
Reproducing Meta-learning with differentiable
closed-form solvers

Arnout Devos*, Sylvain Chatel*, Matthias Grossglauser
Department of Computer and Communication Sciences
Swiss Federal Institute of Technology Lausanne (EPFL)

{first.last}@epfl.ch

Abstract

In this paper, we present a reproduction of the paper of Bertinetto et al. [2019]
"Meta-learning with differentiable closed-form solvers" as part of the ICLR 2019
Reproducibility Challenge. In successfully reproducing the most crucial part of
the paper, we reach a performance that is comparable with or superior to the
original paper on two benchmarks for several settings. We evaluate new baseline
results, using a new dataset presented in the paper. Yet, we also provide multiple
remarks and recommendations about reproducibility and comparability. After
we brought our reproducibility work to the authors’ attention, they have updated
the original paper on which this work is based and released code as well. Our
contributions mainly consist in reproducing the most important results of their
original paper, in giving insight in the reproducibility and in providing a first
open-source implementation.

1 Introduction

The ability to adapt to new situations and learn quickly is a cornerstone of human intelligence. When
given a previously unseen task, humans can use their previous experience and learning abilities to
perform well on this new task in a matter of seconds and with a relatively small amount of new
data. Artificial learning methods have been shown to be very effective for specific tasks, often times
surpassing human performance (Silver et al. [2016], Esteva et al. [2017]). However, by relying on
standard supervised-learning or reinforcement learning training paradigms, these artificial methods
still require much training data and training time to adapt to a new task.

An area of machine learning that learns and adapts from a small amount of data is called few-shot
learning. A shot corresponds to a single example, e.g. an image and its label. In few-shot learning
the learning scope is expanded to a variety of tasks with a few shots each, compared to the classic
setting of a single task with many shots. A promising approach for few-shot learning is the field of
meta-learning. Meta-learning, also known as learning-to-learn, is a paradigm that exploits cross-task
information and training experience to perform well on a new unseen task.

In this work we reproduce the paper of Bertinetto et al. [2019] (referenced as "their paper"); it falls
into the class of gradient-based meta-learning algorithms that learn a model parameter intialization
for rapid fine-tuning with a few shots (Finn et al. [2017], Nichol and Schulman [2018]). The authors
present a new meta-learning method that combines a deep neural network feature extractor with
differentiable learning algorithms that have closed-form solutions. This reduces the overall complexity
of the gradient based meta-learning process, while advancing the state-of-the-art in terms of accuracy
across multiple few-shot benchmarks.

Under review as a workshop paper at ICLR 2019.



We interacted with the authors through OpenReview1, bringing our reproducibility work and Tensor-
Flow code2,3 to their attention. Because of this, they have recently updated their original paper with
more details to facilitate reproduction and they have released an official PyTorch implementation4.

2 Background in meta-learning

The objective of few-shot meta-learning is to train a model that can quickly adapt to a new task
by using only a few datapoints and training iterations. In our work we will consider only classifi-
cation tasks, but it should be noted that meta-learning is also generally applicable to regression or
reinforcement learning tasks (Finn et al. [2017]).

In order to provide a solid definition of meta-learning, we need to define its different components.
We denote the set of tasks by T. A task Ti 2 T corresponds to a classification problem, with a
probability distribution of example inputs x and (class) labels y, (x; y) � Ti. For each task, we
are given training samples ZT = f(xi; yi)g � T with K shots per class and evaluation samples
Z 0T = f(x0i; y0i)g � T with Q shots (queries) per class, all sampled independently from the same
distribution T . In meta-learning, we reuse the learning experience used for tasks Ti; i 2 [0; L] to
learn a new task Tj , where j > L, from only K examples, for every single one of the N classes in
the task. Commonly, this is denoted as an N -way K-shot problem. To this end, in meta-learning
two different kinds of learners can be at play: (1) a base-learner that works at the task level and
learns a single task (e.g. classifier with N classes) and (2) a meta-learner that produces those model
parameters that enable the fastest average fine-tuning (using the base-learner) on unseen tasks.

The authors put a specific view of meta-learning forward. Their meta-learning system consists of a
generic feature extractor �(x) that is parametrized by !, and a task-specific predictor fT (X) that is
parametrized by wT and adapts separately to every task T 2 T based on the few shots available. In
the case of a deep neural network architecture, this task-specific predictor fT can be seen as the last
layer(s) of the network and is specific to a task T . The preceding layers � can be trained across tasks
to provide the best feature extraction on which the task-specific predictor can finetune with maximum
performance.

The base-learning phase in their paper assumes that the parameters ! of the feature extractor � are
fixed and computes the parameters wT of fT through closed-form learning process �. �, on its own,
is parametrized by �. The meta-learning phase in the paper learns a parametrization of � and �
(respectively ! and �). In order to learn those meta-parameters, the algorithm minimizes the expected
loss on test sets from unseen tasks in T with gradient descent. The base-learning and meta-learning
phases are shown in Figures 1 and 2, respectively.

Most of the recent meta-learning works are tested against image datasets and their feature extractor
consists of a convolutional neural network (CNN). The variability between works resides mainly in the
base learner fT and its parameter obtaining training procedure �. Examples are an (unparametrized)
k-nearest-neighbour algorithm (Vinyals et al. [2016]), a CNN with SGD (Mishra et al. [2017], and
a nested SGD (Finn et al. [2017]). Systems in Vinyals et al. [2016] and Snell et al. [2017] are
based on comparing new examples in a learned metric space and rely on matching. In particular,
MATCHINGNET from Vinyals et al. [2016] uses neural networks augmented with memory and
recurrence with attention in a few-shot image recognition context. Mishra et al. [2017] build on this
attention technique by adding temporal convolutions to reuse information from past tasks. Another
example of a matching-based method is introduced in Garcia and Bruna [2017], where a graph neural
network learns the correspondence between the training and testing sets. A different approach is to
consider the SGD update as a learnable function for meta-learning. In particular, sequential learning
algorithms, such as recurrent neural networks and LSTM-based methods, enable the use of long-term
dependencies between the data and gradient updates as pointed out by Ravi and Larochelle [2017].
Finally, Finn et al. [2017] introduce a technique called model-agnostic meta-learning (MAML). In
MAML, meta-learning is done by backpropagating through the fine-tuning stochastic gradient descent
update of the model parameters.

1https://openreview.net/forum?id=HyxnZh0ct7&noteId=BkxDPnDZMV
2our R2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2
3our MAML on CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
4Bertinetto et al. [2019] code: https://github.com/bertinetto/r2d2

2

https://openreview.net/forum?id=HyxnZh0ct7&noteId=BkxDPnDZMV
https://github.com/ArnoutDevos/r2d2
https://github.com/ArnoutDevos/maml-CIFAR-FS
https://github.com/bertinetto/r2d2


Figure 1: Base-learning of the task-speci�c parameterswTi overp tasks following steps 3 to 6 of
Algorithm 1.

Figure 2: Meta-learning of the meta-parameters! and� over the evaluation sets of each taskZ 0
Ti

using the previously learnedwTi following steps 7 to 9 of Algorithm 1.

3


	Introduction
	Background in meta-learning
	Analysis of the R2D2 Classifier
	Reproducibility
	Results and contributions
	Conclusion

