
Workshop track - ICLR 2018

JOINT IMPORTANCE SAMPLING FOR VARIATIONAL
INFERENCE

Jack Klys1, Jesse Bettencourt2 & David Duvenaud2

1Department of Mathematics
2Department of Computer Science
University of Toronto
{jessebett, duvenaud}@cs.toronto.edu
{jack.klys}@mail.utoronto.ca

ABSTRACT

We consider methods of variance reduction in Monte Carlo estimators which arise
from importance sampling, with application to variational inference. We show
that learning dependencies between samples, while preserving their marginal dis-
tributions outperforms sampling techniques which assume independence among
samples in some settings.

1 INTRODUCTION

Let p(x, h) be the probability distribution of a latent variable model on a space X ×H . When the
marginal likelihood of the data p(x) is intractable it can be estimated by constructing an unbiased
estimator p̂ for p (x) defined on some measure space (Z,Ω, µ). The model can then be optimized
by maximizing the evidence lower bound (ELBO):

log p(x) = logEµ(p̂) ≥ Eµ log(p̂) = L(p̂). (1)

Suppose we wish to estimate a quantity x by Monte Carlo. Let Y1, . . . , Yk be random variables
on a measure space (Z,Ω, µ) and f1, . . . , fk real-valued functions such that fi(Yi) is an unbiased
estimator of x, so Eµ(fi(Yi)) = x. Then we can form the unbiased estimator of x

θ =
1

k

∑
i

fi(Yi). (2)

It is a classical problem to determine fi and Yi such that θ has minimal variance (Wilson, 1983).

This type of estimator appears in the training of generative models. When an approximate posterior
distribution q(h | x) is trained alongside p(x, h) we can let fi(h) = p(x, h)/q(h | x) and Yi ∼ q(· |
x) to obtain the estimator

p̂k =
1

k

∑
i

p(x, hi)

q(hi | x)
(3)

a process refered to as importance sampling. The variance of this estimator goes to 0 with
KL(p(h|x)||q(h|x)). This was the estimator used in Burda et al. (2015) to train Importance Weighted
Autoencoders (IWAE).

2 VARIANCE OF AN UNBIASED ESTIMATOR AND THE ELBO

We start by making precise the connection between the variance of an estimator and the ELBO.
Chebyshev’s inequality states that we have, for any ε > 0

µ(|θ̂ − θ| ≥ ε) ≤ Var(θ̂)

ε2
.

Using this we prove
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Figure 1: The result of maximizing L(p̂M ) for two fixed target distributions, plotted in red. The joint
distributions (defined in Section (3)) used are, from left to right, qIWAE, qCOVRn, qCOVK, qCOVD. Top:
one set of samples drawn from each model. Bottom: The covariance matrix of the corresponding
model.

Theorem 2.1. Let θ̂ be an unbiased estimator of θ. There exists a constant C (independent of θ̂)
such that for any sufficiently small ε > 0 (depending only on θ)

log θ − L(θ̂) < C

(
ε+

Var(θ̂)

ε2

)
.

In particular this implies that if the sequence {θ̂i} satisfies Var(θ̂i) −→ 0 then |θ − L(θ̂i)| −→ 0.

In Maddison et al. (2017) a similar result is proven which expresses |θ − L(θ̂i)| in terms of the
variance and higher moments of θ̂. We refer to the appendix for the proof of Theorem 2.1, which
generalizes theirs, and a remark about the relationship between these two results.

As an example, from (3) it is easy to see that Var(p̂k) = Var(p̂1)/k if the Yi are independent.
Henceforth we will refer to this estimator as p̂IWAE and omit the subscript k. We will define some
more examples of unbiased estimators and show that they have lower variance than p̂IWAE .

2.1 REDUCING THE VARIANCE

Motivated by the above discussion we look at the problem of variance reduction in estimators of
the form (2). Note that in (3) all the Yi are independent and equal to q(h | x). However in general
we have Var(θ) =

∑k
i=1 Varf(Yi) + 2

∑
i<j Cov(f(Yi), f(Yj)). Hence by choosing appropriate

dependencies between the Yi we can make the covariance term on the right negative, thus lowering
the variance. This is equivalent to finding a distribution on Zk with marginals f(Yi) and non-
diagonal covariance matrix.

We apply this idea to estimators in the form of (3). That is fi(h) = p(x, h)/q(h | x) but Yi ∼ q(· | x)
is the marginal of a distribution q(h1, . . . , hk) on Zk. We will denote this estimator by p̂M .

In addition to the usual parameters of the marginals q(hi) we parametrize a covariance matrix be-
tween them. We then maximize L(p̂M ) with respect to these parameters, both in the setting when p
is a fixed target distribution, as well as when it is defined by some parameters, as with a VAE. Figure
(1) demonstrates the result of this for two fixed targets p.

In Cremer et al. (2017) it is shown that maximizing L(p̂M ) with respect to the parameters of q(hi)
is equivalent to minimizing KL(p(h|x)||qEW(h)) (for the definition of qEW see Section 4.5). Though
it is discussed in the case when the marginals are independent it holds in our setting as well. Thus
by using estimators capable of achieving lower variance we expect to better fit qEW to the target
posterior p(h | x).

2.2 OPTIMIZING THE SAMPLER

The problem of minimizing the variance of (2) has been studied classically. Theorem 1 from Wilson
(1983) shows that given fixed functions fi with i = 1, . . . , k one can get arbitrarily close to the min-
imal possible variance by taking a uniform random variable U0 ∼ U(0, 1) and choosing appropriate
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Mixture Half Slice MNIST

2d 10d 2d 10d 2d 10d

IWAE 0.179 6.383 0.046 1.088 0.179 0.426 87.544
IWAEN 0.118 5.883 0.000 1.018 0.118 0.367 87.754
COVR6 0.027 10.091 0.000 1.079 0.027 0.435 87.900
COVK 0.094 9.450 0.011 0.974 0.094 0.310 87.592
COVD 0.054 1.277 0.005 0.899 0.054 0.229 -

Table 1: Negative log-likelihoods when fitting to different targets. The last column is the result of
training a VAE (here we report the minimum the model achieved during training). Models with
non-diagonal covariance matrices give improvement in low dimensions, but show little difference
with a VAE.

transformations Ti i = 1, . . . , k satisfying certain regularity conditions, see Wilson (1983), and
setting Yi = Ti(U0). That is, only one sample is taken, and the rest are obtained from it determinis-
tically. The proof is however non-constructive and it is not clear in general what the transformations
Ti, and hence the covariance matrix of q should be.

The marginals of p̂M are normal distributions on Rd so the covariance matrix of q (h1, . . . , hk) is a
kd× kd matrix, where the diagonal d× d blocks are the covariance matrices of the marginals. Thus
we want to determine an optimal covariance matrix for q.

3 EXPERIMENTS

We first demonstrate the effect of learning a normal distribution q on Rdk by minimizing −L(p̂M )
for a fixed target distribution p.

Let q = N(~µ,Σ) where ~µq = [µ1, . . . , µd] and Σq = diag(σ2
1 , . . . , σ

2
d) be a normal distribution on

Rd.

We will compare using the following q distributions in the definition of p̂M . We briefly describe
them here and refer to Section (4.1) for the precise definitions.

• qIWAE: draws k independent samples from q.

• qIWAEN: draws k/2 samples from q and obtains the remaining k/2 samples by reflecting
them through ~µ

• qCOVK: draws k independent samples from q and transforms them through multiplication
by a matrix defined using as a kronecker product.

• qCOVRn: draws one sample from q and rotates it around ~µ to obtain n − 1 more samples.
Repeats this k/n times.

• qCOVD: draws one sample from q and multiplies it by k distinct matrices (restricted appro-
priately to ensure the marginals all equal q)

Additionally we use the following choices for p as targets.

• Mixture: an equal mixture of two normal distributions

• Half: a standard normal with pdf scaled by ε = 0.01 when xn > 0 for a fixed coordinate
xn.

• Slice: a standard normal with pdf scaled by ε = 0.01 when xi > 0 for any coordinate xi.

In the case of a VAE we train it on a binarized MNIST dataset according to the exact specifications
of Burda et al. (2015). In this case the mean and standard deviation of q as defined in this section
are output by the encoder network once per datapoint, as in a usual VAE, but the remaing entries of
the covariance matrix of the joint distribution do not depend on the data.
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4 APPENDIX

4.1 DETAILED MODEL DEFINITIONS

• qIWAE: equal to
∏k
i=1 q

• qIWAEN: the distribution on Rdk given by drawing k/2 samples h1, . . . , hk/2 from q and
taking k/2 more samples to be −h1, . . . ,−hk/2.

Given any nk × nk matrix Σ whose diagonal d × d blocks are all equal to Σq we let qCOV be
the distribution on Rdk given by N(~µ,Σ) where ~µ = [ ~µq, . . . , ~µq]. We denote any sample ~h =
[h1, . . . , hk] with each hi ∈ Rd. We will test several versions of qCOV with different matrices Σ.

• qCOVKn: let L = (In ⊗ B) ⊗ A where In ⊗ B is of size k × k with ones on the diagonal
and A = diag(σ1, . . . , σd). Let Σ = LLT and let qCOVKn denote the qCOV with this Σ.
• qCOVRn: let R be the 2 × 2 rotation matrix with angle 2π/n. This matrix is fixed and not

trainable. Let

B′ =

 Σ
1/2
q

... 0

Σ
1/2
q




I
R
R2 0
...

Rn−1


and let B be the block diagonal matrix with k/n diagonal blocks all of which are equal to
B′. Then define Σ = BBT . We let qCOVRn denote qCOV with this Σ.
• qCOVD: let

B =

 Σ
1/2
q

... 0

Σ
1/2
q



U1

U2 0
...
Uk


where each Ui has orthonormal rows and let Σ = BBT . The entries of Ui are trainable
parameters. This generalizes the above distribution since R is an orthonormal matrix.

4.2 ADDITIONAL REMARKS ABOUT EXPERIMENTS

One key difficulty in this approach is that it is not enough to learn a matrix of parameters to serve
as Σ since in general such a matrix will not be positive semi-definite as is required of a covariance
matrix. We use the fact that for any invertible matrix L, LLT is positive-semidefinite, and instead
learn this matrix.

Recall we are assuming q = N(µ,Σ). Sampling from q can be performed by sampling ε ∼
N(~0, Idk) and applying the transformation µ+Lε where L = Σ1/2 (that is LLT = Σ). In principle
the above remark implies that we should not lose anything by restricting to matrices L where only
the first d columns are nonzero, since these corresponsd to using only the first sample, however in
practice we found that learning a full matrix is beneficial.

4.3 AN EXAMPLE

We give a simple example where the optimal covariance matrix can be computed explicitly. In the
case d = 1 and k = 2 let q(h1, h2) = N(~µ,Σ) where

Σ = σ2 ·
[

1 ρ
ρ 1

]
.

It is easy to see that Varp̂M is minimized as ρ −→ −1. In this case L = σ

[
1 0
−1 0

]
. This results

in a sampling scheme where the second sample is obtained from the first by reflecting it through the
mean.
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4.4 SOME OTHER ESTIMATORS

In the main text we only considered distributions q(h1, . . . , hk) where all the marginals are equal.
Suppose the distribution q in the definition of p̂M is a product of k distinct gaussians qi so that
q(hi) = qi(hi). It is clear that we do not gain anything by introducing this addtitional generality as
given any such q we can construct a new distribution by setting all qi = qj with Var(p(x, h)/qj(h))
minimal while leaving the covariances the same.

Finally we remark on another natural choice of estimator. Define

p̂AR(h1, . . . , hk) =
1

k

k∑
i=1

p(x, hi)

q(hi | h1, . . . hi−1)
(4)

It is easy to see that this is also an unbiased estimator for p(x).

Let Xi = p(x, hi)/q(hi | h1, . . . hi−1) and Yi = p(x, hi)/q(hi) for all i. For simplicity we assume
k = 2 in the following.
Lemma 4.1. Let k = 2. Suppose Cov(Y1, Y2) ≤ 0. Then Var(p̂M ) < Var(p̂AR).

Proof. We have

k2(Var(p̂AR) + p(x)2) =
∑
i

E(X2
i ) + 2E(X1X2)

and similarly for p̂M .

Note X1 = Y1. For i = 2 we compute .

E(X2
2 ) =

∑
h1,h2

q(h1, h2)
p(x, h2)2

q(h2 | h1)2

=
∑
h1,h2

q(h1)

q(h2 | h1)
p(x, h2)2

=
∑
h2

Eq(h1)

[
1

q(h2 | h1)

]
p(x, h2)2

≥
∑
h2

1

Eq(h1) [q(h2 | h1)]
p(x, h2)2

=
∑
h2

q(h2)
p(x, h2)2

q(h2)2

= E(Y 2
2 ).

The inequality is obtained using E [1/X] ≥ 1/E [X] (with equality only if VarX = 0) for any
strictly positive random variable X , which is a consequence of Jensen’s inequality.

Now

E(X1X2) =
∑
h1,h2

q(h1, h2)
p(x, h1)p(x, h2)

q(h1)q(h2 | h1)

= p(x)2.

Hence Cov(X1, X2) = 0.

4.5 THE VARIANCE OF p̂EW

Let q(h) be any distribution on Z. Define wi = p(x, hi)/q(hi) and

q̃(hk) = Eq(h1,...hk−1)

[
p(x, hk)
1
k

∑
wi

]
.
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In Cremer et al. (2017) they define the estimator

p̂EW (hk) =
p(x, hk)

q̃(hk)

and show it yields a strictly better variational lower bound of p(x). Here we will show
Var(p̂EW ) < Var(p̂IWAE).

Lemma 4.2. Var(p̂EW ) < Var(p̂IW ).

Proof. Let X = p̂EW . We again use the fact E [1/X] ≥ 1/E [X] to compute

E(X2) =
∑
hk

q̃(hk)
p(x, hk)2

q̃(hk)2

=
∑
hk

1

Eq(h1,...hk−1)

[
1

1
k

∑
wi

]p(x, hk)

≤
∑
hk

Eq(h1,...hk−1)

[
1

k

∑
i

wi

]
p(x, hk)

=
1

k

∑
hk

(
∑
i

∑
hi

p(x, hi)p(x, hk)) +
p(x, hk)2

q(hk)

=
k − 1

k
p(x)2 +

1

k
Eq(hk)((p(x, hk)/q(hk))2)

and the inequality is not strict only if Varq(h1,...hk−1)(
1
k

∑
wi) = 0. Thus

Var(X) <
1

k
Var(p(x, h)/q(h))

= Var(p̂IW ).

4.6 PROOF OF THEOREM (2.1)

Proof. Let ε > 0. Let U1 ⊂ Z be the set on which |θ̂ − θ| < ε and U2 = Z\U1. By Chebyshev’s
inequality µ(U2) < Var(θ̂)/ε2. Let

∆ =
θ̂i − θ
θ

.

We have

log θ − L(θ̂) =

∫
Z

log θ − log θ̂dµ

=

∫
Z

log(∆ + 1)dµ

=

∫
U1

log(∆ + 1)dµ+

∫
U2

log(∆ + 1)dµ.

The Taylor expansion of log(1 + ∆) is

∆− ∆2

2
+

∆3

3
− · · · .

Then ∫
U1

log(∆ + 1)dµ < ε− ε2

2
· · · < C1ε
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for some constant C1. Furthermore
∫
Z

log(∆ + 1)dµ < C2 (for instance C2 = log p(x)) so it
follows that ∫

U2

log(∆ + 1)dµ < C2
Var(θ̂)

ε2
.

Thus we have shown

log θ − L(θ̂i) < C1ε+ C2
Var(θ̂)

ε2
.

Let E = log θ − L(θ̂i). Proposition 1 in Maddison et al. (2017) bounds the difference between E
and Var(θ̂) in terms of the 6th central moment of θ̂ (and under finiteness of the first inverse moment
of θ̂), which does not imply that E −→ 0 as Var(θ̂) −→ 0. However in situations where these
quantities are known their result provides a more precise relationship between E and Var(θ̂).
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