NEURAL CLUSTERING BY PREDICTING AND COPYING NOISE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a neural clustering model that jointly learns both latent features and how they cluster. Unlike similar methods our model does not require a predefined number of clusters. Using a supervised approach, we agglomerate latent features towards randomly sampled targets within the same space whilst progressively removing the targets until we are left with only targets which represent cluster centroids. To show the behavior of our model across different modalities we apply our model on both text and image data and achieve very competitive results on MNIST against methods that require a predefined number of clusters. Finally, we also provide results against baseline models for fashion-MNIST, the 20 newsgroups dataset, and a Twitter dataset we ourselves create.[1]

1 INTRODUCTION

Clustering is one of the fundamental problems of unsupervised learning. It involves the grouping of items into clusters such that items within the same cluster are more similar than items in different clusters. Crucially, the ability to do this often hinges upon learning latent features in the input data which can be used to differentiate items from each other in some feature space. Two key questions thus arise: How do we decide upon cluster membership? and How do we learn good representations of data in feature space?

Spurred initially by studies into the division of animals into taxa (Sokol & Sneath, 1963), cluster analysis matured as a field in the subsequent decades with the advent of various models. These included distribution-based models, such as Gaussian mixture models (Duda et al., 1973); density-based models, such as DBSCAN (Ester et al., 1996); centroid-based models, such as k-means[2] and hierarchical models, including agglomerative (Orloci, 1967) and divisive models (Gower, 1967).

While the cluster analysis community has focused on the unsupervised learning of cluster membership, the deep learning community has a long history of unsupervised representation learning, yielding models such as variational autoencoders (Kingma & Welling, 2013), generative adversarial networks (Goodfellow et al., 2014), and vector space word models (Mikolov et al., 2013).

In this paper, we propose using noise as targets for agglomerative clustering (or NATAC). As in Bojanowski & Joulin (2017) we begin by sampling points in features space called noise targets which we match with latent features. During training we progressively remove targets and thus agglomerate latent features around fewer and fewer target centroids using a simple heuristic. To tackle the instability of such training we augment our objective with an auxiliary loss which prevents the model from collapsing and helps it learn better representations. We explore the performance of our model across different modalities in Section 3.

Recently, there have been several attempts at jointly learning both cluster membership and good representations using end-to-end differentiable methods. Similarly to us, Yang et al. (2016a) use a policy to agglomerate points at each training step but they require a given number of clusters to stop agglomerating at. Law et al. (2017) propose a form of supervised neural clustering which outperforms classifiers in certain datasets. Liao et al. (2016) propose jointly learning representations and

[1] IDs of tweets we used can be found in: https://github.com/neuralclusteringNAT/paper-resources/tree/master/tweet_clustering

clusters by using a k-means style objective. [Xie et al. (2016)] introduce deep embedding clustering (DEC) which learns a mapping from data space to a lower-dimensional feature space in which it iteratively optimizes a clustering objective (however, as opposed to the hard assignment we use, they optimize based on soft assignment).

Additionally, there have been unsupervised clustering methods that assume a linear mapping from data to a low dimensional clustering space ([Yang et al. (2016b); Bresson et al. (2013); Yang et al. (2012)] which perform competitively to current neural methods.

Unlike all of the above papers, our method does not require a predefined number of clusters.

2 Model

We begin by discussing the use of noise as targets (NAT) introduced in [Bojanowski & Joulin (2017)] which is crucial to the understanding of our model. We then describe the intuition behind our approach, then proceed to describe the mechanism itself.

2.1 Noise as Targets (NAT)

[Bojanowski & Joulin (2017)] proposed a new form of unsupervised learning re-posted as a supervised problem where the task is to learn an encoder function \(f_\theta : X \to Z \) from input space to a latent representation space. The objective is to minimize the \(L_2 \) loss between representations \(z_i \in Z \), where points in \(Z \) are unit normalized, and corresponding targets \(y_k \in Y \) where the targets are uniformly sampled from the \(L_2 \) unit sphere (thus inhabiting the same space as the \(z_i \)). Instead of being tied to corresponding representations as in classic regression, targets are one-to-one reassigned to different representations after every training step so as to minimize the total sum of distances between matched pairs (this is done using the Hungarian method ([Kuhn (1955)]). This pushes the representations \(z_i \) of similar inputs \(x_i \) to neighborhoods of similar targets \(y_k \). As every example must be paired to a single example in the noise targets, it also forces a model to learn a mapping to latent space that very closely matches the distribution of the noise targets.

The motivation behind using NAT was to learn unsupervised features from input data. They show their method performs on par with state-of-the-art unsupervised representation learning methods.

2.2 Noise as Targets for Agglomerative Clustering (NATAC)

Viewed from a clustering perspective we can think of the targets \(y_i \) as cluster centroids to which the latent representations \(z_i \) are (one-to-one) assigned. Note that although the method introduced in [Bojanowski & Joulin (2017)] brings the representations of similar \(x_i \) closer together (by matching and moving them closer to neighborhoods of similar targets \(y_k \)) it cannot produce many-to-one matchings or match multiple similar \(z_i \) with a single centroid thus forming a cluster. Simply changing the re-assignment policy to allow for many-to-one matchings is difficult because it causes the model to collapse in on a single target. In this paper we use the above to propose a new form of neural clustering where we progressively delete targets over time and re-assign representations to other nearby targets, all while keeping the model stable using an auxiliary objective.

Delete-and-copy To be able to cluster latent representations we need a way of assigning them to cluster centroids. We propose doing this via an additional delete-and-copy step which allows for many-to-one matchings. Similarly to the NAT method, we first assign representations \(z \) to targets \(y \) using the Hungarian method. In some cases, the optimally assigned target \(y^{\text{opt}} \) is not the nearest target to a latent representation \(z \). In this case, we remove the assigned target and reassign a copy of the nearest target for that \(z \) with some probability \(\alpha \) as in Algorithm [Algorithm 1](see also Figure [Figure 1]). This has the effect of not only reassigning targets so as to minimize the distance between matched pairs, but also to encourage the model to allow similar examples to be assigned to the same target. The new assignments are denoted as \(y_i^{\text{new}} \). The loss is then defined as:

\[
L_{\text{NAT}}(\theta; x; y) = \sum_i \| y_i^{\text{new}} - z_i \|_2
\]

(1)
Encoder
Network DnC
Auxiliary Objective
(decoder/reconstruction loss)
Weighted
Sum
Loss
New AssignmentsOptimal Assignments
Legend:
 : Latent Representations
 : Targets
 : NAT Assignment

Figure 1: Training diagram for a NATAC model. In this case the model is clustering MNIST digits and uses an autoencoder loss as the auxiliary objective. The delete-and-copy policy removes the target on the bottom-right of the sphere and copies the target at the top. This leads to an agglomeration of the two latent representations at the top of the sphere into the same cluster.

Auxiliary objective To prevent the model from collapsing to a single point, we introduce an auxiliary objective in addition to the loss between representations and targets. In our case we set the auxiliary objective L_{aux} to be the reconstruction loss $\sum_i \|x_i - f_{dec}(z_i)\|^2$ where f_{dec} is some decoder network. The final objective L is then a weighted sum of the NAT loss L_{NAT} (which in our case is the L^2 loss) and the auxiliary objective L_{aux}:

$$L(\theta|x; y) = \lambda L_{NAT}(\theta|x; y) + L_{aux}(\theta|x)$$

Importantly, the auxiliary objective not only prevents the model from collapsing, it also informs how the model clusters. For example, when clustering images the reconstruction loss encourages the model to cluster on similar pixel values. Alternative forms of auxiliary objectives could allow for a discriminator loss or a classification loss for tackling semi-supervised settings. As our goal is unsupervised clustering, we only consider the reconstruction loss.

Model definition During initialization each example x_i in the dataset is paired with a random target y_i, uniformly sampled from a d-dimensional sphere. The NATAC model is then trained using mini-batches from the dataset. Each training step can be broken down as follows:

1. **Forward step:** The examples x from a random batch of example-target pairs $((x_1, y_1) \ldots (x_i, y_i) \ldots (x_N, y_N))$ are embedded using an encoder function $f_{\theta}: \mathbb{R}^n \rightarrow \mathbb{R}^d$ into corresponding latent representations $z_i \in \mathbb{R}^d$ where $\|z_i\| = 1$ for all i.

2. **Re-assignment step:** Using the Hungarian method from [Kuhn (1955)](Kuhn1955), the representations z are optimally one-to-one matched with targets y so as to minimize the total sum of distances between matched pairs in the batch. The newly assigned example-target pairing $((x_1, y_1^{opt}) \ldots (x_i, y_i^{opt}) \ldots (x_N, y_N^{opt}))$ has the permutation of labels within the batch to minimize the batch-wise loss.

3. **Delete-and-copy (DnC):** With a probability α, delete the optimal target y_i^{opt} and instead assign the nearest target to z_i (which may be the same target) for each example-target pair in the batch producing $((x_1, y_1^{new}) \ldots (x_i, y_i^{new}) \ldots (x_N, y_N^{new}))$ as described in Algorithm [1](see also Figure [1]).

4. **Train and update step:** The L^2 loss between targets and latent representations is taken and combined with the auxiliary loss. Gradients w.r.t. θ are then taken and back-propagated along. Notice that although the (re)-assignment step follows a non-differentiable policy, the
Algorithm 1: The delete-and-copy policy used in our experiments.

Input: A batch of latent representations \mathbf{z}, the optimal NAT assignment y_{opt}, and a probability of copying α.

Output: A new NAT assignment $y_{\text{new}} = (y_{\text{new}}^1 \ldots y_{\text{new}}^i \ldots y_{\text{new}}^N)$

for z_i in \mathbf{z} do
 $p := \text{sample from } U(0, 1)$
 $y_{\text{nearest}} := \text{nearest target to } z_i$
 if $p < \alpha$ then
 (y_{opt}^i is then deleted, and y_{nearest}^i is copied and assigned to z_i)
 $y_{\text{new}}^i := y_{\text{nearest}}^i$
 else
 $y_{\text{new}}^i := y_{\text{opt}}^i$
 end
end
return $(y_{\text{new}}^1 \ldots y_{\text{new}}^i \ldots y_{\text{new}}^N)$

model is still end-to-end differentiable. Finally, the new example-target assignments are kept after the training step, and persist into the next training step where they are reassigned again.

2.3 Implementation Details

Stopping criterion During training the number of unique targets is tracked. We stop training when the number of unique targets stops decreasing after an epoch of training.

Multi-stage training We found that an initial period of training where the auxiliary objective is prioritized (i.e. the NAT loss is multiplied by a very small coefficient) and the DnC policy is not used, improved overall performance. Transitioning to a higher NAT loss and turning on the delete-and-copy policy later on in training increased the stability of our model. We therefore propose training NATAC models as follows:

1. **Warm-Up stage:** $\alpha = 0$ and λ is very small.
2. **Transition stage:** α increases gradually from 0 to 1, λ also increases gradually to a larger value (approximately $100 \times$ larger than its initial value).
3. **Clustering stage:** $\alpha = 1$, λ is large.

Dimensionality of the latent space In all of our experiments, we found that the best performing models tend to have a latent space dimensionality between 4 and 12.

At dimensionalities much larger than this, the model collapses to very few points during the transition stage of training, possibly due to the high expressiveness of the latent space. On the other hand, using a low dimensional representation results in an information bottleneck too small to sufficiently learn the auxiliary objective. For example, when clustering tweets from our Twitter dataset, a latent space of two dimensions was too small for the decoder to reliably reconstruct tweets from latent vectors. With an auxiliary objective that cannot be effectively learned, centroids collapse to a single point.

3 Experiments

We now describe the datasets and evaluation metrics used in our experiments followed by the presentation and analysis of our results in comparison to others. The full details regarding the hyperparameters used in our experiments can be found in appendix D.

Datasets We evaluate our models on four different datasets - two image and two text datasets. For images we use MNIST ([LeCun et al., 1998] and Fashion-MNIST ([Xiao et al., 2017]). For text we use 20 Newsgroups ([Joachims, 1996]) and a Twitter dataset which we gather ourselves.
Table 1: NMI scores from varying the dimensionality of the latent space in the NATAC and baseline models. The baselines use k-means with the same number of clusters as the respective NATAC model converged to. We include NATAC models with a latent dimensionality of $d = 3$, whose latent representations can be viewed without dimensionality reduction. Appendix A contains links to the visualizations hosted on the TensorFlow embedding projector.

3.1 Evaluation

Our key evaluation metric is the normalized mutual information (NMI) score \cite{strehl2002cluster} which measures the information gained from knowing cluster membership whilst taking the number of clusters into account. Values of NMI range from 0, where clustering gives no information, to 1, where clustering gives perfect information i.e. cluster membership is identical to class membership.

In our experiments, we train models on the concatenation of the train and validation sets and evaluate them on the test set. This is done by computing the latent representations of test examples and then assigning them to their nearest respective centroids, then computing the NMI score. Additionally, we provide classification error scores on the MNIST dataset to compare ourselves to other related methods. We also compare our model to clustering methods trained on the 20 Newsgroups dataset.

The guiding motivation behind our experiments is to analyze how well our models learns cluster membership and latent representations.

3.2 MNIST

Introduced by \cite{lecun1998mnist}, MNIST is canonical dataset for numerous machine learning tasks including clustering. MNIST has ten classes, corresponding to the ten digits 0-9, and contains 60,000 train and 10,000 test examples.

We train our model with an auxiliary reconstruction loss and use small convolutional architectures (see Figure 5) for our encoder and decoder networks. As points of comparison we also provide results of using k-means on the latent representations learned by our model (NATAC-k in Table 1) and k-means on representations learned by a simple autoencoder with the same encoder and decoder architecture (AE-k in Table 1).

Table 1 shows our model’s performance is best when $d = 10$ and worse for much lower or higher values of d. This indicates that the dimensionality of the latent space impacts our model’s performance (see Section 3.3 for further discussion).

The ability of our model to cluster MNIST examples well is shown by two keys results. First, it beats both NATAC-k and AE-k (Table 1). Second, it achieves very competitive results when compared to other methods (see NMI column in Table 2). To reiterate, other clustering techniques cited in Table 2 required a predefined number of clusters (in the case of MNIST k=10).

We note that NATAC-k beats AE-k indicating that our model learns representations that suit k-means clustering more than a simple autoencoder. However, we note that this is not consistent across all modalities in this paper (see results in section 3.4).

Finally, we discuss the number of centroids our model converges on (see Table 1). We show that our model is successfully capable of finding centroids that represent different digits, as shown in the top row of Figure 2. However, the model also learns centroids that contain very few examples for which the decoded images do not represent any handwritten digits, as shown in the second row of Figure 2. Even with these “dead centroids”, the model still performs well. Indeed, the twelve most dense
Figure 2: Outputs of the decoder when fed centroids from the MNIST experiment (top) and Fashion-MNIST experiment (bottom). The models used are those with the highest NMI, $d = 10$ and $d = 9$ for MNIST and Fashion-MNIST respectively. The top rows show decoded images from the centroids of the densest clusters (cluster sizes are shown underneath). Similarly, the bottom rows show decoded images from the least dense clusters.

centroids contain 98% of all of the examples in MNIST (out of a total of 61). Interestingly, the model also differentiates between ones with different slopes. This suggests that the latent representations of these digits are sufficiently far apart to warrant splitting them into different clusters.

3.3 Fashion-MNIST

Introduced in Xiao et al. (2017), Fashion-MNIST is a convenient swap-in dataset for MNIST. Instead of digits the dataset consists of ten different types of clothes. There are 60,000 train and 10,000 test examples just like in MNIST. Fashion-MNIST is generally considered more difficult than MNIST, with classifiers scoring consistently lower on it.

The model and analysis from the previous section carry over for fashion-MNIST with a few additional important points. First, the differences between NATAC-k and AE-k are less pronounced (see Table 1) in fashion-MNIST which indicates that the representations learned by NATAC in comparison to a simple autoencoder are not as important for k-means clustering. Interestingly, our model still outperforms both NATAC-k and AE-k, with one exception being when $d = 12$.

Qualitatively, Figure 2 shows that the model separates garments into slightly different categories than the labels in the dataset. For example, the most dense cluster seems to be a merging of both “pullovers” and “shirts”, suggesting that the model finds it difficult to separate the two different garments. We ourselves find it difficult to discriminate between the two categories, as the low-resolution images do not easily show whether or not the garment has buttons. Additionally, the “sandal” class has been split into two separate clusters: flip-flops and high-heeled shoes with straps. This indicates that our model has found an important distinction between these two type of shoes, that the original Fashion-MNIST labels ignore. Similarly to MNIST, our model also learns “dead clusters”, which the model does not decode into any discernible garment. Further visualizations of these experiments can be found appendix section A.

[A MNIST vs Fashion-MNIST comparison: https://github.com/zalandoresearch/fashion-mnist#benchmark]
Table 2: Comparison of our best performing NATAC model (with $d = 10$) on the entire MNIST dataset. NMI and classification error are calculated from the entire data set. We report the evaluation metric used by the authors of each respective model. Precision of values are the same as those reported by the original paper. Methods denoted by † represent non-neural methods.

<table>
<thead>
<tr>
<th>Clustering Algorithm</th>
<th>NMI</th>
<th>Classification Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-means (MacQueen et al., 1967) On Raw Pixels †</td>
<td>0.500</td>
<td>41.50</td>
</tr>
<tr>
<td>DEC (Xie et al., 2016)</td>
<td></td>
<td>15.70</td>
</tr>
<tr>
<td>Adversarial Autoencoders (30 clusters) (Makhzani et al., 2015)</td>
<td></td>
<td>4.10</td>
</tr>
<tr>
<td>Deep Gaussian Mixture VAE (Dilokthanakul et al., 2016)</td>
<td></td>
<td>3.08</td>
</tr>
<tr>
<td>IMSAT (Hu et al., 2017)</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>Autencoder based clustering (Song et al., 2013)</td>
<td>0.669</td>
<td></td>
</tr>
<tr>
<td>Task-specific Clustering With Deep Model (Wang et al., 2016)</td>
<td></td>
<td>0.651</td>
</tr>
<tr>
<td>Agglomerative Clustering Using Average Linkage (Jain et al., 1999)</td>
<td></td>
<td>0.686</td>
</tr>
<tr>
<td>Large-Scale Spectral Clustering (Chen & Cai, 2011a)</td>
<td></td>
<td>0.706</td>
</tr>
<tr>
<td>Yang et al. (2016a)</td>
<td>0.906</td>
<td></td>
</tr>
<tr>
<td>Yang et al. (2016a) With Re-clustering</td>
<td>0.913</td>
<td></td>
</tr>
<tr>
<td>DCD (Yang et al., 2016b) †</td>
<td>0.93</td>
<td>3</td>
</tr>
<tr>
<td>NATAC Autoencoder (Converged to 61 clusters)</td>
<td>0.912</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Table 3: Clustering results for the 20 Newsgroups dataset.

<table>
<thead>
<tr>
<th>d</th>
<th>Centroids</th>
<th>NATAC</th>
<th>NATAC-k</th>
<th>AE-k</th>
<th>Clusters</th>
<th>NMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>218</td>
<td>0.271</td>
<td>0.162</td>
<td>0.219</td>
<td>20</td>
<td>0.216</td>
</tr>
<tr>
<td>3</td>
<td>416</td>
<td>0.350</td>
<td>0.220</td>
<td>0.320</td>
<td>50</td>
<td>0.178</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>0.413</td>
<td>0.283</td>
<td>0.359</td>
<td>100</td>
<td>0.306</td>
</tr>
<tr>
<td>5</td>
<td>371</td>
<td>0.406</td>
<td>0.270</td>
<td>0.365</td>
<td>500</td>
<td>0.280</td>
</tr>
<tr>
<td>6</td>
<td>321</td>
<td>0.378</td>
<td>0.255</td>
<td>0.379</td>
<td>1000</td>
<td>0.337</td>
</tr>
</tbody>
</table>

3.4 LARGE DOCUMENT CLUSTERING ON 20 NEWSGROUPS

Introduced in Joachims (1996), the 20 Newsgroups dataset is a collection of 18,846 documents pertaining to twenty different news categories. We use the commonly used 60:40 temporal train-test split. Interestingly, because of the temporal split in the data, the test set contains documents which differ considerably from the train set. We calculate NMI on the news categories in the dataset.

We use an auxiliary reconstruction loss and a two layer fully connected network for both the encoder and decoder, both with hidden layer sizes of 256 and ReLU nonlinearities. We represent each article as an L2 normalized term-frequency-inverse-document-frequency (TF-IDF) vector of the 5000 most occurring words in the train set.

Along with NATAC-k and AE-k comparisons, we also use a spherical k-means model. Spherical k-means is a commonly used technique of unsupervised document clustering, a good description of it can be found in Buchta et al. (2012).

Table 3 shows how the performance of the each model varies with different dimensionalities of the latent space. The best NATAC models with a latent dimensionality of 3 to 6 centroids outperform a spherical k-means model with 1000 clusters, far more clusters than any of the NATAC models.

Although we could not find any neural clustering techniques which report performance on 20 Newsgroups, many non-neural methods report NMI on the whole dataset. Table 4 shows the NATAC model performs competitively to these methods. However, our method does converge on a higher number of clusters (other methods are trained with a pre-defined number of 20 clusters).
Table 4: Comparison of our best performing NATAC model (with $d = 4$) on the entire 20 News-groups dataset. NMI is calculated from the entire data set. Figures for other methods taken from Yang et al. (2016b).

Table 5: Clustering results for the Twitter dataset. k-means models trained with 5000 centroids.

3.5 Clustering Tweets

To further explore the performance of our model on text data we build a dataset of 38,309 ASCII-only tweets of English speaking users containing exactly one hashtag. The dataset has 647 different hashtags, with each hashtag having at least ten tweets containing it. We use 5000 of the tweets as the test set. As a preprocessing step, URLs and hashtags are replaced with special characters. We calculate NMI on the hashtag used in each tweet.

We train a character-based Sequence-to-Sequence autoencoder on the Twitter dataset. Just as before we use an auxiliary reconstruction loss. We set the encoder to be a bidirectional GRU with a hidden size of 64 followed by a fully connected layer which takes the GRU’s final output and maps it to the latent space. The decoder uses a fully connected layer to map the latent vectors to a 128 dimensional vector which is then used as the initial hidden state for the decoder GRU.

We also experiment with using a larger encoding for both the encoder and decoder. The encoder produces an encoding with e dimensions which is then mean pooled to produce the latent representation with d dimensions. The decoder then takes the larger encoding as input.

Similarly to section 3.4 we compare our approach to using spherical k-means along with the NATAC-k and AE-k baselines. Both the NATAC and NATAC-k methods outperform the AE-k and spherical k-means methods, suggesting that the latent representations learned in the NATAC model produce more effective latent representations for clustering than a vanilla autoencoder, and that our methods also outperforms a strong text-clustering baseline when clustered with a similar number of centroids.

Rather than varying the number of clusters spherical k-means models, we instead vary the vocabulary size for the term-frequency vectors. As the converged number of centroids for the NATAC models are very similar across different values of d (around 5000), we believe that varying the vocabulary size rather than the number of centroids would give a better range of comparable values.

As shown in table 3.5 the NATAC/NATAC-k models with $d = 8, 10$ outperform both the AE-k and spherical k-means baselines, while the lower dimensional NATAC models perform on par with
spherical k-means. We see a small increase in the test NMI when using a larger encoding for the decoder and mean pooling to the latent representation.

3.6 Variability in Training

In order to empirically evaluate the robustness of the NATAC training method, we train 50 NATAC models with the same hyperparameters (but different random seeds) and measure the variation in NMI and the number of converged clusters. Figure 3 shows the variability of NMI and the converged number of clusters from training the best performing model on the 20 Newsgroups dataset. Although the converged number of clusters does vary in these models, the NMI varies with a small standard deviation of 0.007.

4 Conclusion

In this paper, we present a novel neural clustering method which does not depend on a predefined number of clusters. Our empirical evaluation shows that our model works well across modalities. It improves state-of-the-art clustering performance on MNIST, without needing to receive the required number of clusters as input. Further, it outperforms powerful baselines on Fashion-MNIST and text datasets (20 Newsgroups and a Twitter hashtag dataset). However, NATAC does require some hyperparameters to be tuned, namely the dimensionality of the latent space and the function for the loss coefficient λ.

Future work Several avenues of investigation could flow from this work. Firstly, the effectiveness of this method in a semi-supervised setting could be explored using a joint reconstruction and classification auxiliary objective. Another interesting avenue to explore would be different agglomerative policies other than delete-and-copy. Different geometries of the latent space could also be considered other than a unit normalized hypersphere. To remove the need of setting hyperparameters by hand, work into automatically controlling the coefficients (e.g. using proportional control) could be studied. Finally, it would be interesting to see whether clustering jointly across different feature spaces would help with learning better representations.

References

Appendix

A VISUALIZATIONS OF MNIST/FASHION-MNIST LATENT REPRESENTATIONS

We have published the visualizations of MNIST/Fashion-MNIST representations on the TensorFlow embedding projector. We recommend selecting the “Spherize data” option, as this gives a much clearer view of the embeddings. The images used are taken from the test set of MNIST and Fashion-MNIST respectively. We include the NATA models with the highest NMI from each dataset, along with the models with $d = 3$, which require no dimensionality reduction to visualize.

- **MNIST $d = 3$:**

- **MNIST $d = 10$:**

- **Fashion-MNIST $d = 3$:**

- **Fashion-MNIST $d = 9$:**
B Examples from the Fashion-MNIST dataset.

![Examples from the Fashion-MNIST dataset.](image)

Figure 4:

C Additional Discussion on Training NATAC Models

C.1 Geometry of Latent Space

We experimented with using polar coordinates early on in our experiments. Rather than using euclidean coordinates as the latent representation, \(z \) is considered a list of angles \(\theta_1, \theta_2 \cdots \theta_n \) where \(\theta_1 \cdots \theta_{n-1} \in [0, \pi] \) and \(\theta_n \in [0, 2\pi] \). However, we found that the models using polar geometry performed significantly worse than those with euclidean geometry.

Additionally, we also experimented with not L2 normalizing the output of the encoder network. We hypothesized that the model would learn a better representation of the latent space by also “learning” the geometry of the noise targets. Unfortunately, the unnormalized representation caused the noise targets to quickly collapse to a single point.

D Hyperparameters for Experiments

Although each different modality (monochrome images, bag-of-words, sequence of characters) uses a different set of hyperparameters, we follow a similar recipe for determining the values for each one:

- We use a large batch size of 100. This is so each batch has a representative sample of the targets to reassign in each training step.
- The warm-up period is calculated by observing when the auxiliary objective starts to converge.
- The final value for \(\lambda \) in training is set so that the NAT loss was approximately 1% of the total loss.
- The initial value for \(\lambda \) is set as approximately 1% of the final value of \(\lambda \).
- The transition period typically lasts 100 epochs of training.
- During the transition phase, the value of \(\alpha \) is incrementally increased from 0 to 1.

We now explicitly list the hyperparameters used for each experiment:

D.1 MNIST and Fashion MNIST

- A batch size of 100.
- A warm-up period of \(10 \times d \) epochs, during which \(\lambda = 0.001 \).
- A transition period lasts for 250 epochs, where \(\lambda \) is incrementally increased to 0.25, and \(\alpha \) is incremented from 0 to 1.
- The ADAM optimizer [Kingma & Ba 2014] with a learning rate \((\alpha = 10^{-5}) \)
Figure 5: Architecture of the encoder (left) and decoder (right) used for the MNIST experiments. Between each subsampling layer in the encoder, a single convolution layer is applied with a filter shape of 3×3 with border padding to keep the same shape before and after the convolution. Similarly, in the decoder one transpose convolutional layer is applied between each upsampling layer, 3×3 filter shape and shape-preserving padding.

D.2 20 Newsgroups
- A batch size of 100.
- A warm-up period of 1,000 epochs, during which $\lambda = 10^{-4}$.
- A transition period lasts for 100 epochs, where λ is incrementally increased to 0.01, and α is incremented from 0 to 1.
- The ADAM optimizer (Kingma & Ba, 2014) with a learning rate ($\alpha = 10^{-5}$).
- Dropout with a keep-probability of 0.95 in the hidden layers of the encoder and decoder.

D.3 Twitter Dataset
- A batch size of 100.
- A warm-up period of 100 epochs, during which $\lambda = 0.001$.
- A transition period lasts for 100 epochs, where λ is incrementally increased to 0.1, and α is incremented from 0 to 1.
- The ADAM optimizer (Kingma & Ba, 2014) with a learning rate ($\alpha = 10^{-5}$).