-attention to query the slots. We
use six slots for all slot-based models. For RIM, we set k = 4 for top-k active modules as in the
original paper. We carefully match hyperparameters across baselines to ensure comparable model
sizes, except for RIM, which inherently requires a larger model due to separate RNN weights per slot.
Additional implementation details are in Appendix C.

Results. Figure 4 compares model performances, showing that SlotSSM outperforms all baselines,
including a slight improvement over SlotTransformer. The significant gap between SlotSSM and
Single State SSM underscores the importance of modular slot states for effective multi-object
dynamics learning, as also evidenced by the comparison between Transformer and SlotTransformer.
SlotSSM also significantly outperforms Single State SSM (Split), which uses the same modular
encoder and decoder, highlighting that modularity in temporal modeling—the core contribution of
SlotSSM—is critical for improved performance. While the RIM model performs better than other
single-state baselines, it still lags behind SlotSSM and SlotTransformer.
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(a) Long-Context Construction (b) Model Efficiency

Figure 5: Long-Context Construction and Model Efficiency in the Blinking Color Balls Benchmark. Left:
We construct long-sequence inputs by patchifying the context images. Right: Comparison of model inference
latency with batch size 6. SlotSSM demonstrates computational efficiency for long-sequence processing tasks.

7.2 Long-Context Reasoning

We now evaluate the long-context reasoning capabilities of SlotSSM. To enable a rigorous assessment
in a multi-object setting, we propose the novel Blinking Color Balls Benchmark.

Blinking Color Balls Benchmark. This benchmark has two variants—Earliest Color and Most
Frequent Color—each consisting of image sequences with context images x1:T−1 and a target image
xT . In each context image, one ball is randomly selected and assigned a non-white color from five
options while others remain white. The coloring of balls in the target image xT depends on the
variant: in Earliest Color, each ball’s color is its earliest assigned non-white color in the context
(remaining white if none); in Most Frequent Color, each ball’s color is the non-white color assigned
most frequently during the context (ties broken by earliest assignment; remaining white if none).

To create a long-range reasoning task, we further patchify each context image into non-overlapping
P × P patches and flatten them into a sequence of length P 2, as shown in Figure 5(a). With context
length T − 1, the total input sequence length is L = (T − 1)× P 2. Models must identify and track
objects from partial patch views while remembering and counting color assignments, making the task
highly challenging. The final task is to predict the target image given this long sequential input.

Experimental Setup. We evaluate models on Earliest Color with T = 6 and Most Frequent
Color with T ∈ {6, 11}, using patch sizes P ∈ {4, 8, 16}. This yields input sequence lengths
L ∈ {80, 160, 320, 640, 1280, 2560}. The Most Frequent Color with T = 11 requires stronger
memorization and reasoning capabilities due to longer context and more color assignments, .

Models. We employ the same encoder, decoder, and the SlotSSM architectures as in Section 7.1. For
slot encoding, each image patch is treated as an image and processed by the slot encoder. The slots
from the last time step are provided to the decoder to predict the full target image. We compare our
SlotSSM against several baselines: Single State SSM, SlotTransformer, and RIM. Additionally, we
introduce a novel slot-based design called SlotRNNs, which shares RNN weights across slots and
uses self-attention layers between time steps as the slot mixer. SlotRNNs can be viewed as a special
case of RIMs with shared weights and dense state updates. Empirically, SlotRNNs exhibit more
stable training and improved performance compared to RIMs. For fair comparison, all slot-based
models use six slots, and we carefully match model sizes as in Section 7.1.

Results. Figure 6 shows that SlotSSM outperforms Single State SSM, SlotRNN, and RIM across all
sequence lengths. For shorter sequences (80 and 160), Single State SSM and SlotRNN have relatively
low error rates but degrade significantly beyond 320 frames. Surprisingly, RIM fails to generalize at
any sequence length, likely due to optimization issues from separate weights per slot; our SlotRNN ad-
dresses this by sharing weights across slots while maintaining modularity. SlotTransformer performs
competitively up to 640 frames. However, SlotSSM demonstrates superior long-range reasoning,
especially at 1280 and 2560 frames, where other models cannot run due to memory or optimization
constraints. Figure 5(b) highlights SlotSSM’s computational efficiency. SlotTransformer’s inference
latency increases rapidly with sequence length due to quadratic complexity, SlotSSM maintains stable
and efficient inference across all lengths. Due to SlotTransformer’s high memory usage, we used
a batch size of 6 for latency evaluation. Qualitative comparisons in Appendix B.3 provide further
insights into the models’ strengths and weaknesses.
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Figure 6: Long-Context Reasoning in Blinking Balls Benchmark. SlotSSM maintains consistent performance
across sequence lengths from 80 to 2560, whereas baseline models show degraded performance or fail to complete
training due to high memory and computational requirements.
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Figure 7: Object-Centric Learning Results. Left: Qualitative comparison of segmentation masks on MOVi-A.
OC-SlotSSM demonstrate less object spliting and better boundary adherence. Right: Quantitative evaluation on
unsupervised object segmentation and attribute prediction. OC-SlotSSM outperforms SAVi on most metrics.

7.3 Unsupervised Object-Centric Learning

In this section, we evaluate the performance of the Object-Centric SlotSSMs (OC-SlotSSM) variant
in unsupervised object-centric representation learning.

Datasets. We evaluate OC-SlotSSM on the MOVi-A and MOVi-B subsets of the MOVi video dataset
[21], which contain videos of up to 10 objects moving in a 3D environment. MOVi-B adds complexity
over MOVi-A by including a wider variety of object types and multi-colored backgrounds.

Tasks. Following prior object-centric learning works [46, 36], we evaluate models on two downstream
tasks: unsupervised object segmentation and attribute prediction. For segmentation, we report FG-
ARI and mIoU metrics. For attribute prediction, we measure the quality of representations by inferring
object properties: we report prediction accuracy for discrete attributes (e.g., object shape) and R2 for
continuous attributes (e.g., object position).

Models. We compare OC-SlotSSM to SAVi [39], an RNN-based object-centric learning approach.
Both models use a CNN encoder to extract image features as input tokens xt | 0mm = 1M , which
are processed by their respective attention mechanisms—inverted attention in OC-SlotSSM and slot
attention in SAVi—to produce slots. These slots are then used to reconstruct the image and generate
per-object segmentation masks via a spatial broadcast decoder, with reconstruction as the training
objective. For unsupervised object segmentation, we directly use the object masks obtained during
training. For attribute prediction, we match slots to object IDs using Hungarian matching based
on segmentation masks, then use linear heads and 2-layer MLPs to predict discrete and continuous
attributes, respectively, keeping the slots frozen.

Results. Results in Figure 7 demonstrate that OC-SlotSSM consistently outperforms SAVi in
unsupervised object segmentation on both MOVi-A and MOVi-B. The qualitative comparison (Figure
7, left) shows that OC-SlotSSM generates masks with tighter object boundaries and fewer object
splitting, which also leads to improved attribute prediction accuracy (Figure 7, right). Furthermore,
we empirically found that OC-SlotSSM exhibits superior stability during training compared to SAVi,
which tends to collapse into a single slot representing the entire scene when trained long enough. This
collapse is not reflected in the validation loss, so we apply early stopping based on manual inspection.
In contrast, OC-SlotSSM does not suffer from this instability, demonstrating its robustness in learning
object-centric representations.
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Table 1: Performance on CATER Snitch Localization Task.

Model No Pre-train Pre-train
Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

Single State SSM 10.27 27.21 41.15 65.70
SlotTransformer 41.09 62.24 49.21 70.24
SlotSSM 25.64 45.03 54.73 74.42
OC-SlotSSM 61.58 84.00 69.27 90.48

7.4 3D Visual Reasoning

Finally, we explore the application of SlotSSM and OC-SlotSSM to 3D visual reasoning tasks using
the CATER benchmark [18].

CATER Benchmark. CATER consists of 300-frame video episodes of objects moving in a 3D
environment. The movement can lead to partial occlusions and even complete coverage of smaller
objects by larger ones. The primary task is snitch localization—predicting the golden snitch’s location
in the final frame. The snitch is always present but may be occluded. Models must reason about
its location based on the last visible position and other objects’ movements. Success in this task
demonstrates models’ capacity for complex visual reasoning in dynamic 3D environments.

Experimental Setup. We consider two experiment settings: direct training and pre-training + fine-
tuning. In direct training, models are trained end-to-end on the snitch localization task. In pre-training
+ fine-tuning, models are first pre-trained on video inputs using a reconstruction objective, then
fine-tuned on the task-specific signal. During pre-training, we randomly sample 32 frames from the
300-frame videos. For direct training and fine-tuning, we split the sequence into 50 non-overlapping
segments of 6 frames each, randomly selecting one frame from each to create a 50-frame sequence
spanning the entire video. At test time, we evenly sample 50 frames by skipping every 6 frames. The
snitch’s final location is quantized into a 6×6 grid, framing the problem as a classification task.

Models. We evaluate the performance of SlotSSM, OC-SlotSSM, Single State SSM, and Slot-
Transformer. We exclude RNN-based baselines, as our preliminary experiments reveal that they are
unstable when handling long video inputs and prone to collapse to a constant output. For the visual
pre-training setting, we employ a spatial broadcast decoder to reconstruct the input images. During
downstream training/fine-tuning, we feed the slots from the final step to a transformer predictor with
single CLS token, followed by a linear layer on the output CLS token to predict the snitch’s position.

Results. Table 1 presents the Top-1 and Top-5 accuracy on the CATER Snitch Localization task.
Consistent with our previous findings, SlotSSM outperforms Single State SSM, highlighting the
importance of modular latent structures. Comparing SlotSSM with SlotTransformer, we see notable
differences between direct training and pre-training settings: in direct training, SlotTransformer
surpasses SlotSSM, possibly due to optimization advantages from direct access to all previous states;
however, SlotSSM benefits more from pre-training, likely due to the explicit memory capacity of
SSM states, consequently, pre-trained SlotSSMs outperforming their SlotTransformer counterparts.

Remarkably, OC-SlotSSM achieves the highest accuracy, outperforming all baselines by a large
margin in both direct training and pre-training settings. This performance gain may be attributed
to the explicit decomposition into object-centric representations, which facilitates reasoning about
object properties, relationships, and interactions.

8 Conclusion

In this work, we presented SlotSSMs a novel approach to incorporating modular structure and
inductive biases into State Space Models for improved sequence modeling. By maintaining a
collection of independent slot vectors and performing state transitions independently per slot with
sparse interactions via self-attention, SlotSSMs effectively captures the inherent modularity present in
many real-world processes. The experimental results in object-centric video understanding and video
prediction tasks demonstrate the substantial performance gains offered by SlotSSMs over existing
sequence modeling methods.
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A Limitations & Broader Impact

Limitations SlotSSMs’ success illustrates the importance of designing architectures that align with
the problem domain’s underlying modular structure. It also paves the way for future research in
modular and object-centric sequence modeling. However, it has some limitations that future studies
could address. First, compared to Transformer architectures, we find that SlotSSMs could benefit
more from a pre-training phase in visual reasoning tasks. For example, in the 3D visual reasoning
task, SlotSSMs underperform Transformer models when trained without pretraining. However, when
combined with task-free pretraining, SlotSSMs demonstrate significant improvement, enabling them
to outperform Transformer models. We note that this effect of task-free pre-training is more prominent
in SlotSSMs than in Transformer baselines. This suggests that for tasks with sparse training signals,
the sequential nature of SlotSSM performs better with a pre-training phase to learn to effectively
utilize information from all time steps. We believe this phenomenon is worth further investigation in
future research. Second, while the proposed architecture is applicable beyond video modeling—for
example, to other modalities such as text and audio—this study has not explored these possibilities.
It remains a matter for future work. Thrid, due to our academic research lab’s computing resource
constraints, we were unable to significantly scale up the proposed model to industry-scale in terms of
model size and data size. Scaling up SlotSSMs could uncover additional properties or limitations
that are not evident at the current scale of experimentation. Lastly, future studies should investigate
the effect of increased visual complexity in videos. As an initial step, we present a preliminary
exploration in Appendix D.2, where SlotSSMs are applied to natural video scenes. These experiments
illustrate how modularity can emerge through the independent mechanisms of SlotSSMs in real-world
scenarios. We hope these findings will inspire future research on the industry-scale adoption of
SlotSSMs.

Impact Statement The introduction of SlotSSMs, a novel framework that incorporates independent
mechanisms into State Space Models (SSMs), has the potential to significantly impact the field of
sequence modeling. By leveraging the modular structure inherent in many real-world processes,
SlotSSMs offers a more intuitive and effective approach to modeling long-range temporal depen-
dencies in object-centric video understanding and prediction tasks. The substantial performance
gains demonstrated by SlotSSMs over existing sequence modeling methods highlight the importance
of designing architectures that align with the underlying structure of the problem domain. This
breakthrough could lead to the development of more efficient and accurate models for a wide range
of applications, such as robotics, autonomous vehicles, and video surveillance systems. Moreover,
the success of SlotSSMs in capturing the modular nature of real-world processes could inspire further
research into modular and object-centric sequence modeling. This could result in the development of
even more advanced architectures that can better handle the complexity and diversity of real-world
data. Because this is a general backbone architecture for sequence modeling, it doesn’t raise direct
ethical concerns. However, its ethical implications depend on the way downstream application
developers use the model.

B Blinking Color Balls Benchmark

B.1 Motivation

Real-world videos are often inherently modular, involving multiple dynamic entities and their interac-
tions across time. However, existing long-range reasoning tasks, such as those in the Long-Range
Arena Benchmark [60], are typically designed to focus on single-object settings and recognizing a
single dynamic pattern in the observations. To bridge this gap and facilitate more comprehensive
evaluation, we propose the Blinking Color Balls Benchmark, a long-range visual reason benchmark
desgined in a multi-object setting.

B.2 Dataset Design

We provide an illustrative example of the dataset design in Figure 8. Each episode of the dataset
contains a context-target pair (x1:T−1,xT ). At each timestep in x1:T−1, all bouncing balls are first
colored white, and then one ball is randomly picked and colored with one of 5 non-white colors. This
process is repeated for all context frames, and it is represented in the rows in Figure 8(top). Note that
the object picking and coloring are performed independently for each timestep, thus one ball could
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Target Images

Figure 8: Blinking Color Balls Benchmark Overview. Left: Context frames with independent random ball
picking and color assignments for each frame. Top figures indicate the sequential color assignment. Right:
Target image for the Earliest Color and Most Frequent Color variants. Top figures indicate the color assignment
rules.

be selected none or multiple times and colorized with the same or different colors across different
timesteps.

The target images are then constructed with two rules: Earliest Color and Most Frequent Color. The
Earliest Color rule picks the earliest non-white color assigned to the ball as the final color, while the
Most Frequent Color rule counts the assignment of each non-white color and picks the color with
the highest count (if there are ties, the earlier color among the highest is chosen). In Figure 8, we
differentiate the two datasets using the same context sequence, which will result in different target
images based on the rule. Note that regardless of the color assignment, the objects are moving and
follow the physical bouncing rules throughout the full sequence. More image samples can be found
in Figure 9.

Finally, as illustrated in Figure 5(a), we transform the conditional image generation task into a
long-range reasoning task by using patchified context images as input. Instead of providing the
T − 1 context images directly to the model, we flatten non-overlapping patches of the original
images to create a long input sequence. Given P × P patches per image, the context length becomes
L = (T − 1)× P 2. Note that patchification is used intentionally to construct long sequences for the
benchmark; SlotSSMs in general do not inherently require patchified inputs and instead use a Slot
Encoder to extract slots as input at each time step.

B.3 Challenges and Qualitative Comparison

The Blinking Color Balls tasks pose significant challenges for the models, as they are required
to reason about the object movement and color assignment rules from partial views of objects in
temporally distant image patches. We can define two levels of challenges: (1) identifying the objects
from image patches and predicting their future positions based on their dynamics, and (2) determining
the final color assignment of each object based on the given rules. The first challenge is relatively
simple, as it primarily involves learning the dynamics of objects from the past two frames prior to
the target time step. However, the second challenge is particularly difficult, as it requires the model

(a) Earliest Color Variant (b) Most Frequent Color Variant

Context Sequence Context SequenceTarget Target

Figure 9: Blinking Color Balls Samples.
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Figure 10: Blinking Color Balls Qualitative Comparison. Results shown for the Most Frequent Color variant
with a sequence length of 80 frames.

to reason over the entire input sequence, necessitating the identification of an object’s history from
partially observed patches in a long-range context.

Figure 10 presents a qualitative comparison of the models’ performance on the task. The results
reveal a clear categorization of the models based on their capability to address the two levels of
challenges. The baseline RIM model successfully predicts the object positions in the target image
but struggles with learning the color assignment rules. Consequently, it predicts the color white that
generally have the highest appearance probability for all objects. Note that the rendered images are
based on the argmax of the logits over the color categories. Models such as SlotRNN and Single
State SSM demonstrate the ability to learn color assignments, but they make mistakes in some cases.
In contrast, SlotSSM and SlotTransformer successfully achieve both accurate position prediction and
color assignment.

C Additional Implementation Details

C.1 SlotSSMs and OC-SlotSSMs

Slot Encoder. The main difference between the SlotSSMs and OC-SlotSSMs variants is in the design
of the Slot Encoders as illustrated in Figure 11. The Slot Encoder in SlotSSMs is implemented as
a multi-layer transformer with self-attention and cross-attention modules. Given the input tokens
Xt = {xm

t }Mm=1, the structure of each layer in the Slot Encoder can be delineated into three modules:

Ct = SelfAttn(Ct) , (18)
Ct = CrossAttn (q = Ct, kv = Xt) , (19)
Ct = MLP(Ct) . (20)

We use 3 layers in all our experiments. Note that we also apply skip connections and layer normaliza-
tion in the input for all three modules, but have omitted them in the equations for brevity. The regular
cross-attention used here employs softmax normalization over the attention weights applied to the
input tokens:

Q = WQ(Ct), K = WK(Xt), V = WV (Xt) , (21)

Cout
t = softmax

(
QKT

√
D

, axis=‘keys’
)
V . (22)

In the OC-SlotSSMs layers, the Slot Encoder is implemented as a single inverted attention layer. This
layer differs from the regular cross attention by the way attention weights are normalized:
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Figure 11: SlotSSMs vs OC-SlotSSMs.

Q = WQ(Ct), K = WK(Xt), V = WV (Xt) , (23)

A = softmax
(
QKT

√
D

, axis=‘queries’
)

, (24)

Ai,j =
Ai,j∑NK

j=1 Ai,j

, (25)

Cout
t = AV . (26)

The inverted attention layer applies softmax normalization over the queries, introducing a competition
among the query tokens over the attention to the input tokens and thereby promoting disentanglement
for the input tokens.

SSM Blocks. For the implementation of the SSM models, we leverage recent advances in linear state
space models and design our SSM block in SlotSSM based on the Mamba architecture [24]. The
block-diagonal transition of slots is implemented as parallel runs of SSM blocks that share the same
model weights.

{yk
t|l}Kl

k=1, {hk
t|l}Kl

k=1 = SlotSSM
(
{skt|l}Kl

k=1, {hk
t−1|l}Kl

k=1

)
(27)

=⇒ yk
t|l,h

k
t|l = MambaBlock

(
skt|l,h

k
t−1|l

)
, ∀k ∈ {1, . . . ,Kl} (28)
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Dataset & Models

Module Hyperparameter Blinking Color Balls (SlotSSMs) MOVi-A (OC-SlotSSMs)

General Batch Size 128 24
Training Steps 300K 500K
Sequence Length {80, 160, 320, 640, 1024, 2048} 6
Optimizer AdamW AdamW
Weight Decay 0.1 0.1
Learning Rate 8e-4 3e-4

Slot Encoder Input Tokenizer MLP(Patchify(xinput)) Flatten(CNN(xinput))
Encoder Type Self-Cross Attention Inverted Attention
Applied Layers First Layer All Layers
Hidden Size 64 192
Dropout 0 0
Heads 4 4

SlotSSM Hidden Size 64 192
# Slots 6 11
SSM Model Mamba Block Mamba Block
State Size 16 16
State Expand 1.25 1.25

Slot Mixer Dropout 0 0
Heads 4 4

Table 2: Hyperparameters of our model used in our experiments.

We include pseudo-code of the Mamba block implementation in Algorithm 1. For a more detailed
description of the Mamba architecture and its underlying principles, we refer the readers to the
original paper [24].

C.2 Baseline Models

We use the official implementation of RIM from GitHub 3, as well as the SAVi implementation from
STEVE 4. We describe the implementation of the proposed baselines SlotRNN and SlotTransformer
in the following.

SlotRNN. SlotRNN adopts a similar design to SlotSSM, but replaces the SSMs with GRUs [5].
In this architecture, the slots are processed in parallel across different slots at each time step and
sequentially across time steps. The implementation of each layer is summarized as follows.

{skt|l}Kl

k=1 = SlotEncoder
(
{xk

t|l−1}
Kl−1

k=1

)
, (29)

hk
t|l = GRU

(
skt|l,h

k
t−1|l

)
, ∀k ∈ {1, . . . ,Kl} , (30)

{hk
t|l}Kl

k=1 = SelfAttention
(
{hk

t|l}Kl

k=1

)
, (31)

{xk
t|l}Kl

k=1 = {hk
t|l}Kl

k=1 (32)

SlotTransformer. SlotTransformer uses the same SlotEncoder as SlotSSM to obtain slot represen-
tations. At each time step, the slots from the current step are concatenated with the slots from all
previous time steps. This combined sequence is then processed using a Transformer with causal mask
in time dimension which ensures that each slot can only obtain information from prior or current time
steps. The implementation of each layer is summarized as follows:

3https://github.com/anirudh9119/RIMs
4https://github.com/singhgautam/steve
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Table 3: The CNN encoder architecture used for object-centric learning.

Layer Kernel Size Stride Padding Channels Activation

Conv 5× 5 2 2 192 ReLU
Conv 5× 5 1 2 192 ReLU
Conv 5× 5 1 2 192 ReLU
Conv 5× 5 1 2 192 None

Table 4: Spatial broadcast decoder architecture for image reconstruction in object-centric learning, it outputs
RGB and alpha-mixing logits.

Layer Kernel Size Stride Padding Channels Activation

Slot Normalization - - - - -
Positional Embedding - - - - -

ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 64 ReLU
ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 64 ReLU
ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 64 ReLU
ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 3 + 1 None

{skt|l}Kl

k=1 = SlotEncoder
(
{xk

t|l−1}
Kl−1

k=1

)
, (33)

{xk
<=t|l}Kl

k=1 = Transformer
(
{skt|l}Kl

k=1 ∪ {sk<t|l}Kl

k=1

)
, (34)

C.3 Blinking Color Balls Experiemtns

We show the hyperparameters used in the experiments in Table 2.

Input Tokenizer. Each patch in the input sequence is treated as an image and further split into
non-overlapping patches of size 4 × 4. Each patch is then augmented with spatial and temporal
positional embeddings, followed by an MLP layer to compute the final tokens for the Slot Encoder.

Decoder. During image decoding, we use a self-cross attention layer with positional embeddings as
input and slots as context. Given the positional embeddings Pt = {pm

t }HW
m=1 and slots from SlotSSM

St = {skt }Kk=1, each layer of the transformer decoder can be described as follows:

Pt = SelfAttn(Pt) , (35)
Pt = CrossAttn (q = Pt, kv = St) (36)
Pt = MLP(Pt) . (37)

We use a total of 3 layers, and the final pixel logits are computed using a linear head.

Training Objective. During training, we transform the image prediction problem into a pixel-wise
classification task. Specifically, for a target image xN ∈ RH×W×3, we compute a quantization by
categorizing each pixel into one of 7 discrete color categories:

xQ
N (i, j) = Q(xN (i, j)) ∀ i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . ,W} (38)

where Q : R3 → C is the quantization function that maps a 3-dimensional color vector to one of the 7
color categories in the set C = {c1, . . . , c7}. Each ck ∈ R3 represents a color vector corresponding
to a discrete color category. This is a lossless quantization process since the raw images are generated
with the same set of discrete colors. The final training objective is the cross-entropy loss between the
model output x̂N and the target xQ

N :
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L = −
H∑
i=1

W∑
j=1

6∑
k=1

xQ
N (i, j, k) log(x̂N (i, j, k)) (39)

C.4 Unsupervised Object-Centric Learning Experiments

The hyperparameters used in the experiments are presented in Table 2. Table 4 details the structure of
the spatial broadcast decoder described in Section 5.2.

To compute the input tokens, the input images are first processed by a CNN network to generate a 2D
feature map. The architecture of the CNN network is described in Table 3. We use a downsampling
factor of 2, resulting in an output 2D feature map of size 64×64 for an input image size of 128×128.
The 2D feature map is then flattened into a sequence of length 4096 and provided to the inverted
attention mechanism.

D Additional Results

D.1 Emerging Modularity in SlotSSMs

To gain further insights into the learned representations of the slot-based models, we investigate how
the slots are utilized in the image generation process. This can be done by visualizing the attention
mechanisms in the decoders.

Figure 12 presents the results of this analysis. For the transformer decoders used in the video
prediction and blinking color balls tasks, we compute the argmax over the slots in the cross-attention
map (Eq. 36), which represents the attention of the positional tokens over the slots employed to
obtain information for reconstruction at each position. In the case of the spatial broadcast decoder,
we take the argmax over the alpha-mixing logits αt (Eq. 17). The visualizations reveal that each slot
tends to specialize in representing a specific object or a coherent part of the scene. This emerged
object-centric representation allows the model to efficiently capture the dynamics and interactions of
the objects, leading to improved performance in tasks such as video prediction and reasoning in the
blinking color balls benchmark.

Interestingly, even though the slot encoder used in the video prediction and blinking color balls
benchmarks does not explicitly enforce spatial disentanglement constraints like the inverted attention
mechanism in OC-SlotSSMs does, the models still learn to represent the sequences in an object-
centric manner. This emergent modularity suggests that the SlotSSM design can naturally encourages
the model to discover and exploit the underlying structure of the data which is a crucial capability for
modeling complex visual inputs such as real-world videos.

D.2 Real-World Videos Depth Estimation

In this additional experiment, we conduct a preliminary evaluation of SlotSSMs to assess its perfor-
mance in real-world videos with increased visual complexity. Our aim is to observe how SlotSSMs
utilize the modular representations to interpret and process real-world video data. Following previous
works in object-centric learning [13], we evaluate this through a depth estimation task.

Datasets and Tasks. We select three datasets that represent distinct real-world application scenarios
to observe the behavior of SlotSSMs across diverse contexts:

1. TikTok Dancing Dataset [33]: Commonly used for content creation tasks [31], this dataset
comprises dynamic videos of individuals dancing with variety of movements and poses.

2. UT Egocentric Video Dataset [42]: Often utilized for egocentric action recognition [72],
this dataset consists of first-person view videos that involve interactions with objects in the
environment.

3. Waymo Open Dataset [59]: Primarily used for autonomous driving applications [43], this
dataset includes videos captured from autonomous vehicles navigating traffic scenarios with
diverse environmental conditions.
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The primary task across these datasets is to estimate the depth of each pixel in the video frames.
However, it is important to emphasize that our objective is not to develop depth estimation models that
compete with existing specialized approaches. Instead, our main focus is to use this task, manageable
with our lab resources, to showcase the emerging modularity in SlotSSMs for real-world video inputs.

Models. We compare OC-SlotSSM, which uses inverted attention in the Slot Encoder, against
SAVi++ [13], an RNN-based object-centric learning method. Similar to the setting in Section 5, both
models use a CNN encoder to extract input tokens, which are processed using inverted attention for
OC-SlotSSM and slot attention for SAVi++ to produce slot representations. These slots are then used
to reconstruct the image using a spatial broadcast decoder, with MSE loss as the training objective.

Results. The quantitative results in Table 5 show that OC-SlotSSM consistently outperforms the
SAVi++ baseline across all datasets, demonstrating its superior video modeling capabilities. More
importantly, as illustrated by the attention patterns in Figure 13, unsupervised scene decomposition
emerges during training. This demonstrates that SlotSSM is able to utilize the modular representations
to discover and exploit the latent structure of the input to complete the task, while the SAVi++ baseline
does not demonstrate the same level of emergent modularity.

Table 5: Depth Estimation MSE (↓) on Real-World Datasets.
Model UT Egocentric Waymo TikTok
SAVi++ 0.589 0.804 1.412
OC-SlotSSM (Ours) 0.464 0.653 1.180

Algorithm 1 Mamba Block. The algorithm receives a T -length sequence of the same slot across
time s1:T ∈ RT×D. The algorithm outputs the updated slots s1:T . Note that the model imposes the
diagonal structure on the A matrix.

1: Input: s ∈ RT×D

2: Block params: SSM linear SB , SC , S∆; Transition matrix A ∈ RD×N ; LayerNorm LN; Linear
Linear1, Linear2; 1D Conv Conv1D

3: for t = 1 . . . T in parallel
4: st, rest = Linear1(st)
5: st = SiLU(Conv1D(st))
6: SSM block:
7: B ∈ RT×N ← SB(s)
8: C ∈ RT×N ← SC(s)
9: ∆ ∈ RT×D ← SoftPlus(Parameter + S∆(s))

10: Ā, B̄ ∈ RT×D×N ← discretize(∆,A,B)

11: h0 = 0D×N

12: for t = 1 . . . T in parallel (scan) # GPU hardware accelerated y← SSM(Ā, B̄, C)(s).
13: ht = Āt ◦ ht−1 + B̄tst # Hadamard product for diagonal Ā.
14: yt = Ctht

15: for t = 1 . . . T in parallel
16: yt = yt ∗ SiLU(rest)
17: yt = Linear2(yt)

18: return y
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Multi-Object Video Prediction

Blinking Color Balls Benchmark

Object-Centric Learning

Figure 12: Emerging Modularity in SlotSSMs. Object-centric state representations naturally emerged to
accommodate the underlying structure of the data.
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Figure 13: Emergent Scene Decomposition from Depth Estimation Tasks. Colors represent the ID of slots
used for predicting each position. SlotSSM is capable of exploiting the inherent modular structure of real-world
videos for efficient inference, without explicit segmentation supervision. For more examples please visit our
project website.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims made in the paper,
accurately reflecting its contributions and scope. The claims are supported by experimental
results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in the section Conclusion and Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: In this paper, we focus on a thorogh empirical study of the proposed architec-
ture and do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the architectural details are explained in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will make our work open-source upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are included in the Appendix and our open source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not include error bars in our reported results due to the prohibitively
high computational cost of running multiple experimental trials. However, we have provided
detailed experimental setups and parameters in the appendix. Additionally, we will open
source our code to facilitate reproducibility and allow others to verify our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are included in the Appendix and our open source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conforms to the NeurIPS Code of Ethics in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed this in the Impact Statement section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our work is not about image generators or pretrained language models and
uses synthetic and non-risky datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We used an existing dataset in our work and the original papers that produced
the datasets. are cited in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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