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Abstract

Neural network models have shown excellent fluency and performance when
applied to abstractive summarization. Many approaches to neural abstractive
summarization involve the introduction of significant inductive bias, such as pointer-
generator architectures, coverage, and partially extractive procedures, designed to
mimic human summarization. We show that it is possible to attain competitive
performance by instead directly viewing summarization as language modeling.
We introduce a simple procedure built upon pre-trained decoder-transformers to
obtain competitive ROUGE scores using a language modeling loss alone, with
no beam-search or other decoding-time optimization, and instead rely on efficient
nucleus sampling and greedy decoding.

1 Introduction

Neural network approaches to abstractive summarization generally encode the source document into
some hidden state or representation, then decode this representation into a summarized, abstracted
version of the source document [17]. These approaches usually rely on a sequence-to-sequence [20]
style architecture, and tend to produce fluent, well formed natural language summaries when coupled
with beam search or other decoding techniques.
A weakness of traditional sequence-to-sequence learning when applied to summarization is the lack of
a direct copy mechanism, leading to missing or misrepresented details in decoded summaries [2, 17].
Though attention helps ameliorate this issue by directly learning to focus on specific words or phrases
in a source document [2], many have allowed for an explicit copy mechanism inspired by Pointer
Networks [22], by optimizing a differentiable decision whether to generate new text or directly copy
from the source [5, 18].
Peters et al. [15], Devlin et al. [3], Radford et al. [16], and many others have shown the benefits
of large-scale pretraining on large, unlabeled corpora on a variety of downstream tasks in transfer
learning settings. In particular, it has been shown that large-scale, attention-only language modeling
via decoder-only transformers [11] as an unsupervised pretraining task admits the ability to perform
zero-shot learning on meaningful tasks involving natural language generation [16].
Motivated by this, we propose a simple method that exhibits competitive performance on abstractive
summarization without using sequence-to-sequence architectures or other standard tools in the neural
abstractive summarization toolbox, and instead using a decoder-only transformer language model
with transfer learning. This further illustrates the utility of finetuning language models trained on
open domain text.

2 Model

Transformer Preliminaries Our model builds on previous work utilizing decoder-only Trans-
formers [11] for jointly learning language modeling and sequence transduction in aligned domains,
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which limits attention to tokens 0, 1, . . . , n − 1 for predicting token n. Formally, a decoder-only
Transformer considers a sequence of one-hot token vectors T = [t0, t1, . . . , tn−1] ∈ {0, 1}V×n, with
each ti ∈ {0, 1}V where V is the size of the vocabulary. Given an embedding matrix WE ∈ Rd×V

and a positional encoding matrix WP ∈ Rd×(n−1), the model computes

H0 =WET +WP , H` = TRF(H`−1) ∈ Rd×(n−1),∀` ∈ [1, . . . , L] (1)

where TRF is the transformer block with self-attention, first introduced in Vaswani et al. [21]. We
utilize the modifications provided in Radford et al. [16], such as moving Layer Normalization [9] to
the beginning of each transformer block.

Decoder-only Sequence Transduction for Summarization Formally, consider a set of paired
documents C = {(x, y)}, |C| = N . For a source-summary pair (x, y) ∈ C, the source document
x = [x0, . . . , xm] and reference summary y = [y0, . . . , yk] are sequences of one-hot token vectors.
To learn this mapping using a language model, we combine x and y using special learnable vectors
corresponding to control tokens. In addition, we augment Eq. 1 to include a segment-specific (i.e.,
source or summary) embedding [3]. Finally, we reset the positional encoding for the summary. Our
model is fed three sequences (see Eq. 2): a concatenation of the source document and the summary
(S), positional encodings that reset for the summary component (P ), and segment-specific encodings
for the source and the summary (Q). We represent the start of the source document with α, the
beginning of the summary with β, and the end of sequence with δ. Additionally, we encode the
source segment with σ and the summary segment with τ .

S = [α, x0, . . . , xm, β, y0, . . . , yk, δ]

P = [0, 1, . . . ,m,m+ 1, 0, 1, . . . , k, k + 1, 0]

Q = [σ, σ, . . . , σ, σ, τ, . . . , τ, τ ]

(2)

Thus, our model changes Eq. 1 by adding the position encoding modification from Eq. 2 and an
additional trainable weight WQ representing the segment encoding Q. The model is trained via
maximum likelihood, where we take into account the full likelihood of the source-summary pair.

Input Representation Given recent trends moving away from purely word- or character-level
representations, we utilize data-driven subword encoding via Byte Pair Encoding (BPE) [19], follow-
ing the procedure outlined in Radford et al. [16]. For experiments in which we finetune the 117M
parameter model from Radford et al. [16], we utilize their prebuilt vocabulary; in ablation studies, we
utilize SentencePiece [8] to learn BPE merges.

3 Experimental Setup

Datasets We train and evaluate our models on the CNN/Daily Mail (CNN-DM) corpus [12] of
news articles and summaries, utilizing the non-anonymized version [18]. We use the predefined
training, validation, and test splits, and limit source articles to 400 tokens and summaries to 100
tokens at training time.
As an additional test, we train and evaluate the best model configuration from the ablation studies
above on the Extreme Summarization (XSum) corpus [13], which contains single sentence summaries
of BBC articles. As shown in Narayan et al. [13], the XSum corpus requires models to perform a
much higher degree of semantic distillation, as indicated by low n-gram overlap, high n-gram novelty,
and poorly performing LEAD-3 baselines.

Models & Inference We conduct experiments in two regimes for CNN-DM: first, we finetune
the model outlined in Sec. 2 on top of the 117M parameter model release from Radford et al. [16],
and second, we perform a full training from scratch in order to ablate the effect of transfer learning.
We utilize a context size of 1024 with an embedding dimension of 768, 12 attention heads, and a
batch size of 10. We train using the Adam [7] optimizer with a learning rate of 5× 10−5 until the
loss ceases to decrease on the validation set. For XSum, we use the highest-performing setup from
CNN-DM experiments.
In lieu of beam search, we compare greedy decoding and nucleus sampling [6]. In both cases, we
decode until we reach the stop-token δ (Eq. 2). In the case of nucleus sampling, we perform 5
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Method ROUGE-1 ROUGE-2 ROUGE-L
Pointer-Generator + Coverage [18] 39.53 17.28 36.38
ML + RL [14] 39.87 15.82 36.90
Bottom-Up [4] 41.22 18.68 38.34
DCA (best) [1] 41.69 19.47 37.92
GPT-2 TL;DR [16] 29.34 8.27 26.58
D-TRF (Finetuned + greedy, ours) 39.12 17.12 27.22
D-TRF (Finetuned + nucleus, ours) 40.70 18.03 29.62

Table 1: Comparison of our method with select existing methods on the CNN-DM dataset.

independent decodings1 with p = 0.3, then pick the decoding that reports the lowest negative log
likelihood score of the completed summary. We use 1/k0.6 as a likelihood normalization term to
avoid a preference for shorter summaries, borrowing directly from Wu et al. [23].

Ablation R-1 R-2 R-L
Best 40.70 18.03 29.62
(–) Finetuning 36.10 15.06 26.92
(–) Segment encoding 38.80 16.33 27.19

Table 2: Ablation of model components on CNN-DM (Decoded via nucleus sampling procedure).

Evaluation We evaluate all models using the ROUGE metric [10], in particular the F1 variants
of ROUGE-1, ROUGE-2, and ROUGE-L which measure unigram overlap, bigram overlap, and
longest common subsequence respectively.

4 Results

CNN-DM Our main results are displayed in Table 1, where we compare our method (in the bottom
section of the table) to existing methods (in the upper portion) on the CNN-DM dataset, and show
ablations in Table 2.
We note that our models (for ROUGE-1 and -2) are competitive even when using greedy decoding, and
without any sequence-to-sequence style architectures or coverage terms, illustrating the power of this
approach for abstractive summarization. We note that using a well trained language model [16] and
then finetuning yields a significant performance jump (as shown via ablation in Table 2), motivating
this method in practical contexts given the recent trends toward large-scale, self-supervised learning
approaches [3, 16, 15].

XSum As a secondary evaluation of our approach, we train our best model on the XSum dataset [13]
and report ROUGE scores in a direct comparison to the benchmarks reported. Results for these
experiments are shown in Table 3. We achieve highly competitive performance relative to models
reported in Narayan et al. [13] building on a finetuning approach without using many of the inductive
biases traditionally present in summarization methods.

5 Conclusion

This work puts forward a simple approach to abstractive summarization by viewing sequence
transduction as a language modeling problem. We show the effectiveness of using decoder-only
transformers for this task, in particular, when coupled with recent advances in large-scale language
modeling and transfer learning. We show that competitive performance on two benchmark datasets is
possible without many of the standard tools in neural abstractive summarization, such as sequence-to-
sequence modeling, coverage mechanisms, direct ROUGE optimization via reinforcement learning,
or beam search, instead relying on a purely language modeling loss and simple decoding mechanisms
such as nucleus sampling and greedy decoding. This approach yields highly fluent text, and illustrates
the power of unsupervised representation learning-based transfer learning for downstream tasks.

1Nucleus sampling with p = 0.3 implies we only sample from the top 30% of of the probability distribution
over tokens
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Method R-1 R-2 R-L
Seq2Seq Baseline 28.42 8.77 22.48
Conv-Seq2Seq 31.27 11.07 25.23
Topic-ConvSeq2Seq 31.89 11.54 25.75
D-TRF (Finetuned + nucleus) 34.19 12.17 27.06

Table 3: Comparison of with existing methods on XSum, reported in Narayan et al. [13].
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