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Abstract

In this paper, we present a reproduction of the paper of Bertinetto et al. [2019]
"Meta-learning with differentiable closed-form solvers" as part of the ICLR 2019
Reproducibility Challenge. In successfully reproducing the most crucial part of
the paper, we reach a performance that is comparable with or superior to the
original paper on two benchmarks for several settings. We evaluate new baseline
results, using a new dataset presented in the paper. Yet, we also provide multiple
remarks and recommendations about reproducibility and comparability. After
we brought our reproducibility work to the authors’ attention, they have updated
the original paper on which this work is based and released code as well. Our
contributions mainly consist in reproducing the most important results of their
original paper, in giving insight in the reproducibility and in providing a first
open-source implementation.

1 Introduction

The ability to adapt to new situations and learn quickly is a cornerstone of human intelligence. When
given a previously unseen task, humans can use their previous experience and learning abilities to
perform well on this new task in a matter of seconds and with a relatively small amount of new
data. Artificial learning methods have been shown to be very effective for specific tasks, often times
surpassing human performance (Silver et al. [2016], Esteva et al. [2017]). However, by relying on
standard supervised-learning or reinforcement learning training paradigms, these artificial methods
still require much training data and training time to adapt to a new task.

An area of machine learning that learns and adapts from a small amount of data is called few-shot
learning. A shot corresponds to a single example, e.g. an image and its label. In few-shot learning
the learning scope is expanded to a variety of tasks with a few shots each, compared to the classic
setting of a single task with many shots. A promising approach for few-shot learning is the field of
meta-learning. Meta-learning, also known as learning-to-learn, is a paradigm that exploits cross-task
information and training experience to perform well on a new unseen task.

In this work we reproduce the paper of Bertinetto et al. [2019] (referenced as "their paper"); it falls
into the class of gradient-based meta-learning algorithms that learn a model parameter intialization
for rapid fine-tuning with a few shots (Finn et al. [2017], Nichol and Schulman [2018]). The authors
present a new meta-learning method that combines a deep neural network feature extractor with
differentiable learning algorithms that have closed-form solutions. This reduces the overall complexity
of the gradient based meta-learning process, while advancing the state-of-the-art in terms of accuracy
across multiple few-shot benchmarks.

Under review as a workshop paper at ICLR 2019.



We interacted with the authors through OpenReview1, bringing our reproducibility work and Tensor-
Flow code2,3 to their attention. Because of this, they have recently updated their original paper with
more details to facilitate reproduction and they have released an official PyTorch implementation4.

2 Background in meta-learning

The objective of few-shot meta-learning is to train a model that can quickly adapt to a new task
by using only a few datapoints and training iterations. In our work we will consider only classifi-
cation tasks, but it should be noted that meta-learning is also generally applicable to regression or
reinforcement learning tasks (Finn et al. [2017]).

In order to provide a solid definition of meta-learning, we need to define its different components.
We denote the set of tasks by T. A task Ti ∈ T corresponds to a classification problem, with a
probability distribution of example inputs x and (class) labels y, (x, y) ∼ Ti. For each task, we
are given training samples ZT = {(xi, yi)} ∼ T with K shots per class and evaluation samples
Z ′T = {(x′i, y′i)} ∼ T with Q shots (queries) per class, all sampled independently from the same
distribution T . In meta-learning, we reuse the learning experience used for tasks Ti, i ∈ [0, L] to
learn a new task Tj , where j > L, from only K examples, for every single one of the N classes in
the task. Commonly, this is denoted as an N -way K-shot problem. To this end, in meta-learning
two different kinds of learners can be at play: (1) a base-learner that works at the task level and
learns a single task (e.g. classifier with N classes) and (2) a meta-learner that produces those model
parameters that enable the fastest average fine-tuning (using the base-learner) on unseen tasks.

The authors put a specific view of meta-learning forward. Their meta-learning system consists of a
generic feature extractor Φ(x) that is parametrized by ω, and a task-specific predictor fT (X) that is
parametrized by wT and adapts separately to every task T ∈ T based on the few shots available. In
the case of a deep neural network architecture, this task-specific predictor fT can be seen as the last
layer(s) of the network and is specific to a task T . The preceding layers Φ can be trained across tasks
to provide the best feature extraction on which the task-specific predictor can finetune with maximum
performance.

The base-learning phase in their paper assumes that the parameters ω of the feature extractor Φ are
fixed and computes the parameters wT of fT through closed-form learning process Λ. Λ, on its own,
is parametrized by ρ. The meta-learning phase in the paper learns a parametrization of Φ and Λ
(respectively ω and ρ). In order to learn those meta-parameters, the algorithm minimizes the expected
loss on test sets from unseen tasks in T with gradient descent. The base-learning and meta-learning
phases are shown in Figures 1 and 2, respectively.

Most of the recent meta-learning works are tested against image datasets and their feature extractor
consists of a convolutional neural network (CNN). The variability between works resides mainly in the
base learner fT and its parameter obtaining training procedure Λ. Examples are an (unparametrized)
k-nearest-neighbour algorithm (Vinyals et al. [2016]), a CNN with SGD (Mishra et al. [2017], and
a nested SGD (Finn et al. [2017]). Systems in Vinyals et al. [2016] and Snell et al. [2017] are
based on comparing new examples in a learned metric space and rely on matching. In particular,
MATCHINGNET from Vinyals et al. [2016] uses neural networks augmented with memory and
recurrence with attention in a few-shot image recognition context. Mishra et al. [2017] build on this
attention technique by adding temporal convolutions to reuse information from past tasks. Another
example of a matching-based method is introduced in Garcia and Bruna [2017], where a graph neural
network learns the correspondence between the training and testing sets. A different approach is to
consider the SGD update as a learnable function for meta-learning. In particular, sequential learning
algorithms, such as recurrent neural networks and LSTM-based methods, enable the use of long-term
dependencies between the data and gradient updates as pointed out by Ravi and Larochelle [2017].
Finally, Finn et al. [2017] introduce a technique called model-agnostic meta-learning (MAML). In
MAML, meta-learning is done by backpropagating through the fine-tuning stochastic gradient descent
update of the model parameters.

1https://openreview.net/forum?id=HyxnZh0ct7&noteId=BkxDPnDZMV
2our R2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2
3our MAML on CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
4Bertinetto et al. [2019] code: https://github.com/bertinetto/r2d2
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Figure 1: Base-learning of the task-specific parameters wTi over p tasks following steps 3 to 6 of
Algorithm 1.

Task 𝒯1, 𝒵′�𝒯1

…

…

…

…

…

…

…

…

queries

…

…

…

…

Task 𝒯p, 𝒵′�𝒯p

…

feature 
extractor 

base learner 
Λ( ∙ |w𝒯i

)

Φ( ∙ )

ρ

ω

Q

Figure 2: Meta-learning of the meta-parameters ω and ρ over the evaluation sets of each task Z ′Ti
using the previously learned wTi following steps 7 to 9 of Algorithm 1.
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3 Analysis of the R2D2 Classifier

In their paper, Bertinetto et al. [2019] present a new approach that relies on using fast and simple
base learners such as ridge regression differentiable discriminator (R2D2) or (regularized) logistic
regression differentiable discriminator (LRD2). In our reproducibility work we will focus on the
R2D2 algorithm, because it is the only proposed algorithm with a truly closed-form solver for the
base-learner. For reproducibility purposes, we transformed the original textual description of R2D2
in their paper into an algorithmic description in Algorithm 1, elaborated upon in the following.

Algorithm 1 Ridge Regression Differentiable Discriminator (R2D2)
Require: Distribution of tasks T.
Require: Feature extractor Φ parameterized by ω.
Require: Finetuning predictor fT with base-learning algorithm Λ and task-specific parameters wT ,

and meta-parameters ρ = (α, β, λ)
1: Initialize Φ, Λ, and fT with pre-trained or random parameters ω0 and ρ0
2: while not done do
3: Sample batch of tasks Ti ∼ T
4: for all Ti do
5: Sample K datapoints for every class from Ti and put in them in the training set ZTi
6: Base-learn fTi using Λ:

Wi = wTi = Λ(ZTi) = XT
i (XiX

T
i + λ.I)−1Yi

with Xi = Φ(ZTi) and Yi the one-hot labels from ZTi .

7: Sample datapoints for every class from Ti and put in them in the evaluation set Z ′Ti
8: end for
9: Update meta-parameters θ = (ω,ρ) through gradient descent :

θ ← θ − ε.
∑
i

∇θL(fTi(Φ(Z ′Ti)), Y
′
i )

with ε the learning rate, L the cross-entropy loss, and fTi(X
′
i) = αX ′iWi + β.

10: end while

In R2D2, during base-learning with ZT , the linear predictor fT is adapted for each training task T ,
by using the learning algorithm Λ; and the meta-parameters ω (of Φ) and ρ (of Λ) remain fixed. It is
only in the meta-training phase that meta-parameters ω and ρ are updated, by using Z ′T . The linear
predictor is seen as fT (x) = xW with W a matrix of task-specific weights wT , and x the feature
extracted version of x, x = Φ(x). This approach leads to a ridge regression evaluation such that it
learns the task weights wT :

Λ(X,Y ) = arg min
W

‖XW − Y ‖2 + λ ‖W‖2 (1)

= (XTX + λI)−1XTY (2)

where X contains all NK feature extracted inputs from the training set of the considered task. A
key insight in their paper is that the closed-form solution of Equation 2 can be simplified using
the Woodbury matrix identity yielding W = Λ(X,Y ) = XT (XXT + λI)−1Y . This considerably
reduces the complexity of the matrix calculations in the special case of few-shot learning. Specifically,
XXT is of size NK ×NK, in the case of an N -way K-shot task; this matrix will, together with the
regularization, be relatively easily inverted. Normally, regression is not adequate for classification,
but the authors noticed that it still has considerable performance. Therefore, in order to transform the
regression outputs (which are only effectively calculated when updating the meta-parameters using
Z ′T ) to work with the cross-entropy loss function, the meta-parameters (α, β) ∈ R2 serve as a scale
and bias, respectively:

Ŷ ′ = αX ′
[
XT (XXT + λI)−1Y

]
+ β (3)
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Figure 3: Overall architecture of the R2D2 system considering [96, 192, 384, 512] filters in the
feature extractor with 4 convolutional blocks for the CIFAR-FS dataset.

4 Reproducibility

As a first step in the reproducibility, we reproduce the results of a baseline algorithm on different
datasets used in their paper. In this perspective, we first consider the MAML algorithm from Finn
et al. [2017]. We use the official TensorFlow implementation of MAML (Finn [2018]) to reproduce
the baseline’s results. Then, we amend this MAML implementation to reproduce the results on the
new CIFAR-FS dataset proposed by their paper (Bertinetto et al. [2019]).

When reproducing the R2D2 algorithm, our first consideration is that the feature extractors in MAML
and R2D2 are very different. MAML uses four convolutional blocks with an organization of [32,
32, 32, 32] filters. Whereas, R2D2’s four blocks employ a [96, 192, 384, 512] scheme, as shown in
Figure 3. In other words, the feature extractor in R2D2 is more complex hence is expected to yield
better results (Mhaskar et al. [2016]). In order to provide a meaningful comparison, we implement
and evaluate both the simple and more complex feature extractors for the R2D2 algorithm, denoted
by R2D2* and R2D2 respectively.

In order to make a working reproduction of their paper we had to make the following assumptions.
We first considered the aforementioned complex architecture and feature extractor. In particular, for
the feature extractor, we made assumptions on the convolutional block options. We considered a
3x3 convolution block with a ’same’ padding and a stride of 1. For the 2x2 maximum pooling, we
use a stride of 2 and no padding. Second, concerning the ridge regression base-learner, we opted for
a multinomial regression that returns the class with the maximum value through one-hot encoding.
Following the guidelines for the feature extractor presented in Section 4.2 of their paper, we were
not successful in reproducing the exact number of features at the output of the feature extractor. In
their paper, the overall numbers of features at the output of the extractor are 3584, 72576 and 8064
for Omniglot, miniImageNet and CIFAR-FS, respectively. However, by implementing the feature
extractor described in their paper, we obtain 3988, 51200 and 8192 respectively.

For comparison purposes, we use the same number of classes (e.g. 5) and shots during (e.g. 1) training
and testing, despite their paper using a higher number of classes during training (16 for miniImageNet,
20 for CIFAR-FS) than during testing (5 for miniImageNet and CIFAR-FS). Regarding the amount
of shots, their paper uses a random number of shots during training. This is different from the way
most baselines are trained using the same number of shots per class during training and testing (Finn
[2018], Nichol and Schulman [2018], Vinyals et al. [2016]). For comparability, it is paramount to
keep the training and testing procedures similar, if not the same. In particular, as in their paper the
5-way results are exactly the same as those reported in MAML (Finn et al. [2017]), using the same
number of classes and shots during training and testing allows for a justifiable comparison.

Finally, a last assumption is made on the algorithm’s stopping criterion. In their paper, the stopping
criterion is vaguely defined as "the error on the meta-validation set does not decrease meaningfully
for 20,000 episodes". Therefore, in line with the MAML training procedure, we meta-train using
60,000 iterations. To update the meta-parameters, in line with their paper, we use the Adam optimizer
(Kingma and Ba [2014]) with an initial learning rate of 0.005, dampened by 0.5 every 2,000 episodes.
We use 15 examples per class for evaluating the post-update meta-gradient. We use a meta batch-size
of 4 and 2 tasks for 1-shot and 5-shot training respectively. For MAML we use a task-level learning
rate of 0.01, with 5 steps during training and 10 steps during testing.
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5 Results and contributions

The results of the different implemented architectures and algorithms for several datasets are shown
in Figures 4 and 5. More detailed results with 95% confidence intervals are shown in Tables 1 and 2.
The first and last column correspond to the baselines in original papers.

Our implementations were made in Python 3.6.2 and TensorFlow 1.8.0 (Abadi et al. [2016]). The
source code of all implementations is available5 online6. The simulations were run on a machine with
24 Xeon e5 2680s at 2.5 GHz, 252GB RAM and a Titan X GPU with 12 GB RAM.

Although our results differ slightly from the original paper of Bertinetto et al. [2019], R2D2 (with its
more complex network architecture) performs better than the MAML method for most simulations.
It is not a surprise that, in most of the cases, with a more complex feature extractor better results
are obtained for the same algorithm (R2D2 vs R2D2*). Overall, our study confirms that the R2D2
meta-learning method, with its corresponding complex architecture, yields better performance than
basic MAML (with its simpler architecture). The differences between reproduced results and reported
values might be due to our assumptions or the stopping criterion in the training. Also, as expected,
the complexity (N-ways) and the amount of data (K-shots) play a major role in the classification
accuracy. The accuracy drops when the number of ways increases and number of shots decreases. An
outlier worth mentioning is our MAML simulation on miniImageNet: the 2-way 1-shot classification
accuracy of 78.8± 2.8% is much better than the 74.9± 3.0% reported in Finn et al. [2017].

In summary, we successfully reproduced the most important results presented in Bertinetto et al.
[2019]. Although our reproduced results and their paper results differ slightly, the general observations
of the authors remain valid. Their meta-learning with differentiable closed-form solvers yields state-
of-the-art results and improves over another state-of-the-art method. The assumptions made, however,
could have been clarified in their original paper. Indeed, these assumptions could be the source of the
discrepancy in the reproduction results. In this reproducibility work we did not focus on the logistic
regression based algorithm (LRD2) from their paper because the logistic regression solver does not
have a closed-form solution.

Overall, with this reproducibility project we make the following contributions:

• Algorithmic description of the R2D2 version of meta-learning with differentiable closed-
form solvers (Algorithm 1).

• Evaluation of the MAML pipeline from Finn [2018] on two datasets: the existing miniIma-
geNet and new CIFAR-FS for different few-shot multi-class settings.

• Implementation of R2D2* in TensorFlow on the pipeline following Algorithm 1 with the
original MAML feature extractor.

• Implementation of R2D2 in TensorFlow on the pipeline following Algorithm 1 with the
Figure 3 architecture as mimicked from in the original paper (Bertinetto et al. [2019]).

• Evaluation and insights in the reproducibility of Bertinetto et al. [2019].

6 Conclusion

In this work we have presented a reproducibility analysis of the ICLR 2019 paper "Meta-learning
with differentiable closed-form solvers" by Bertinetto et al. [2019]. Some parameters and training
methodologies, which would be required for full reproducibility, such as stride and padding of the
convolutional filters, and a clear stopping criterion, are not mentioned in the original paper or in its
appendix (Bertinetto et al. [2019]). However, by making reasonable assumptions, we have been able
to reproduce the most important parts of the paper and to achieve similar results. Most importantly
we have succeeded in reproducing the increase in performance of the proposed method over some
reproduced baseline results, which supports the conclusions of the original paper. However, the
different neural network architectures should be taken into consideration when comparing results.

5R2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2
6MAML with CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
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Figure 4: N -way K-shot classification accuracies on CIFAR-FS. Detailed results in Table 1.

Table 1: N -way K-shot classification accuracies on CIFAR-FS with 95% confidence intervals.

Method MAML paper
Bertinetto et al. [2019]

MAML
ours

R2D2*
ours

R2D2
ours

R2D2 paper
Bertinetto et al. [2019]

5-way, 1-shot 58.9± 1.9% 56.8± 1.9% 54.3± 1.8% 60.2± 1.8% 65.3± 0.2%
5-way, 5-shot 71.5± 1.0% 70.8± 0.9% 69.7± 0.9% 70.9± 0.9% 79.4± 0.1%
2-way, 1-shot 82.8± 2.7% 83.1± 2.6% 78.3± 2.8% 83.6± 2.6% 83.4± 0.3%
2-way, 5-shot 88.3± 1.1% 88.5± 1.1% 87.7± 1.1% 89.0± 1.0% 91.1± 0.2%
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Figure 5: N -way K-shot classification accuracies on miniImageNet. Detailed results in Table 2.

Table 2: N -way K-shot classification accuracies on miniImageNet with 95% confidence intervals

Method MAML paper
Finn et al. [2017]

MAML code
Finn [2018]

R2D2*
ours

R2D2
ours

R2D2 paper
Bertinetto et al. [2019]

5-way, 1-shot 48.7± 1.8% 47.6± 1.9% 45.7± 1.8% 51.7± 1.8% 51.5± 0.2%
5-way, 5-shot 63.1± 0.9% 62.3± 0.9% 63.7± 1.3% 63.3± 0.9% 68.8± 0.2%
2-way, 1-shot 74.9± 3.0% 78.8± 2.8% 74.7± 2.9% 74.6± 2.9% 76.7± 0.3%
2-way, 5-shot 84.4± 1.2% 82.6± 1.2% 83.0± 1.2% 84.6± 1.2% 86.8± 0.2%
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