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ABSTRACT

To realize the promise of ubiquitous embedded deep network inference, it is es-
sential to seek limits of energy and area efficiency. To this end, low-precision
networks offer tremendous promise because both energy and area scale down
quadratically with the reduction in precision. Here, for the first time, we demon-
strate ResNet-18, ResNet-34, ResNet-50, ResNet-152, Inception-v3, densenet-
161, and VGG-16bn networks on the ImageNet classification benchmark that, at
8-bit precision exceed the accuracy of the full-precision baseline networks after
one epoch of finetuning, thereby leveraging the availability of pretrained mod-
els. We also demonstrate ResNet-18, ResNet-34, and ResNet-50 4-bit models that
match the accuracy of the full-precision baseline networks — the highest scores to
date. Surprisingly, the weights of the low-precision networks are very close (in
cosine similarity) to the weights of the corresponding baseline networks, making
training from scratch unnecessary.

We find that gradient noise due to quantization during training increases with
reduced precision, and seek ways to overcome this noise. The number of iter-
ations required by stochastic gradient descent to achieve a given training error
is related to the square of (a) the distance of the initial solution from the final
plus (b) the maximum variance of the gradient estimates. By drawing inspira-
tion from this observation, we (a) reduce solution distance by starting with pre-
trained fp32 precision baseline networks and fine-tuning, and (b) combat noise
introduced by quantizing weights and activations during training, by using larger
batches along with matched learning rate annealing. Sensitivity analysis indicates
that these techniques, coupled with proper activation function range calibration,
offer a promising heuristic to discover low-precision networks, if they exist, close
to fp32 precision baseline networks.

1 INTRODUCTION

1.1 PROBLEM STATEMENT

To harness the power of deep convolutional networks in embedded and large-scale application do-
mains requires energy-efficient implementation, leading to great interest in low-precision networks
suitable for deployment with low-precision hardware accelerators. Consequently there have been a
flurry of methods for quantizing both the weights and activations of these networks (Jacob et al.,
2017; |Courbariaux et al., 2015} [Polino et al., 2018} | Xu et al.l [2018; [Baskin et al., 2018} Mishra
et al.|[2017; /Choi et al.} 2018). A common perception is that 8-bit networks offer the promise of de-
creased computational complexity with little loss in accuracy, without any need to retrain. However,
the published accuracies are typically lower for the quantized networks than for the corresponding
full-precision net (Migacz, 2017). Even training 8-bit networks from scratch fails to close this gap
(Jacob et al.| 2017) (See Table E]) The situation is even worse for 4-bit precision. For the ImageNet
classification benchmark, only one method has been able to match the accuracy of the corresponding
full-precision network when quantizing both the weights and activations at the 4-bit level (Zhuang
et al.,[2018)). The complexity and ad-hoc nature of prior methods motivates the search for a simpler
technique that can be consistently shown to match or exceed full-precision baseline networks.
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Table 1: Fine-tuning After Quantization (FAQ) exceeds or matches the accuracy of the fp32
baseline networks on the Imagenet benchmark for both 8 and 4 bits on representative state-
of-the-art network architectures, and outperforms all comparable quantization methods in
all but one instance. Baselines are popular architectures He et al.| (2016); [Huang et al.| (2017);
Szegedy et al|(2016); |Simonyan & Zisserman| (2014} from the PyTorch model zoo. Other results
reported in the literature are shown for comparison, with methods exceeding or matching their top-
1 baseline (which may be different than ours) in bold. Precision is in bits, where w= weight ,
and a=activation function. Accuracy is reported for the ImageNet classification benchmark. FAQ
ResNet-18, 4-bit result shows mean+tstd for 3 runs. Compared methods: Apprentice (Mishra &
Marr, [2017)), Distillation (Polino et al., 2018]), UNIQ (Baskin et al., 2018), IOA (Jacob et al., | 2017),
Joint Training (Jung et al.,[2018)), EL-Net (Zhuang et al., 2018)). Since only one epoch was necessary
to fine-tune 8-bit models, we were able to study more 8 than 4-bit models.

Network Method Precision (w,a) | Accuracy Accuracy
(% top-1) (% top-5)
ResNet-18 baseline 32,32 69.76 89.08
ResNet-18 Apprentice 4,8 70.40 -
ResNet-18 FAQ (This paper) 8,8 70.02 89.32
ResNet-18 FAQ (This paper) 4,4 69.78+0.04 | 89.11+0.03
ResNet-18 Joint Training 4.4 69.3 -
ResNet-18 UNIQ 4,8 67.02 -
ResNet-18 Distillation 4,32 64.20 -
ResNet-34 baseline 32,32 73.30 91.42
ResNet-34 FAQ (This paper) 8,8 73.71 91.63
ResNet-34 FAQ (This paper) 4,4 73.31 91.32
ResNet-34 UNIQ 4,32 73.1 -
ResNet-34 Apprentice 4,8 73.1 -
ResNet-34 UNIQ 4,8 71.09 -
ResNet-50 baseline 32,32 76.15 92.87
ResNet-50 FAQ (This paper) 8,8 76.52 93.09
ResNet-50 FAQ (This paper) 44 76.27 92.89
ResNet-50 EL-Net 4,4 75.9 924
ResNet-50 10A 8,8 74.9 -
ResNet-50 Apprentice 4,8 74.7 -
ResNet-50 UNIQ 4,8 73.37 -
ResNet-152 baseline 32,32 78.31 94.06
ResNet-152 | FAQ (This paper) 8,8 78.54 94.07
Inception-v3 baseline 32,32 77.45 93.56
Inception-v3 | FAQ (This paper) 8,8 77.60 93.59
Inception-v3 10A 8,8 74.2 92.2
Densenet-161 baseline 32,32 77.65 93.80
Densenet-161 | FAQ (This paper) 8,8 77.84 93.91
VGG-16bn baseline 32,32 73.36 91.50
VGG-16bn | FAQ (This paper) 8,8 73.66 91.56

1.2 CONTRIBUTIONS

Guided by theoretical convergence bounds for stochastic gradient descent (SGD), we propose fine-
tuning, training pretrained high-precision networks for low-precision inference, by combating noise
during the training process as a method for discovering both 4-bit and 8-bit integer networks. We
evaluate the proposed solution on the ImageNet benchmark on a representative set of state-of-the-art
networks at 8-bit and 4-bit quantization levels (Table[T)). Contributions include the following.

e We demonstrate 8-bit scores on ResNet-18, 34, 50, and 152, Inception-v3, Densenet-161,
and VGG-16 exceeding the full-precision scores after just one epoch of fine-tuning.
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e We present evidence of 4 bit, fully integer ResNet-18, ResNet-34, and ResNet-50 networks,
which match the accuracy of the original full-precision networks on the ImageNet bench-
mark, settting the new state-of-the-art.

e We present empirical evidence for gradient noise that is introduced by weight quantization.
This gradient noise increases with decreasing precision and may account for the difficulty
in fine-tuning low-precision networks.

e We demonstrate that progressively larger batches during fine-tuning provides further accu-
racy improvements.

e We find direct empirical support that, as with 8-bit quantization, near optimal 4-bit quan-
tized solutions exist close to high-precision solutions, making training from scratch unnec-
essary.

1.3 PROPOSED SOLUTION

Our goal is to quantize existing networks to 8 and 4 bits for both weights and activations, without
increasing the computational complexity of the network to compensate, e.g. with modifications
such as feature expansion, while achieving accuracies that match or exceed the corresponding full-
precision networks. For precision below 8 bits, the typical method is to train the model using SGD
while enforcing the constraints (Courbariaux et al., 2015). There are at least two problems faced
when training low-precision networks: learning in the face of low-precision weights and activations,
and capacity limits in the face of these constraints. Assuming that capacity is sufficient and a low-
precision solution exists, we wish to solve the first problem, that is, find a way to train low-precision
networks to obtain the best possible score subject to capacity limits.

We use low-precision training to optimize quantized networks. We hypothesize that noise introduced
by quantizing weights and activations during training is the crux of the problem and is a second
source of noise that is similar to gradient noise inherent to stochastic gradient descent. In support of
this idea, |Polino et al.| (2018)) showed that unbiased quantization of weights is equivalent to adding
Gaussian noise to the activations, in expectation. The problem is then to find ways to overcome this
noise. SGD requires

k< (0?4 Lx|xg —z*||2)%/e ()

iterations to find a 2e-approximate optimal value, where o2 is the gradient noise level, L is related
to the curvature of the convex function, xy and z* are the initial and optimal network parameters,
respectively, and e is the error tolerance (Mekal 2017)). This suggests two ways to minimize the final
error. First, start closer to the solution, i.e. minimize zg — z*. We therefore start with pretrained
models for quantization, rather than training from scratch (Zhou et al., |2017; |Baskin et al., [2018]).
Second, minimize o2. To do this, we combine well-known techniques to combat noise: 1) larger
batches which reduce the gradient noise proportional to the square root of the batch size (Goodfel-
low et al.,2016), and 2) learning rate annealing to lower learning rates (10~%), effectively averaging
over more batches (batch size increases and learning rate decreases are known to behave similarly
(Smith et al., 2017)). Additionally, in the case of 4-bit precision, we fine-tune longer — 110 epochs
— to achieve better accuracy, according to equation 1. Finally, we use the initial pretrained network
to determine the proper ranges for quantizing both the weights and activations. We refer to this
technique as Fine-tuning after quantization, or FAQ. We argue that the method of fine-tuning for
quantization is the right approach in the sense that it directly optimizes the proper objective func-
tion, the final score, rather than proxies which measure distance from the full-precision network
parameters (Migacz, 2017).

2 BACKGROUND

2.1 NETWORK QUANTIZATION

In the quest for training state-of-the-art low-precision networks, there has been a vast diversity in
how the precision constraints are imposed as well as in approaches used in their training. Typ-
ical variations in applying low-precision constraints include allowing non-uniform quantization of

! This assumes a convex loss function, a simpler case.
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weights and activations (Miyashita et al.,|2016;|Zhou et al.| 2017} |Cai et al., [ 2017)) where the discrete
dictionary may depend on the data, and stochastic quantization (Polino et al., [2018}; |Courbariaux
et al.l |2015). Approaches to training these networks include distillation (Polino et al.| 2018), layer-
wise quantization and retraining (Xu et al.| 2018)), introducing noise during training (Baskin et al.,
2018)), increasing features (Mishra et al. 2017), learning quantization-specific parameters using
backpropagation (Choi et al. [2018), fine-tuning (Baskin et al., [2018}; [Zhuang et al., 2018), using
Stochastic Variance-Reduced Gradient instead of SGD (Sa et al.l [2018)), and relaxation methods
resembling annealing (Yin et al., 2018).

With notable exception of a few papers dealing with binary or trinary networks (Courbariaux et al.|
2015} |Rastegari et al., [2016; (Courbariaux & Bengiol |2016)}7, most of the literature on low-precision
networks constrain the number of discrete values that the weights and activations assume but oth-
erwise allow them to be floating-point numbers. In addition, low-precision constraints are not nec-
essarily imposed on batch-normalization constants, average-pooling results etc. in these networks.
This is in contrast to how 8-bit integer networks are supported by TensorRT as well as Tensor-
Flow framework, where all the parameters and activations are quantized to 8-bit fixed-point integers
(see for example (Jacob et al.l |2017)). Recent attempts (Wu et al, |2018) at training low-precision
networks with integer constraints have hinted at the possibility of porting such networks to commer-
cially available hardware for inferenc

We focus on training networks with both weights and activations constrained to be either 4 bit, or
8-bit fixed-point integers, and restrict all other scalar multiplicative constants (for example, batch-
normalization) in the network to be 8-bit integers and additive constants (for example, bias values)
to be 32-bit integers.

3 LOW-PRECISION FINE-TUNING METHODS

We start with pretrained, high-precision networks from the PyTorch model zoo, quantize, and then
fine-tune for a variable number of epochs depending on the precision. We hypothesize that noise
is the limiting factor in finding low-precision solutions, and use well-known methods to over come
noise in training. Otherwise, we use the techniques of |(Courbariaux et al.|(2015); [Esser et al.| (2016)
to train low-precision networks. Details of this procedure are described next.

3.1 FIXED POINT QUANTIZER

The quantizer we use throughout this paper is parametrized by the precision (in number of bits)
b, and the location of the least significant-bit relative to the radix /, and denoted by Qp;. A
calibration phase during initialization is used to determine a unique ! for each layer of acti-
vations, which remains fixed subsequently throughout the fine-tuning. Similarly, each layer’s
weight tensor as well as other parameter tensors are assigned a unique ! and this quantity is de-
termined during each training iteration. The procedures for determining [ for activations and
other parameters are described in the following subsections. A given scalar x is quantized to
a fixed-point integer # = Qp;(z) = min(|z x 2717,2% — 1) x 2! for unsigned values, and
# = max(min(|z x 277,271 — 1), —2°=1 + 1)) x 2! for signed values.

Given a desired network precision of either 8 or 4 bits, we quantize all weights and activations to
this level. In the 4-bit case, we leave the first and last layer weights at 8 bits and allow full-precision
(32-bit fixed point) linear activations in the last, fully-connected layer |Courbariaux et al.| (2015));
Esser et al.| (2016). In addition, the input to that last, fully-connected layer is also allowed to be an
8-bit integer as is the common practice in the literature. In such networks containing 4-bit internal
layers and 8-bit final layer, the transition from 4-bit to 8-bit is facilitated by the last ReLU activation
layer in the network. Every other ReLLU layer’s output tensor is quantized to a 4-bit integer tensor.

3.1.1 QUANTIZING NETWORK PARAMETERS

Given a weight tensor w, SGD is used to update w as usual but a fixed-point version is used for
inference and gradient calculation (Courbariaux et al., 2015} |[Esser et al., [2016). The fixed-point

2Even these networks may have occasional floating point scaling steps between layers.
’NVIDIA’s recently announced Turing architecture supports 4-bit integer operations, for example.
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version is obtained by applying @), ; element-wise. The quantization parameter [ for a given weight
tensor is updated during every iteration and computed as follows: We first determine a desired quan-
tization step-size A by first clipping the weight tensor at a constant multipleE] of its numerically
estimated standard-deviation, and then dividing this range into equally-sized bins. Finally, the re-
quired constant [ is calculated as [ = [log,(A)]. All other parameters, including those used in
batch-normalization, use | = —b/2.

3.2 INITIALIZATION

Network parameters are first initialized from an available pretrained model file
(https://pytorch.org/docs/stable/torchvision/models.html). ~ Next, the quantization parameter [
for each layer of activation is calibrated using the following procedure: Following Jacob et al.
(2017), we use a technique of running several (5) training data batches through the unquantized
network to determine the maximum range for uniform quantization. Specifically, for each layer,
Ymaz 18 the maximum across all batches of the 99.99th percentile of the batch of activation tensor
of that layer, rounded up to the next even power of two. This percentile level was found to give the
best initial validation score for 8-bit layers, while 99.9 was best for layers with 4-bit ReLUs. The
estimated Y44, in turn, determines the quantization parameter ! for that tensor. For ReLU layers,
the clipped tensor in the range [0, ¥nq] is then quantized using @ ;. Once these activation function
parameters are determined for each of the tensors, they are kept fixed during subsequent fine-tuning.

For control experiments which start from random initialization rather than pretrained weights, we did
not perform this ReLU calibration step, since initial activation ranges are unlikely to be correct. In
these experiments, we set the maximum range of all ReLU activation functions to 4,4, = 2P/2 — 1,
where p is the number of bits of precision.

3.3 TRAINING

To train such a quantized network we use the typical procedure of keeping a floating point copy
of the weights which are updated with the gradients as in normal SGD, and quantize weights and
activations in the forward pass (Courbariaux et al., 2015} |[Esser et al.,[2016)), clipping values that fall
above the maximum range as described above. We also use the straight through estimator (Bengio
et al.| 2013) to pass the gradient through the quantization operator.

For fine-tuning pretrained 8-bit networks, since the initial quantization is already within a few per-
cent of the full-precision network in many cases, we find that we need only a single additional epoch
of training, with a learning rate of 10~* after the initial quantization step, and no other changes are
made to the original training parameters during fine-tuning.

However, for 4-bit networks, the initial quantization alone gives poor performance, and matching the
performance of the full-precision net requires training for 110 additional epochs using exponential
decay of the learning rate such that the learning rate drops from the initial rate of 0.0015 (slightly
higher than the final learning rate used to train the pretrained net) to a final value of 10~%. Accord-
ingly we multiply the learning rate by 0.936 after each epoch for a 110 epoch fine-tuning training
run. In addition, for the smallest ResNet 4-bit network, ResNet-18, the weight decay parameter is
reduced from 10~ used to train ResNet models to 0.5 x 10~ assuming that less regularization is
needed with smaller, lower precision networks. The batch size used was 256 split over 2 GPUs.
SGD with momentum was used for optimization. Software was implemented using PyTorch.

4 EXPERIMENTS

4.1 FINE-TUNING MATCHES OR EXCEEDS THE ACCURACY OF THE INITIAL HIGH-PRECISION
NETWORK

FAQ trained 8-bit networks outperform all comparable quantization methods in all but one instance
and exceeded pretrained fp32 network accuracy with only one epoch of training following quantiza-
tion for all networks explored (Table 1). Immediately following quantization, network accuracy was

*The constant, in general, depends on the precision. We used a constant of 4.12 for all our 4-bit experiments.
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Table 2: Sensitivity experiments indicate that longer training duration, initialization from a
pretrained model, larger batch size, lower weight decay, and initial activation calibration all
contribute to improved accuracy when training the 4-bit ResNet-18 network, while the exact
learning rate decay schedule contributed the least. The standard parameters are on row 1. Each
subsequent row shows the parameters and score for one experiment with changed parameters in
bold. * Note that to keep the number of weight updates approximately the same, the number of
epochs was inceased, since larger batches result in fewer updates per epoch.

Epochs Pre- Batch size | Learning | Weight | Activation | Accuracy | Change
trained rate decay | calibration | (% top-1)
schedule

110 Yes 256 exp. 0.00005 Yes 69.82 -
60 Yes 400 exp. 0.00005 Yes 69.40 -0.22
110 No 256 exp. 0.00005 Yes 69.24 -0.58
165%* Yes 256-2048 exp. 0.00005 Yes 69.96 +0.14
110 Yes 256 step 0.00005 Yes 69.90 +0.08
110 Yes 256 exp. 0.0001 Yes 69.59 -0.23
110 Yes 256 exp. 0.00005 No 69.19 -0.63

nearly at the level of the pretrained networks (data not shown) with one exception, Inception-v3,
which started at 72.34% top-1. Since the networks started close to a good solution, they did not
require extensive fine-tuning to return to and surpass pretrained networks.

FAQ trained 4-bit network accuracy exceeds all comparable quantization methods, surpassing the
next closest approach by nearly 0.5% for ResNet-18 (Jung et al.l |2018)), and matched or exceeded
pretrained fp32 network accuracy. Four-bit networks required significantly longer fine-tuning — 110
epochs — for the networks trained, ResNet-18, ResNet-34, and ResNet-50. In contrast to the 8-
bit cases, immediately following quantization, network accuracy dropped precipitously, requiring
significant fine-tuning to match and surpass the pretrained networks.

FAQ trained 4-bit network accuracy is sensitive to several hyperparameters (Table[2). We elaborate
on some of these results subsequently.

4.2 LONGER TRAINING TIME WAS NECESSARY FOR 4-BIT NETWORKS

For the 4-bit ResNet-18, longer fine-tuning improved accuracy (Table [2), potentially by averaging
out gradient noise introduced by discretization (Polino et al.,|2018]). We explored sensitivity to short-
ening fine-tuning by repeating the experiment for 30, 60 and 110 epochs, with the same initial and
final learning rates in all cases, resulting in top-1 accuracies of 69.30, 69.40, and 69.68 respectively.
The hyperparameters were identical, except the batch size was increased from 256 to 400. These
results indicate that training longer was necessary.

4.3 QUANTIZING A PRETRAINED NETWORK IMPROVES ACCURACY

Initializing networks with a discretized pretrained network followed by fine-tuning improved accu-
racy compared with training a quantized network from random initialization for the same duration
(Table[2)), suggesting proximity to a full-precision network enhances low-precision fine-tuning. For
a 4-bit network, we explored the contribution of the pretrained network by training two ResNet-
18 networks with standard initialization for 110 epochs, one with the previous learning rate decay
scheduleE] and the other with a learning rate from |Choi et al.| (2018), dropping by a factor of 0.1
at epochs 30, 60, 85, and 95, plus an additional drop to 10™° at epoch 95 to match the fine-tuning
experiments. These two approaches reached top-1 accuracies of 67.14% and 69.24%, respectively —
both less than FAQ’s accuracy after 30 epochs and more than 0.5% short of FAQ’s accuracy after 110
epochs. The one FAQ change that degraded accuracy the most was neglecting to calibrate activation

SWe used a higher initial learning rate of 0.1, equal to that used to train the full-precision net from scratch,
with a decay factor of 0.901, such that final learning rate was 10~ °.
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ranges for each layer using the pretrained model, which dropped accuracy by 0.63%. This is another
possible reason why training 8-bit networks from scratch has not achieved higher scores in the past
(Jacob et al., 2017).

4.4 REDUCING NOISE WITH LARGER BATCH SIZE IMPROVES ACCURACY

Fine-tuning with increasing batch size improved accuracy (Table [2). For a 4-bit network, we ex-
plored the contribution of increasing the batch size with a Resnet-18 network, which increased top-1
validation accuracy to 69.96%. We scheduled batch sizes, starting at 256 and doubled at epochs 55,
150, 160, reaching 2048 as maximum batch siZ each doubling effecting a v/2 factor drop in gradi-
ent noise, which is proportional to square root of batch size. We used 165 epochs to approximately
conserve the number of weight updates as the 110-epochs 256-batch-size case as our focus here is
not training faster but reducing gradient noise to improve final accuracy. The result is consistent
with the idea that gradient noise limits low-precision training, however we cannot not rule out pos-
sible confounding affects of training for more epochs or the effect of larger batches on the effective
learning step size.

4.5 THE EXACT FORM OF EXPONENTIAL LEARNING RATE DECAY WAS NOT CRITICAL

Replacing the exponential learning rate decay with a typical step decay which reduced the learning
rate from 1072 to 1076 in 3 steps of 0.1 at epochs 30, 60, and 90, improved results slightly (+0.08).
This suggests that FAQ is insensitive to the exact form of exponential decrease in learning rate.

4.6 REDUCING WEIGHT DECAY IMPROVES ACCURACY FOR RESNET-18

For the 4-bit ResNet-18 network, increasing weight decay from 0.5 x 10* to 10~#, used in the origi-
nal pretrained network, reduced the validation accuracy by 0.23% (Table[2). The smaller ResNet-18
may lack sufficient capacity to compensate for low-precision weights and activations with the same
weight decay. In contrast, for the 4-bit ResNet-34 and 50 networks, best results were obtained with
weight decay 1074,
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Figure 1: Quantizing the weights introduces considerable additional noise in the learning pro-
cess. Plotted is the cosine of the average angular error between the weight change called for by
SGD with momentum, and the actual weight change taken after quantizing. Cosine similarity of
1.0 corresponds to an fp32 network and the absence of discretization-induced gradient noise, i.e.
higher is better. This measure is plotted for each layer in ResNet-18 after several hundred iterations
in the first epoch of fine-tuning for each of three precisions, 2, 4, and 8 bits for both weights and
activations. The first conv layer is layer 1, while the fully connected layer is layer 18. Note that the
first and last layer weights are 8 bits in all cases, thus the noise level is similar in all three cases.

5To simulate batch sizes larger than 256 within memory constraints, we used virtual batches, updating the
weights once every n actual batches with the gradient average for effective batch size 256n.
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4.7 QUANTIZING WEIGHTS INTRODUCES GRADIENT NOISE

Weight discretization increases gradient noise for 8-, 4-, and 2-bit network We define the increase
in gradient noise due to weight discretization as the angular difference between the step taken by the
learning algorithm, dw, on the float-point copy at iteration ¢t — 1, w;_1, and the actual step taken due
to quantizing the weights, i.e. Qp,(w;) — Qp,1(wi—1). We measure this angle using cosine similarity
(normalized dot-product) between the instantaneous Jw and an exponential moving average of the
actual step directions with smoothing factor 0.9 (Figure[T)). Cosine similarity of 1.0 corresponds to
an fp32 network and the absence of discretization-induced gradient noise. As bit precisions decrease,
similarity decreases, signaling higher gradient noise.

These results directly show discretization-induced gradient noise appreciably influences the fine-
tuning and training trajectories of quantized networks. The increased noise (decreased similarity)
of the 4-bit case compared to the 8-bit case possibly accounts for the difference in fine-tuning times
required. Even the 8-bit case is significantly below unity, possibly explaining why training from
scratch has not lead to the highest performance (Jacob et al.,|[2017).
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Figure 2: The ResNet-18 4-bit solution after fine-tuning for 110 epochs was located relatively
close to the initial high-precision solution used to initialize the network, indicating that training
from scratch is unnecessary. Plotted is the mean, over all neurons in a ResNet-18 network, of the
cosine similarity between the weights at the beginning of training from scratch, and the weights
at epoch 110 (left bar). The minimum and maximum similarity measure is 0 and 1, respectively.
The similarity between the random initial weights and the final solution is near O in this control
experiment, indicating that the weights have moved far from the initial condition when training
from scratch. The right bar shows the same measure between initial weights taken from the model
zoo and the 4-bit solution after 100 epochs of FAQ training. The cosine similarity is close to 1,
indicating that the 4-bit solution is close to the initial fp32 solution used for initialization.

4.8 THE 4-BIT SOLUTION WAS SIMILAR TO THE HIGH-PRECISION SOLUTION

The weights of the FAQ trained 4-bit network were similar to those in the full-precision pretrained
network used for its initialization (Figure [2). We define the network similarity as the cosine simi-
larity between the networks’ weights. The average of the cosine similarity between the weights of
every corresponding neuron in the two networks is very close to 1 (0.994), indicating that the weight
vectors have not moved very far during 110 epochs of fine-tuning and that the 4-bit network exists
close to its high-precision counterpart, demonstrating that pretrained initialization strongly influ-
enced the final network. Contrast this with the same measure when training from scratch, where the
similarity between the initial weights and final weights is close to 0 (0.023). The fact that the 4-bit
solution was close to the high-precision solution suggests that training from scratch is unnecessary.

72-bit network is used only to demonstrate how discretization-induced gradient noise varies with bit preci-
sion.
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4.9 FAQ GENERALIZES TO CIFAR10

FAQ trained models are as accurate as the full-precision model for ResNet-18 adapted for the CI-
FAR10 dataset |°, The full-precision model was well-trained for 350 epochs, with learning rate
0.1 reduced by a factor of 0.1 at 150 and 250 epochs, momentum=0.9, weight decay=5e-4, batch
size=128, and augmentation consisting of random crops from images padded with 4 pixels and ran-
domly flipped horizontally. The baseline test accuracy was 94.65%, while FAQ 8- and 4-bit scores,
respectively were 94.65% and 94.63%, evidence that FAQ generalizes to other datasets. 8-bit param-
eters were the same as that for the Imagenet experiments, except weight decay equaled the baseline,
and the number of epochs was extended to 10. The 4-bit score was obtained with the same parame-
ters as for Imagenet (Table 2, row5), except with weight decay equal to baseline and initial learning
rate of 0.02 (best result among 0.0015, 0.01, 0.02, and 0.04).

5 DISCUSSION

We show here that low-precision quantization followed by fine-tuning, when properly compensating
for noise, is sufficient to achieve state of the art performance for networks employing 4- and 8-bit
weights and activations. Compared to previous work, our approach offers a major advantage in the
8-bit space, by requiring only a single epoch of post quantization training to consistently exceed
high-precision network scores, and a major advantage in the 4-bit space by matching high-precision
baseline scores with a simpler approach, exceeding published results on ResNet-18, 34 and 50. We
find support for the idea that overcoming noise is the main challenge in successful fine-tuning, given
sufficient capacity in a network model: longer training times, exponential learning rate decay, very
low final learning rate, and larger batch sizes all seem to contribute to improving the results of fine-
tuning. SGD is faced with two sources of noise, one inherent to stochastic sampling, and the other
due to quantization noise; these techniques may be reducing only one of the sources, or both, and we
have not shown that FAQ is directly reducing quantization noise. Further experiments are warranted.

We believe that the success of fine-tuning and the wide availability of pretrained models marks
a major change in how low-precision networks will be trained. We conjecture that within every
region containing a local minimum for a high-precision network, there exists a subregion(s) which
also contains solutions to the lower precision 4-bit nets, provided that the network has sufficient
capacity. The experiments reported herein provide support for this conjecture; if true, FAQ should
generalize to any model.

Fine-tuning for quantization has been previously studied. In Zhou et al.| (2017), increasingly larger
subsets of neurons from a pretrained network are replaced with low-precision neurons and fine-
tuned, in stages. The accuracy exceeds the baseline for a range of networks quantized with 5-bit
weights and 32-bit activations. Our results here with both fixed-precision weights and activations
at either 8 or 4 bits suggest that incremental training may have been unnecessary. In |Baskin et al.
(2018), fine-tuning is employed along with a non-linear quantization scheme during training (see
UNIQ in Table[T). We have shown that low-precision quantization followed by proper fine-tuning,
is sufficient to achieve even greater accuracy when quantizing both weights and activations at 4
bits. Finally, using a combination of quantizing weights before activations, progressively lower
precisions, fine-tuning, and a new loss function, Zhuang et al.|(2018]) are the first to show that a 4-bit
ResNet network can match the top-1 accuracy of a baseline full-precision network. Our results show
that a simpler method can achieve this for ResNet-18, 34, and 50.

Future research includes combining FAQ with other approaches, new training algorithms designed
specifically to fight the ill-effects of noise (Baskin et al., |2018)) introduced by weight quantizaiton,
and extending to quantize 2-bit networks. Training in the 2-bit case will be more challenging given
the additional quantization noise (Figure[2)), and possible capacity limits with 2-bit quantization.

FAQ is a principled approach to quantization. Ultimately, the goal of quantization is to match or
exceed the validation score of a corresponding full-precision network. This work demonstrates that
8-bit and 4-bit quantized networks performing at the level of their high-precision counterparts can
be obtained with a straightforward approach, a critical step towards harnessing the energy-efficiency
of low-precision hardware.

8https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
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