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ABSTRACT

We propose Episodic Backward Update - a new algorithm to boost the perfor-
mance of a deep reinforcement learning agent by fast reward propagation. In con-
trast to the conventional use of replay memory with uniform random sampling,
our agent samples a whole episode and successively propagates the value of a
state into its previous states. Our computationally efficient recursive algorithm al-
lows sparse and delayed rewards to propagate effectively throughout the sampled
episode. We evaluate our algorithm on 2D MNIST Maze Environment and 49
games of the Atari 2600 Environment and show that our agent improves sample
efficiency with a competitive computational cost.

1 INTRODUCTION

Recently, deep reinforcement learning (RL) has been very successful in many complex environments
such as the Arcade Learning Environment (Bellemare et al., 2013) and Go (Silver et al., 2016). Deep
Q-Network (DQN) algorithm (Mnih et al., 2015) with the help of experience replay (Lin, 1991 &
1992) enjoys more stable and sample-efficient learning process, so is able to achieve super-human
performance on many tasks. Unlike simple online reinforcement learning, the use of experience
replay with random sampling breaks down the strong ties between correlated transitions and also
allows the transitions to be reused multiple times throughout the training process.

Although DQN has shown impressive performances, it is still impractical in terms of data efficiency.
To achieve a human-level performance in the Arcade Learning Environment, DQN requires 200
million frames of experience for training, which is approximately 39 days of game play in real time.
Remind that it usually takes no more than a couple of hours for a skilled human player to get used to
such games. So we notice that there is still a tremendous amount of gap between the learning process
of humans and that of a deep reinforcement learning agent. This problem is even more crucial in
environments such as autonomous driving, where we cannot risk many trials and errors due to the
high cost of samples.

One of the reasons why the DQN agent suffers from such low sample efficiency could be the sam-
pling method over the replay memory. In many practical problems, the agent observes sparse and
delayed reward signals. There are two problems when we sample one-step transitions uniformly at
random from the replay memory. First, we have a very low chance of sampling the transitions with
rewards for its sparsity. The transitions with rewards should always be updated, otherwise the agent
cannot figure out which action maximizes its expected return in such situations. Second, there is no
point in updating a one-step transition if the future transitions have not been updated yet. Without
the future reward signals propagated, the sampled transition will always be trained to return a zero
value.

In this work, we propose Episodic Backward Update (EBU) to come up with solutions for such
problems. Our idea originates from a naive human strategy to solve such RL problems. When
we observe an event, we scan through our memory and seek for another event that has led to the
former one. Such episodic control method is how humans normally recognize the cause and effect
relationship (Lengyel & Dayan, 2007). We can take a similar approach to train an RL agent. We
can solve the first problem above by sampling transitions in an episodic manner. Then, we can be
assured that at least one transition with non-zero reward is being updated. We can solve the second
problem by updating transitions in a backward way in which the transitions were made. By then,
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we can perform an efficient reward propagation without any meaningless updates. This method
faithfully follows the principle of dynamic programing.

We evaluate our update algorithm on 2D MNIST Maze Environment and the Arcade Learning En-
vironment. We observe that our algorithm outperforms other baselines in many of the environments
with a notable amount of performance boosts.

2 RELATED WORKS

Reinforcement learning deals with environments where an agent can make a sequence of actions
and receive corresponding reward signals, such as Markov decision processes (MDPs). At time t,
the agent encounters a state st and takes an action at ∈ A, observes the next state st+1 and receives
reward rt ∈ R. The agent’s goal is to set up a policy π to take a sequence of actions so that the agent
can maximize its expected return, which is the expected value of the discounted sum of rewards
Eπ[
∑
t γ

trt].

Q-learning (Watkins, 1989) is one of the most widely used methods to solve such RL tasks. The key
idea of Q-learning is to estimate the state-action value function Q(s, a), generally called as the Q-
function. The state-action value function may be characterized by the Bellman optimality equation

Q∗(st, a) = E[rt + γmax
a′

Q∗(st+1, a
′)]. (1)

Given the state-action value function Q(s, a), the agent may perform the best action a∗ =
argmaxaQ(s, a) at each time step to maximize the expected return.

There are two major inefficiencies in the traditional Q-learning. First, each experience is used only
once to update the Q-network. Secondly, learning from experiences in a chronologically forward
order is much more inefficient than learning in a chronologically backward order. Experience re-
play (Lin, 1991 & 1992) is proposed to overcome these inefficiencies. After observing a transition
(st, at, rt, st+1), the agent stores the transition into its replay buffer. In order to learn the Q-values,
the agent samples transitions from the replay in a backward order.

In practice, the state space is extremely large, so it is impractical to tabularize Q-values of all state-
action pairs. Deep Q-Network (Mnih et al., 2015) overcomes this issue by using deep neural net-
works to approximate the Q-function. Deep Q-Network (DQN) takes a 2D representation of a state
st as an input. Then the information of the state st passes through a number of convolutional neural
networks (CNNs) and fully connected networks. Then it finally returns the Q-values of each action
at at state st. DQN adopts experience replay to use each transition in multiple updates. Since DQN
uses a function approximator, consecutive states output similar Q-values. So when DQN updates
transitions in a chronologically backward order, often errors cumulate and degrade the performance.
So DQN does not sample transitions in a backward order, but uniformly at random to train the net-
work. This process breaks down the correlations between consecutive transitions and reduces the
variance of updates.

There have been a variety of methods proposed to improve the performance of DQN in terms of
stability, sample efficiency and runtime. Some methods propose new network architectures. The
dueling network architecture (Wang et al., 2015) contains two streams of separate Q-networks to
estimate the value functions and the advantage functions. Neural episodic control (Pritzel et al.,
2017) and model free episodic control (Blundell et al., 2016) use episodic memory modules to
estimate the state-action values.

Some methods tackle the uniform random sampling replay strategy of DQN. Prioritized experience
replay (Schaul et al., 2016) assigns non-uniform probability to sample transitions, where greater
probability is assigned for transitions with higher temporal difference error.

Inspired by Lin’s backward use of replay memory, some methods try to aggregate TD values with
Monte-Carlo returns. Q(λ) (Harutyunyan et al., 2016) and Retrace(λ) (Munos et al., 2016) mod-
ify the target values to allow the on-policy samples to be used interchangeably for on-policy and
off-policy learning, which ensures safe and efficient reward propagation. Count-based exploration
method combined with intrinsic motivation (Bellemare et al., 2016) takes a mixture of one-step
return and Monte-Carlo return to set up the target value. Optimality Tightening (He et al., 2017) ap-
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Algorithm 1 Simple Episodic Backward Update (single episode, tabular)

1: Initialize the Q- table Q ∈ RS×A with zero matrix.
Q(s, a) = 0 for all state action pairs (s, a) ∈ S ×A.

2: Experience an episode E = {(s1, a1, r1, s2), . . . , (sT , aT , rT , sT+1)}
3: for t = T to 1 do
4: Q(st, at)← rt + γmaxa′ Q(st+1, a

′)
5: end for

plies constraints on the target using the values of several neighboring transitions. Simply by adding a
few penalty terms into the loss, it efficiently propagates reliable values to achieve faster convergence.

Our work lies on the same line of research. Without a single change done on the network structure
of the original DQN, we only modify the target value. Instead of using a limited number of consecu-
tive transitions, our method samples a whole episode from the replay memory and propagates values
sequentially throughout the entire sampled episode in a backward way. Our novel algorithm effec-
tively reduces the errors generated from the consecutive updates of correlated states by a temporary
backward Q-table with a diffusion coefficient.

3 EPISODIC BACKWARD UPDATE

We start with a simple motivating toy example to describe the effectiveness of episodic backward
update. Then we generalize the idea into deep learning architectures and propose the full algorithm.

3.1 MOTIVATION

Let us imagine a simple graph environment with a sparse reward (Figure 1, left). In this example, s1
is the initial state and s4 is the terminal state. A reward of 1 is gained only when the agent moves to
the terminal state and a reward of 0 is gained from any other transitions. To make it simple, assume
that we only have one episode stored in the experience memory: (s1 → s2 → s1 → s3 → s4).
When sampling transitions uniformly at random as Nature DQN, the important transitions (s1 → s3)
and (s3 → s4) may not be sampled for updates. Even when those transitions are sampled, there is no
guarantee that the update of the transition (s3 → s4) would be done before the update of (s1 → s3).
So by updating all transitions within the episode in a backward manner, we can speed up the reward
propagation, and due to the recursive update, it is also computationally efficient.

We can calculate the probability of learning the optimal path (s1 → s3 → s4) for the number of
sample transitions trained. With the simple episodic backward update stated in Algorithm 1 (which
is a special case of Lin’s algorithm (Lin, 1991) with recency parameter λ = 0), the agent can come
up with the optimal policy just after 4 updates of Q-values. However, we see that the uniform
sampling method requires more than 30 transitions to learn the optimal path (Figure 1, right).

Note that this method is different to the standard n-step Q-learning (Watkins, 1989).

Q(st, at)← (1− α)Q(st, at) + α(rt + γrt+1 + . . .+ γn−1rt+n−1 + max
a

γnQ(st+n, a)). (2)

In n-step Q-learning, the number of future steps for target generation is fixed as n. However, our
method takes T future values in consideration, which is the length of the sampled episode. Also,
n-step Q-learning takes max operator at the n-th step only, whereas we take max operator at every
iterative backward steps which can propagate high values faster. To avoid exponential decay of the
Q-value, we set the learning rate α = 1 within the single episode update.

3.2 EPISODIC BACKWARD UPDATE ALGORITHM

The fundamental idea of tabular version of backward update algorithm may be applied to its deep
version with just a few modifications. We use a function approximator to estimate the Q-values and
generate a temporary Q-table Q̃ of the sampled episode for the recursive backward update. The full
algorithm is introduced in Algorithm 2. The algorithm is almost the same as that of Nature DQN
(Mnih et al., 2015). Our contributions are the episodic sampling method and the recursive backward
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Figure 1: A motivating example for episodic backward update. Left: Simple navigation domain
with 4 states and a single rewarded transition. Right: The probability of learning the optimal path
(s1 → s3 → s4) after updating the Q-values with sample transitions.

Algorithm 2 Episodic Backward Update

1: Initialize replay memory D to capacity N
2: Initialize on-line action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with random weights θ−
4: for episode = 1 to M do
5: for t = 1 to Terminal do
6: With probability ε select a random action at
7: Otherwise select at = argmaxaQ (st, a;θ)
8: Execute action at, observe reward rt and next state st+1

9: Store transition (st, at, rt, st+1) in D
10: Sample a random episode E = {S,A,R,S′} from D, set T = length(E)

11: Generate temporary target Q table, Q̃ = Q̂
(
S′, ·;θ−

)
12: Initialize target vector y = zeros(T )
13: yT ← RT

14: for k = T − 1 to 1 do
15: Q̃ [Ak+1, k]← βyk+1 + (1− β)Q̃ [Ak+1, k]

16: yk ← Rk + γmaxa∈A Q̃ [a, k]
17: end for
18: Perform a gradient descent step on (y −Q (S,A;θ))

2 with respect to θ
19: Every C steps reset Q̂ = Q
20: end for
21: end for

target generation with a diffusion coefficient β (line number 10 to line number 17 of Algorithm 2),
which prevents the errors from correlated states cumulating.

Our algorithm has its novelty starting from the sampling stage. Instead of sampling transitions at
uniformly random, we make use of all transitions within the sampled episode E = {S,A,R,S′}.
Let the sampled episode start with a state S1 and contain T transitions. Then E can be denoted as
a set of 1 × n vectors, i.e. S = {S1, S2, . . . ST }, A = {A1, A2, . . . AT }, R = {R1, R2, . . . RT }
and S′ = {S2, S3, . . . ST+1}. The temporary target Q-table Q̃, is initialized to store all the target
Q-values of S′ for all valid actions. Q̃ is an |A| × T matrix which stores the target Q-values of
all states S′ for all valid actions. Therefore the j-th column of Q̃ is a column vector that contains
Q̂
(
Sj+1, a;θ−

)
for all valid actions a from j = 1 to T .

Our goal is to estimate the target vector y and train the network to minimize the loss between each
Q (Sj , Aj) and yj for all j from 1 to T . After initialization of the temporary Q-table, we perform
a recursive backward update. Adopting the backward update idea, one element Q̃ [Ak+1, k] in the
k-th column of the Q̃ is replaced by the next transition’s target yk+1. Then yk is estimated using the
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maximum of the newly modified k-th column of Q̃. Repeating this procedure in a recursive manner
until the start of the episode, we can successfully apply the backward update algorithm in a deep
Q-network. The process is described in detail with a supplementary diagram in Appendix D.

When β = 1, the proposed algorithm is identical to the tabular backward algorithm stated in Algo-
rithm 1. But unlike the tabular situation, now we are using a function approximator and updating
correlated states in a sequence. As a result, we observe unreliable values with errors being propa-
gated and compounded through recursive max operations. We solve this problem by introducing the
diffusion coefficient β. By setting β ∈ (0, 1), we can take a weighted sum of the newly learnt value
and the pre-existing value. This process stabilizes the learning process by exponentially decreasing
the error terms and preventing the compounded error from propagating. Note that when β = 0, the
algorithm is identical to episodic one-step DQN.

We prove that episodic backward update with a diffusion coefficient β ∈ (0, 1) defines a contraction
operator and converges to optimal Q-function in finite and deterministic MDPs.

Theorem 1. Given a finite, deterministic, and tabular MDP M = (S,A, P,R), the episodic back-
ward update algorithm in Algorithm 2 converges to the optimal Q function w.p. 1 as long as

• The step size satisfies the Robbins-Monro condition;

• The sample trajectories are finite in lengths l: E[l] <∞;

• Every (state, action) pair is visited infinitely often.

We state the proof of Theorem 1 in Appendix E.

We train the network to minimize the squared-loss between the Q-values of sampled states
Q (S,A; θ) and the backward target y. In general, the length of an episode is much longer than
the minibatch size. So we divide the loss vector y−Q (S,A; θ) into segments with size equal to the
minibatch size. At each step, the network is trained by a single segment. A new episode is sampled
only when all of the loss segments are used for training.

4 EXPERIMENTS

Our experiments are designed to verify the following two hypotheses: 1) EBU agent can propagate
reward signals fast and efficiently in environments with sparse and delayed reward signals. 2) EBU
algorithm is sample-efficient in complex domains and does not suffer from stability issues despite its
sequential updates of correlated states. To investigate these hypotheses, we performed experiments
on 2D MNIST Maze Environment and on 49 games of the Arcade Learning Environment (Bellemare
et al., 2013).

4.1 2D MNIST MAZE ENVIRONMENT

⋯

⋮

⋯

⋮

Figure 2: 2D MNIST maze

We test our algorithm in 2D maze environment with sparse and de-
layed rewards. Starting from the initial position, the agent has to
navigate through the maze to discover the goal position. The agent
has 4 valid actions: up, down, left and right. When the agent bumps
into a wall, then the agent returns to its previous state. To show effec-
tiveness in complex domains, we use the MNIST dataset (LeCun et
al., 1998) for state representation (illustrated in Figure 2). When the
agent arrives at each state, it receives the coordinates of the position
in two MNIST images as the state representation.

We compare the performance of EBU to uniform one-step Q-learning and n-step Q-learning. For
n-step Q-learning, we set the value of n as the length of the episode. We use 10 by 10 mazes
with randomly placed walls. The agent starts at (0,0) and has to reach the goal position at (9,9)
as soon as possible. Wall density indicates the probability of having a wall at each position. We
assign a reward of 1000 for reaching the goal and a reward of -1 for bumping into a wall. For each
wall density, we generate 50 random mazes with different wall locations. We train a total of 50
independent agents, one agent for one maze over 200,000 steps each. The MNIST images for state
representation are randomly selected every time the agent visits each state. The relative length is
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Figure 3: Median relative lengths of EBU and other baseline algorithms. As the wall density in-
creases, EBU outperforms other baselines more significantly. The filled regions indicate the standard
deviation of results from 50 random mazes.

Table 1: Relative lengths (Mean & Median) on MNIST Maze after 100,000 steps of training.

Wall density EBU (ours) Uniform N-step
20% 5.44 2.42 14.40 9.25 3.26 2.24
30% 8.14 3.03 25.63 21.03 8.88 3.32
40% 8.61 2.52 25.45 22.71 8.96 3.50
50% 5.51 2.27 22.36 17.90 11.32 4.93

defined as lrel = lagent/loracle, which is the ratio between the length of the agent’s path lagent and
the length of the ground truth shortest path loracle. Figure 3 shows the median relative lengths of 50
agents over 200,000 training steps. Since all three algorithms achieve median relative lengths of 1 at
the end of training, we report the mean and the median relative lengths at 100,000 steps in Table 1.
For this example, we set the diffusion coefficient β = 1. The details of hyperparameters and the
network structure are described in Appendix C.

The result shows that EBU agent outperforms other baselines in most of the situations. Uniform sam-
pling DQN shows the worst performance in all configurations, implying the inefficiency of uniform
sampling update in environments with sparse and delayed rewards. As the wall density increases,
valid paths to the goal become more complicated. In other words, the oracle length loracle increases,
so it is important for the agent to make correct decisions at bottleneck positions. N-step Q-learning
shows the best performance with a low wall density, but as the wall density increases, EBU shows
better performance than n-step Q. Especially when the wall density is 50%, EBU finds paths twice
shorter than those of n-step Q. This performance gap originates from the difference between the
target generation methods of the two algorithms. EBU performs recursive max operators at each
positions, so the optimal Q-values at bottlenecks are learned faster.

4.2 ARCADE LEARNING ENVIRONMENT

The Arcade Learning Environment (Bellemare et al., 2013) is one of the most popular RL bench-
marks for its diverse set of challenging tasks. The agent receives high-dimensional raw observations
from exponentially large state space. Even more, observations and objectives of the games are com-
pletely different over different games, so the strategies to achieve high score should also vary from
game to game. Therefore it is very hard to create a robust agent with a single set of networks and
parameters that can learn to play all games. We use the same set of 49 Atari 2600 games which was
evaluated in Nature DQN paper (Mnih et al., 2015).

We compare our algorithm to four baselines: Nature DQN, Optimality Tightening (He et al., 2017),
Prioritized Experience Replay (Schaul et al., 2016) and Retrace(λ) (Munos et al., 2016). We train
EBU and baselines agents for 10 million frames on 49 Atari games with the same network structure,
hyperparameters and evaluation methods used by Nature DQN. We divide the training steps into
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Figure 4: Relative performance (Eq.(3)) of EBU over Nature DQN in percents (%) after 10 million
frames of training.

40 epochs of 250,000 frames. At the end of each epoch, we evaluate the agent for 30 episodes
using ε-greedy policy with ε = 0.05. Transitions of the Arcade Learning Environment are fully
deterministic. In order to give diversity in experience, both train and test episodes start with at most
30 no-op actions. We train each game for 8 times with different random seeds. For each agent with a
different random seed, the best evaluation score during training is taken as its result. Then we report
the mean score of the 8 agents as the result of the game. Detailed specifications for each baseline
are described in Appendix C.

We observe that the choice of β = 1 degrades the performance in most of the games. Instead, we
use β = 1

2 , which shows the best performance among { 13 ,
1
2 ,

2
3 ,

3
4 , 1} that we tried. Further fine

tuning of β may lead to a better result.

First, we show the improvements of EBU over Nature DQN for all 49 games in Figure 4. To compare
the performance of an agent over its baseline, we use the following measure (Wang et al., 2015).

ScoreAgent − ScoreBaseline

max{ScoreHuman,ScoreBaseline} − ScoreRandom
. (3)

This measure shows how well the agent performs the task compared to its level of difficulty. Out
of the 49 games, our agent shows better performance in 32 games. Not only that, for games such
as ‘Atlantis’, ‘Breakout’ and ‘Video Pinball’, our agent shows significant amount of improvements.
In order to compare the overall performance of an algorithm, we use Eq.(4) to calculate the human
normalized score (van Hasselt et al., 2015).

ScoreAgent − ScoreRandom

|ScoreHuman − ScoreRandom|
. (4)

We report the mean and median of the human normalized scores of 49 games in Table 2. The
result shows that our algorithm outperforms the baselines in both mean and median of the human
normalized scores. Furthermore, our method requires only about 37% of computation time used by
Optimality Tightening1. Since Optimality Tightening has to calculate the Q-values of neighboring
states and compare them to generate the penalty term, it requires about 3 times more training time
than Nature DQN. Since EBU performs iterative episodic updates using the temporary Q-table that
is shared by all transitions in the episode, its computational cost is almost the same as that of Nature
DQN. Scores for each game after 10 million frames of training are summarized in Appendix A.

We show the performance of EBU and the baselines for 4 games ‘Assault’, ‘Breakout’, ‘Gopher’
and ‘Video Pinball’ in Figure 5. EBU with a diffusion coefficient β = 0.5 shows competitive

1We used NVIDIA Titan X for all experiments.
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Figure 5: Scores of EBU and baselines on 4 games: ‘Assault’, ‘Breakout’, ‘Gopher’ and ‘Video
Pinball’. Moving average test scores of 40 epochs with window size 4 are plotted. The filled regions
indicate the standard deviation of results from 8 random seeds.

performances in all 4 games, reflecting that our algorithm does not suffer from the stability issue
caused by the sequential update of correlated states. Other baselines fail in some games, whereas
our algorithm shows stable learning processes throughout all games. Out of 49 games, our algorithm
shows the worst performance in only 6 games. Such stability leads to the best median and mean
scores in total. Note that naive backward algorithm with β = 1.0 fails in most games.

Table 2: Summary of training time and human normalized performance. Training time refers to the
total time required to train 49 games of 10M frames each (490M frames in total).

Training Time (49 games, 1 GPU) Mean Median
EBU (10M) 152 hours 255.19% 53.65%

Nature DQN (10M) 138 hours 133.95% 40.42%
Optimality Tightening (10M) 407 hours 162.66% 49.42%

Prioritized Experience Replay (10M) 146 hours 156.57% 40.86%
Retrace(λ) (10M) 154 hours 93.77% 41.99%

5 CONCLUSION

We propose Episodic Backward Update, which samples transitions episode by episode and updates
values recursively in a backward manner. Our algorithm achieves fast and stable learning due to the
efficient value propagation. We show that our algorithm outperforms other baselines in many com-
plex domains without much increase in computational cost. Since we did not change any network
structures, hyperparameters and exploration methods, we hope that there is plenty of room left for
further improvement.
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APPENDIX A SCORES ACROSS ALL 49 GAMES

Table 3: Summary of raw scores after 10 million frames of trainig. Mean scores from 8 random
seeds are used.

EBU Nature DQN OT Retrace Prioritized ER
Alien 708.08 690.32 1078.67 708.29 1026.96
Amidar 122.07 125.42 220.00 182.68 167.63
Assault 4109.18 2426.94 2499.23 2989.05 2720.69
Asterix 1898.12 2936.54 2592.50 1798.54 2218.54
Asteroids 1002.17 654.99 985.88 886.92 993.50
Atlantis 66271.67 20666.84 57520.00 98182.81 35665.83
Bank heist 359.62 234.70 407.42 223.50 312.96
Battle zone 26002.44 22468.75 20400.48 30128.36 20835.74
Beam rider 5628.99 3682.92 5889.54 4093.76 4586.07
Bowling 78.80 65.23 53.45 42.62 42.74
Boxing 55.95 37.28 60.89 6.76 4.64
Breakout 174.76 28.36 75.00 171.86 164.22
Centipede 6052.38 6207.30 5277.79 5986.16 4385.41
Chopper Command 1287.08 1168.67 1615.00 1353.76 1344.24
Crazy Climber 65329.63 74410.74 92972.08 64598.21 53166.47
Demon Attack 7924.14 7772.39 6872.04 6450.84 4446.03
Double Dunk -16.19 -17.94 -15.92 -15.81 -15.62
Enduro 415.59 516.10 615.05 208.10 308.75
Fishing Derby -39.13 -65.53 -69.66 -75.74 -78.49
Freeway 19.07 16.24 14.63 15.26 9.35
Frostbite 437.92 466.02 2452.75 825.00 536.00
Gopher 3318.50 1726.52 2869.08 3410.75 1833.67
Gravitar 294.58 193.55 263.54 272.08 319.79
H.E.R.O. 3089.90 2767.97 10698.25 3079.43 3052.04
Ice Hockey -4.71 -4.79 -5.79 -6.13 -7.73
Jamesbond 391.67 183.35 325.21 436.25 421.46
Kangaroo 535.83 709.88 708.33 538.33 782.50
Krull 7587.24 24109.14 7468.70 6346.40 6642.58
Kung-Fu Master 20578.33 21951.72 22211.25 18815.83 18212.89
Montezuma’s Revenge 1.04 3.95 0.00 0.00 0.43
Ms. Pacman 1249.79 1861.80 1849.00 1310.62 1784.75
Name This Game 6960.46 7560.33 7358.25 6094.08 5757.03
Pong 5.53 -2.68 2.60 8.65 12.83
Private Eye 953.58 1388.45 1277.53 714.97 269.28
Q*Bert 785.00 2037.21 3955.10 3192.08 1215.42
River Raid 3460.62 3636.72 4643.62 4178.92 6005.62
Road Runner 10086.74 8978.17 19081.55 9390.83 17137.92
Robotank 11.65 16.11 12.17 9.90 6.46
Seaquest 1380.67 762.10 2170.33 2275.83 1955.67
Space Invaders 797.29 755.95 869.83 783.35 762.54
Star Gunner 2737.08 708.66 1710.83 2856.67 2629.17
Tennis -3.41 0.00 -6.37 -2.50 -10.32
Time Pilot 3505.42 3076.98 4012.50 3651.25 4434.17
Tutankham 204.83 165.27 247.81 156.16 255.74
Up and Down 6841.83 9468.04 6706.83 7574.53 7397.29
Venture 105.10 96.70 106.67 50.85 60.40
Video Pinball 84859.24 17803.69 38528.58 18346.58 55646.66
Wizard of Wor 1249.89 529.85 1177.08 1083.69 1175.24
Zaxxon 3221.67 685.84 2467.92 596.67 3928.33
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APPENDIX B AVERAGE PERFORMANCE OVER ALL 49 GAMES
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Figure 6: Learning curves of EBU and baselines on 49 games of the Arcade Learning Environment.
Up: median over 49 games. Down: mean over 49 games. We use the average of 30 no-op scores
of 8 agents with different random seeds. Use of different evaluation methods and seeds may output
different results.
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APPENDIX C NETWORK STRUCTURE AND HYPERPARAMETERS

2D MNIST MAZE ENVIRONMENT

Each state is given as a grey scale 28× 28 image. We apply 2 convolutional neural networks (CNNs)
and one fully connected layer to get the output Q- values for 4 actions: up, down, left and right. The
first CNN uses 64 channels with 4 × 4 kernels and stride of 3. The next CNN uses 64 channels
with 3 × 3 kernels and stride of 1. Then the layer is fully connected into size of 512. Then we fully
connect the layer into size of the action space 4. After each layer, we apply rectified linear unit.

We train the agent for a total of 200,000 steps. The agent performs ε-greedy exploration. ε starts
from 1 and is annealed to 0 at 200,000 steps in a quadratic manner: ε = 1

(200,000)2 (step−200, 000)2.
We use RMSProp optimizer with a learning rate of 0.001. The online-network is updated every 50
steps, the target network is updated every 2000 steps. The replay memory size is 30000 and we use
minibatch size of 350. We use a discount factor γ = 0.9 and a diffusion coefficient β = 1.0. The
agent plays the game until it reaches the goal or it stays in the maze for more than 1000 time steps.

ARCADE LEARNING ENVIRONMENT

Common Specifications
Almost all specifications such as hyperparameters and network structures are identical for all base-
lines. We use exactly the same network structure and hyperparameters of Nature DQN (Mnih et
al., 2015). The raw observation is preprocessed into gray scale image of 84 × 84. Then it passes
through three convolutional layers: 32 channels with 8 × 8 kernels with stride of 4; 64 channels
with 4 × 4 kernels with stride of 2; 64 channels with 3 × 3 kernels with stride of 1. Then it is fully
connected into size of 512. Then it is again fully connected into the size of the action space.

We train agents for 10 million frames each, which is equivalent to 2.5 million steps with frame skip
of 4. The agent performs ε-greedy exploration. ε starts from 1 and is linearly annealed to reach the
final value 0.1 at 4 million frames of training. To give randomness in experience, we select a number
k from 1 to 30 uniform randomly at the start of each train and test episode. We start the episode
with k no-op actions. The network is trained by RMSProp optimizer with a learning rate of 0.00025.
At each step, we update transitions in minibatch with size 32. The replay buffer size is 1 million
steps (4 million frames). The target network is updated every 10,000 steps. The discount factor is
γ = 0.99.

We divide the training process into 40 epochs of 250,000 frames each. At the end of each epoch, the
agent is tested for 30 episodes with ε = 0.05. The agent plays the game until it runs out of lives or
time (18,000 frames, 5 minutes in real time).

Below are detailed specifications for each algorithm.

1. Episodic Backward Update
We set the diffusion coefficient β = 0.5.

2. Optimality Tightening
To generate the lower and upper bounds, we use 4 future transitions and 4 past transitions.

3. Prioritized Experience Replay
As described in the paper (Schaul et al., 2016), we use the rank-based DQN version with hyperpa-
rameters α = 0.5, β = 0.

4. Retrace(λ)
Just as EBU, we sample a random episode and then generate the Retrace target for the transitions in
the sampled episode. First, we calculate the trace coefficients from s = 1 to s = T (terminal).

cs = λmin

(
1,
π(as|xs)
µ(as|xs)

)
. (5)

Where µ is the behavior policy of the sampled transition and the evaluation policy π is the current
policy. Then we generate a loss vector for transitions in the sample episode from t = T to t = 1.

∆Q(xt−1, at−1) = ctλ∆Q(xt, at) + [r(xt−1, at−1) + γEπQ(xt, :)−Q(xt−1, at−1)] . (6)
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APPENDIX D SUPPLEMENTARY FIGURE: BACKWARD UPDATE ALGORITHM
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Line #10 of Algorithm 2: Sample a random episode 𝑬.

Line # 11~13: Generate a temporary target Q table ෩𝑸 with the next state vector 𝑺′. Initialize a target vector 𝒚.

Let there be 𝑛 possible actions in the environment. 𝒜 = 𝑎(1), 𝑎(2), … , 𝑎(𝑛) .

Note that ෠𝑄 is the target Q-value and ෠𝑄 𝑆𝑇+1, : = 0. 
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Repeat this update until k =1.

Figure 7: Target generation process from the sampled episode E
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APPENDIX E THEORETICAL GUARANTEES

Now, we will prove that the episodic backward update algorithm converges to the true action-value
function Q∗ in the case of finite and deterministic environment.

Definition 1. (Deterministic MDP)

M = (S,A, P,R) is a deterministic MDP if ∃g : S ×A→ S s.t.

P (s′|s, a) =

{
1 if s′ = g(s, a)

0 else
∀(s, a, s′) ∈ S ×A× S,

In the episodic backward update algorithm, a single (state, action) pair can be updated through multi-
ple episodes, where the evaluated targets of each episode can be different from each other. Therefore,
unlike the bellman operator, episodic backward operator depends on the exploration policy for the
MDP. Therefore, instead of expressing different policies in each state, we define a schedule to rep-
resent the frequency of every distinct episode (which terminates or continues indefinitely) starting
from the target (state, action) pair.

Definition 2. (Schedule)

Assume a MDP M = (S,A, P,R) , where R is a bounded function. Then, for each state (s, a) ∈
S ×A and j ∈ [1,∞], we define j-length path set ps,a(j) and path set p(s, a) for (s, a) as

ps,a(j) =
{

(si, ai)
j
i=0|(s0, a0) = (s, a), P (si+1|si, ai) > 0 ∀i ∈ [0, j − 1], sj is terminal

}
.

and ps,a = ∪∞j=1ps,a(j).

Also, we define a schedule set λs,a for (state action) pair (s, a) as

λs,a =
{

(λi)
|ps,a|
i=1 |

∑|ps,a|
i=1 λi = 1, λi > 0 ∀i ∈ [1, |ps,a|]

}
.

Finally, to express the varying schedule in time at the RL scenario, we define a time schedule set λ
for MDP M as

λ =
{
{λs,a(t)}∞(s,a)∈S×A,t=1 |λs,a(t) ∈ λs,a∀(s, a) ∈ S ×A, t ∈ [1,∞]

}
.

Since no element of the path can be the prefix of the others, the path set corresponds to the enumer-
ation of all possible episodes starting from each (state, action) pair. Therefore, if we utilize multiple
episodes from any given policy, we can see the empirical frequency for each path in the path set
belongs to the schedule set. Finally, since the exploration policy can vary across time, we can group
independent schedules into the time schedule set.

For a given time schedule and MDP, now we define the episodic backward operator.

Definition 3. (Episodic backward operator)

Assume a MDP M = (S,A, P,R), and time schedule {λs,a(t)}∞t=1,(s,a)∈S×A ∈ λ.

Then, episodic backward operator Hβ
t is defined as

(Hβ
t Q)(s, a) (7)

= Es′∈S,P (s′|s,a)

r(s, a, s′) + γ

|ps,a|∑
i=1

(λ(s,a)(t))i1(si1 = s′)

[
max

1≤j≤|(ps,a)i|
T β,Q(ps,a)i

(j)

] .
15
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T β,Q(ps,a)i
(j) (8)

=

j−1∑
k=1

βk−1γk−1
{
βr(sik, aik, si(k+1)) + (1− β)Q(sik, aik)

}
+ βj−1γj−1 max

a6=aj
Q(sij , aij).

Where (ps,a)i is the i-th path of the path set, and (sij , aij) corresponds to the j-th (state, action)
pair of the i-th path.

Episodic backward operator consists of two parts. First, given the path that initiates from the target
(state, action) pair, function T β,Q(ps,a)i

computes the maximum return of the path via backward update.
Then, the return is averaged by every path in the path set. Now, if the MDP M is deterministic, we
can prove that the episodic backward operator is a contraction in the sup-norm, and the fixed point
of the episodic backward operator is the optimal action-value function of the MDP regardless of the
time schedule.

Theorem 2. (Contraction of episodic backward operator and the fixed point)

Suppose M = (S,A, P,R) is a deterministic MDP. Then, for any time schedule
{λs,a(t)}∞t=1,(s,a)∈S×A ∈ λ, Hβ

t is a contraction in the sup-norm for any t, i.e

‖(Hβ
t Q1)− (Hβ

t Q2)‖∞ ≤ γ‖Q1 −Q2‖∞. (9)

Furthermore, for any time schedule {λs,a(t)}∞t=1,(s,a)∈S×A ∈ λ, the fixed point ofHβ
t is the optimal

Q function Q∗.

Proof. First, we prove T β,Q(ps,a)i
(j) is a contraction in the sup-norm for all j.

Since M is a deterministic MDP, we can reduce the return as

T β,Q(ps,a)i
(j) =

(
j−1∑
k=1

βk−1γk−1 {βr(sik, aik) + (1− β)Q(sik, aik)}+ βj−1γj−1 max
a 6=aj

Q(sij , aij)

)
.

(10)

‖T β,Q1

(ps,a)i
(j)− T β,Q2

(ps,a)i
(j)‖∞ ≤

{
(1− β)

j−1∑
k=1

βk−1γk−1 + βj−1γj−1

}
‖Q1 −Q2‖∞

=

{
(1− β)(1− (βγ)j−1)

1− βγ
+ βj−1γj−1

}
‖Q1 −Q2‖∞

=
1− β + βjγj−1 − βjγj

1− βγ
‖Q1 −Q2‖∞

=

{
1 + (1− γ)

βjγj−1 − β
1− βγ

}
‖Q1 −Q2‖∞

≤ ‖Q1 −Q2‖∞(∵ β ∈ [0, 1], γ ∈ [0, 1)).

(11)
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Also, at the deterministic MDP, the episodic backward operator can be reduced to

(Hβ
t Q)(s, a) = r(s, a) + γ

|ps,a|∑
i=1

(λ(s,a))i(t)

[
max

1≤j≤|(ps,a)i|
T β,Q(ps,a)i

(j)

]
. (12)

Therefore, we can finally conclude that

‖(Hβ
t Q1)− (Hβ

t Q2)‖∞

= max
s,a

∣∣∣Hβ
t Q1(s, a)−Hβ

t Q2(s, a)
∣∣∣

≤ γmax
s,a

|ps,a|∑
i=1

(λ(s,a)(t))i

∣∣∣∣{ max
1≤j≤|(ps,a)i|

T β,Q1

(ps,a)i
(j)

}
−
{

max
1≤j≤|(ps,a)i|

T β,Q2

(ps,a)i
(j)

}∣∣∣∣


≤ γmax
s,a

|ps,a|∑
i=1

(λ(s,a)(t))i max
1≤j≤|(ps,a)i|

{∣∣∣T β,Q1

(ps,a)i
(j)− T β,Q2

(ps,a)i
(j)
∣∣∣}


≤ γmax
s,a

|ps,a|∑
i=1

(λ(s,a)(t))i‖Q1 −Q2‖∞


= γmax

s,a
[‖Q1 −Q2‖∞]

= γ‖Q1 −Q2‖∞.
(13)

Therefore, we proved that episodic backward operator is a contraction independent of the schedule.
Finally, we prove that the distinct episodic backward operators in terms of schedule has same fixed
point, Q∗. A sufficient condition to prove this is given by[
max1≤j≤|(ps,a)i| T

β,Q∗

(ps,a)i
(j)
]

= Q∗(s,a)−r(s,a)
γ ∀1 ≤ i ≤ |ps,a|.

We will prove this by contradiction. Assume ∃i s.t.
[
max1≤j≤|(ps,a)i| T

β,Q∗

(ps,a)i
(j)
]
6= Q∗(s,a)−r(s,a)

γ .

First, by the definition of Q∗ fuction, we can bound Q∗(sik, aik) and Q∗(sik, :) for every k ≥ 1 as
follows.

Q∗(sik, a) ≤ γ−kQ∗(s, a)−
k−1∑
m=0

γm−kr(sim, aim). (14)

Note that the equality holds if and only if the path (si, ai)
k−1
i=0 is the optimal path among the ones

that start from (s0, a0). Therefore, ∀1 ≤ j ≤
∣∣(ps,a)i

∣∣, we can bound T β,Q
∗

(ps,a)i
(j).

17
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T β,Q(ps,a)i
(j)

=

j−1∑
k=1

βk−1γk−1 {βr(sik, aik) + (1− β)Q(sik, aik)}+ βj−1γj−1maxa 6=ajQ(sij , aij)

≤

{
(

j−1∑
k=1

(1− β)βk−1) + βj−1

}
γ−1Q∗(s, a)

+

j−1∑
k=1

{
βk−1γk−1

(
βr(sik, aik)−

k−1∑
m=0

(1− β)γm−kr(sim, aim)

)}

−
j−1∑
m=0

βj−1γj−1γm−jr(sim, aim)

= γ−1Q∗(s, a) +

j−1∑
k=1

βkγk−1r(sik, aik)

−
j−2∑
m=0

{
j−1∑

k=m+1

(1− β)βk−1γm−1r(sim, aim)

}
−

j−1∑
m=0

βj−1γm−1r(sim, aim)

= γ−1Q∗(s, a) +

j−1∑
m=1

βmγm−1r(sim, aim)

−
j−2∑
m=0

(βm − βj−1)γm−1r(sim, aim)−
j−1∑
m=0

βj−1γm−1r(sim, aim)

= γ−1Q∗(s, a)− γ−1r(si0, ai0) =
Q∗(s, a)− r(s, a)

γ
.

(15)

Since this occurs for any arbitrary path, the only remaining case is when

∃i s.t.
[
max1≤j≤|(ps,a)i| T

β,Q∗

(ps,a)i
(j)
]
< Q∗(s,a)−r(s,a)

γ .

Now, let’s speculate on the path s0, s1, s2, ...., s|(ps,a)i)|. Let’s first prove the contradiction when the
length of the contradictory path is finite. If Q∗(si1, ai1) < γ−1(Q∗(s, a) − r(s, a)), then by the
bellman equation, there exists action a 6= ai1 s.t Q∗(si1, a) = γ−1(Q∗(s, a) − r(s, a)). Then, we
can find that T β,Q

∗

(ps,a)1
(1) = γ−1(Q∗(s, a)− r(s, a)) so it contradicts the assumption. Therefore, ai1

should be the optimal action in si1.

Repeating the procedure, we can find that ai1, ai2, ..., a|(ps,a)i)|−1 are optimal with respect to their
corresponding states.

Finally, we can find that T β,Q
∗

(ps,a)1
(|(ps,a)i)|) = γ−1(Q∗(s, a) − r(s, a)) since all the actions satis-

fies the optimality condition of the inequality in equation 7. Therefore, it is a contradiction to the
assumption.

In the case of infinite path, we will prove that for any ε > 0, there is no path that satisfy
Q∗(s,a)−r(s,a)

γ −
[
max1≤j≤|(ps,a)i| T

β,Q∗

(ps,a)i
(j)
]

= ε.

18
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Since the reward function is bounded, we can define rmax as the supremum norm of the reward
function. Define qmax = maxs,a |Q(s, a)| andRmax = max{rmax, qmax}. We can assumeRmax >

0. Then, let’s set nε = dlogγ
ε(1−γ)
Rmax

e+ 1. Since γ ∈ [0, 1), Rmax
γnε

1−γ < ε. Therefore, by applying
the procedure on the finite path case for 1 ≤ j ≤ nε , we can conclude that the assumption leads to
a contradiction. Since the previous nε trajectories are optimal, the rest trajectories can only generate
a return less than ε.

Finally, we proved that
[
max1≤j≤|(ps,a)i| T

β,Q∗

(ps,a)i
(j)
]

= Q∗(s,a)−r(s,a)
γ ∀1 ≤ i ≤ |ps,a| and there-

fore, every episodic backward operator has Q∗ as the fixed point.

Finally, we will show that the online episodic backward update algorithm converges to the optimal
Q function Q∗.
Restatement of Theorem 1. Given a finite, deterministic, and tabular MDP M = (S,A, P,R), the
episodic backward update algorithm, given by the update rule

Qt+1(st, at)

= (1−αt)Qt(st, at) +αt

[
r(st, at) + γ

∑|pst,at |
i=1 (λ(st,at))i(t)

[
max1≤j≤|(pst,at )i|T

β,Q
(pst,at )i

(j)
]]

converges to the optimal Q function w.p. 1 as long as

• The step size satisfies the Robbins-Monro condition;

• The sample trajectories are finite in lengths l: E[l] <∞;

• Every (state, action) pair is visited infinitely often.

For the proof of Theorem 1, we follow the proof of Melo, 2001.
Lemma 1. The random process ∆t taking values in Rn and defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x)

converges to zero w.p.1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑
t αt(x) =∞ and

∑
t α

2
t (x) <∞;

• ‖E [Ft(x)|Ft] ‖W ≤ γ‖∆t‖W , with γ < 1;

• var [Ft(x)|Ft] ≤ C
(
1 + ‖∆t‖2W

)
, for C > 0.

By Lemma 1, we can prove that the online episodic backward update algorithm converges to the
optimal Q∗.

Proof. First, by assumption, the first condition of Lemma 1 is satisfied. Also,
we can see that by substituting ∆t(s, a) = Qt(s, a) − Q∗(s, a), and Ft(s, a) =

r(s, a) + γ
∑|ps,a|
i=1 (λ(s,a))i(t)

[
max1≤j≤|(ps,a)i| T

β,Q
(ps,a)i

(j)
]
− Q∗(s, a). ‖E [Ft(s, a)|Ft] ‖∞ =

‖(Hβ
t Qt)(s, a) − (Hβ

t Q
∗)(s, a)‖∞ ≤ γ‖∆t‖∞, where the inequality holds due to the contraction

of the episodic backward operator.

Then, var [Ft(x)|Ft] = var

[
r(s, a) + γ

∑|ps,a|
i=1 (λ(s,a))i(t)

[
max1≤j≤|(ps,a)i| T

β,Q
(ps,a)i

(j)
] ∣∣∣∣Ft] .

Since the reward function is bounded, the third condition also holds as well. Finally, by Lemma 1,
Qt converges to Q∗.

Although the episodic backward operator can accommodate infinite paths, the operator can be practi-
cal when the maximum length of the episode is finite. This assumption holds for many RL domains,
such as ALE.
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