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Abstract

We propose a new principle for transfer learning, based on a straightforward
intuition: if two domains are similar to each other, the model trained on one domain
should also perform well on the other domain, and vice versa. To formalize this
intuition, we define the performance gap as a measure of the discrepancy between
the source and target domains. We derive generalization bounds for the instance
weighting approach to transfer learning, showing that the performance gap can be
viewed as an algorithm-dependent regularizer, which controls the model complexity.
Our theoretical analysis provides new insight into transfer learning and motivates a
set of general, principled rules for designing new instance weighting schemes for
transfer learning. These rules lead to gapBoost, a novel and principled boosting
approach for transfer learning. Our experimental evaluation on benchmark data sets
shows that gapBoost significantly outperforms previous boosting-based transfer
learning algorithms.

1 Introduction

Transfer learning is based on the idea that learning a new concept is easier after having learned one or
more similar concepts. By extracting knowledge from a set of related concepts (source domains) and
then leveraging this knowledge upon learning the concept of interest (target domain), the learning
performance can be improved. This is especially beneficial when there is insufficient data to learn
solely from the target domain, but enough knowledge from the source domains is available. Transfer
learning has become increasingly relevant over the last two decades, and consequently during that
time various algorithms have been proposed [10, 17, 39, 22, 24, 11], accompanied by theoretical and
empirical justifications [4, 25, 3, 21, 18, 19, 26].

In order to successfully transfer information from one domain to another, it is critical to understand
the similarities and differences between the domains. Intuitively, the more similar the two domains
are, the more information can be transferred. When the domains are considerably different, but still
related, a common strategy to correct this difference is to minimize some measure of divergence
between the empirical source and target data distributions. Most prior work in this area has focused
on defining discrepancy measures that motivate the design of algorithms that effectively reduce the
dissimilarity between domains as much as possible [16, 17, 35, 6, 2, 34, 3, 25, 7, 14, 1, 33]. These
works have mainly considered the problem of domain adaptation, where examples from the target
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domain are entirely unlabeled. However, in many practical cases, there is a small amount of labeled
target data, which can be leveraged to derive more specialized measures of domain divergence.

To address this issue, we present the first analysis for instance weighting transfer learning that
considers the presence of labeled target examples. The contribution of our work is two-fold. 1.
We address the question of how to measure the divergence between two domains given label
information for the target domain. Intuitively, if two domains are similar to each other, the model
trained on one domain should also perform well on the other domain, and vice versa. To formalize this
intuition, we propose the notion of performance gap between the source and target domains, and show
that the transfer learning model complexity can be upper bounded in terms of this performance gap.
In other words, it can be viewed as an algorithm-dependent regularizer, which leads to finer and more
informative generalization bounds. This is, to the best of our knowledge, the first generalization bound
for instance-based transfer learning that considers the presence of labeled target data. Moreover, our
definition of performance gap is intuitive and generally applicable to any form of transfer. Thus, our
analysis provides a deeper understanding of the general problem of transfer learning and new insight
into how to leverage the labeled target examples. 2. On the algorithmic side, instead of directly
minimizing the generalization bound, which is highly computationally expensive, we propose four
principled rules to follow when designing an instance weighting scheme for transfer learning. We
instantiate these rules with gapBoost, a novel and efficient boosting algorithm for transfer learning,
which offers out-of-the-box usability and readily accommodates any algorithm for transfer learning.
Source code for gapBoost is available at https://github.com/bwang-ml/gapBoost.

2 Related Work

The large majority of transfer learning techniques can be categorized as instance, feature, or parameter
transfer [29, 40, 7]. In this paper, we consider the instance transfer approach, where the objective is
to correct the difference between the domains by weighting the instances. In this context, the authors
in [5, 3] studied transfer learning algorithms that minimize a convex combination of the source and
target empirical risks, and proposed to use the H-divergence [4] to measure the distance between
the domains for 0-1 loss classification. This study was generalized to arbitrary loss functions by
introducing the notion of discrepancy distance [25]. Since then, various measures have been proposed
in the literature [35, 6, 2, 34, 7, 14, 33]. Recently, instance weighting has been revisited in [21] based
on the notion of algorithmic stability. The authors revealed that the source domain features can be
interpreted as a regularization matrix, which benefits the learning process of the target domain task.

Despite the wide applicability of the discrepancy measures defined in these works, they fail to address
three problems. 1. These measures are designed for the setting of domain adaptation, where no label
information is available in the target domain. As a result, it is unclear how to leverage any labeling
information from the target domain in cases where it is available. Moreover, deriving generalization
bounds for domain adaptation requires additional assumptions. One common assumption is that there
exists an ideal hypothesis that performs well on both domains [3, 25], which cannot be empirically
verified due to the lack of labeled examples in the target domain. 2. These measures are either
algorithm-independent [16, 35, 6, 2, 34] or defined over a hypothesis class [3, 25, 7, 14, 33], and
so they ignore the specific algorithm used. An algorithm-specific notion of divergence measure
could lead to more informative generalization guarantees. 3. From the algorithmic perspective, most
methods are restricted to linear hypotheses (or nonlinear hypotheses defined through a reproducing
kernel Hilbert space) and derive the instance weights by directly minimizing the generalization
bounds or divergence measures, which usually imposes a high computational burden [25, 14, 7].

Having access to labeled examples in the target domain enables us to derive more efficient learning
algorithms. In [10], an efficient transfer boosting method was proposed to reweight the data for clas-
sification in the presence of labeled target data. Later, this approach was extended to regression [30]
and multi-source transfer [41, 12]. In [36], the authors proposed a two-stage instance weighting
approach for transfer learning, and analyzed its generalization bound by extending the result from [3].
While these algorithms are effective in practice, no theoretical results have been presented to show
why transfer learning succeeds when labeled information from the target domain is available.

In addition, most existing theoretical studies of transfer learning examine the convergence rate of
the Rademacher complexity or stability coefficient, assuming that the model complexity (and hence
the loss function) of the transfer learning algorithm is upper bounded by a constant. One related
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work we are aware of that relaxes this assumption is [42], which proves the boundedness of the loss
functions in the setting of multitask learning. However, their analysis only relates the bounds with
regularization functions and requires the additional assumption that when the hypothesis outputs 0,
the loss function is upper bounded by another constant. Critically, these analyses do not provide
any insight into how the domain divergence affects the model complexity and the generalization
bound. More recently, this issue has been studied in [38], showing that the model complexity of
parameter-sharing multitask learning algorithms is determined by the task similarities. However, this
theoretical result has not motivated any concrete algorithm.

In contrast to prior work, we derive an algorithm-specific generalization bound that considers the label
information from the target domain. Based on our newly developed theory, we design a principled
and efficient instance weighting transfer learning algorithm.

3 Instance Weighting for Transfer Learning

In this section, we formalize the problem of instance weighting for transfer learning. We continue
by proposing four general rules to follow when developing new weighting schemes, along with the
theoretical grounds that support these rules. We then instantiate these new rules with gapBoost.

Let z = (x, y) ∈ X ×Y be a training example drawn from some unknown distribution D, where x is
the data point, and y is its label, with Y = {−1, 1} for binary classification and Y ⊆ R for regression.
A hypothesis is a function h ∈ H that maps X to the set Y ′ sometimes different from Y , whereH is a
hypothesis class. For a convex, non-negative loss function ` : Y ′×Y 7→ R+, we denote by `(h(x), y)
the loss of hypothesis h at point z = (x, y). Let S = {zi = (xi, yi)}Ni=1 be a set of N training
examples drawn independently from D. The empirical loss of h on S and its generalization loss
overD are defined, respectively, by LS(h) = 1

N

∑N
i=1 `(h(xi), yi), and LD(h) = Ez∼D[`(h(x), y)].

We consider the linear function class in a Euclidean space, but our analysis is also applicable to a
reproducing kernel Hilbert space. We also assume that ‖x‖2 ≤ R,∀x ∈ X for some R ∈ R+, and
the loss function is ρ-Lipschitz continuous for some ρ ∈ R+.

In the setting of transfer learning, we have a training sample S = {ST , SS} of size N = NT +NS
composed of ST = {zTi = (xTi , y

T
i )}NT

i=1 drawn from a target distribution DT and SS = {zSi =

(xSi , y
S
i )}NS

i=1 drawn from a source distributionDS . We analyze the transfer learning algorithms based
on instance weighting, which aims to optimize the following objective function:

min
h∈H
LΓ
S(h) + λR(h) , (1)

where LΓ
S(h) = LΓT

ST (h) + LΓS
SS (h) is the weighted empirical loss over the source and tar-

get domains, R(h) is a regularization function to control the model complexity of h, and λ

is a regularization parameter. The domain-specific weighted losses are given by LΓT
ST (h) =∑NT

i=1 γ
T
i `(h(xTi ), yTi ) and LΓS

SS (h) =
∑NS
i=1 γ

S
i `(h(xSi ), ySi ). The instance weights Γ = [ΓT ; ΓS ], with

ΓT = [γT1 , . . . , γ
T
NT ]> ∈ RNT

+ and ΓS = [γS1 , . . . , γ
S
NS ]> ∈ RNS

+ , are such that
∑NT
i=1 γ

T
i +

∑NS
i=1 γ

S
i = 1,

and they can either be learned in a pre-processing step [17, 8, 28, 15] or incorporated into learning
algorithms [10, 23]. As we consider the linear function class, the hypothesis h has the form of an
inner product h(x) = 〈h, x〉, and we study the regularization functionR(h) = ‖h‖22.

3.1 Principles for Instance Weighting

Leveraging problem (1) requires assigning appropriate values to Γ so that the solution to problem (1)
leads to effective transfer. There are a variety of weighting schemes developed in the literature. In
this paper, we summarize four general and intuitively reasonable rules as follows. As we will show
later, they are also theoretically grounded.

1. Minimize the weighted empirical loss over source and target domains, as suggested by (1).
2. Assign balanced weights to data points, as focusing too much on specific data points leads

to overfitting caused by perturbations in the training data [32].
3. Assign more weight to the target sample, since target data will be used for testing.
4. Assign weights such that the performance gap between the domains is small.
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Our main contribution lies in Rule 4, for which we introduce the notion of performance gap. Although
intuitive, these rules are contradictory, so designing an algorithm based on them requires properly
trading them off. We explore one way to control this tradeoff via hyper-parameters in Section 3.3.

3.2 Theoretical Justifications

We now develop the theoretical foundations that justify the instance weighting rules. In contrast to
previous studies on domain adaptation, we propose a notion to measure the divergence between the
domains that leverages the label information, leading to Rule 4 in our instance weighting scheme.
Intuitively, if two domains are similar, the model trained on one domain should also perform well on
the other. To make this intuition precise, we define the notion of performance gap below.

Definition 1 (Performance gap). Let VS(h) = LΓS
SS (h) + ηλR(h) and VT (h) = LΓT

ST (h) + ηλR(h),
respectively, be the objective functions in the source and target domains, where η ∈ (0, 1

2 ), and let
their minimizers, respectively, be hSS and hST . The performance gap between the source and target
domains is defined as

∇ = ∇T +∇S ,

where∇S = LΓS

SS
(hST )− LΓS

SS
(hSS ) and∇T = LΓT

ST
(hSS )− LΓT

ST
(hST ).

Note that the performance gap is both data and algorithm dependent, which is crucial for deriving
a more informative and finer generalization bound. Moreover, note that, although we use the
performance gap to analyze the specific setting of instance weighting, it could be readily applied to
other transfer learning paradigms, such as feature-based transfer. We now present the definition of
Y-Discrepancy, which we require for our analysis.
Definition 2 (Y-Discrepancy [27]). LetH be a hypothesis class mappingX toY and let ` : Y×Y 7→
R+ define a loss function over Y . The Y-discrepancy distance between two distributions D1 and D2

over X × Y is defined as:

distY(D1,D2) = sup
h∈H
|LD1

(h)− LD2
(h)| .

Our main theoretical contribution is the following theorem that bounds the difference between LDT
and LΓ

S , which justifies our principles for instance weighting.
Theorem 1. Let hS be the optimal solution of the transfer learning problem (1). Assume that
‖x‖2 ≤ R,∀x ∈ X , and that the loss function is ρ-Lipschitz continuous and convex. Then, for any
δ ∈ (0, 1), with probability at least 1− δ, we have

LDT (hS) ≤ LΓ
S(hS) + εΓ + ‖ΓS‖1 distY(DT ,DS) , (2)

where

εΓ = min

{
‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 1

δ

2
,

2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

4

δ
+ ‖Γ‖2B(Γ)

√
log 2

δ

2

}
.

Remark 1. Rule 1 is justified by LΓ
S , Rule 2 is justified by ||Γ||2 and ||Γ||∞, and Rule 3 is justified

by ||ΓS ||1. B(Γ) is an upper bound of the loss function `, such that `(h(x), y) ≤ B(Γ), where h is
the output hypothesis of an algorithm solving the transfer learning problem (1). We emphasize that it
is a function of Γ and, as we show later, can be upper bounded in terms of∇, which justifies Rule 4.

Proof Sketch. (Details of the proof are available in the appendix)

Step 1: Bound LDT from LΓ
D. Let LΓ

D = LΓT

DT
+LΓS

DS
be the expected weighted loss of LΓ

S . Then,
by linearity of the expectation and the definition of Y-discrepancy, we show that the following holds:

LDT ≤ LΓ
D + ‖ΓS‖1 distY(DT ,DS) . (3)
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Remark 2. Compared to the notion of discrepancy [25], one advantage of Y-discrepancy is that
it does not require the assumption that the loss function obeys the triangle inequality [3, 9], which
does not hold for many loss functions (e.g., hinge loss, squared loss), to make (3) hold. In addition,
we can prove that for a binary classification problem, distY(DT ,DS) can be upper bounded from a
finite sample by constructing a new classification problem, where the positive target examples and
negative source examples are positively labeled, and the negative target examples and positive source
examples are negatively labeled. See Lemma A and Lemma B in the appendix for more details.

Step 2: Bound LΓ
D from LΓ

S . We present two schemas to upper bound LΓ
D: one is based on

algorithmic stability, and the other one is based on Rademacher complexity, which lead to the
definition of εΓ.

Algorithmic stability bound. We introduce the notion of weight-dependent uniform stability (see
Definition A in the appendix) and show that, for any δ ∈ (0, 1), with probability at least 1− δ, the
expected loss LDT can be upper bounded by:

LΓ
D ≤ LΓ

S +
‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 1

δ

2
. (4)

Rademacher complexity bound. We introduce the notion of weighted Rademacher complexity (see
Definition B in the appendix ), and relate it to the notion of uniform argument stability [20]. Then,
we prove that the learning algorithm (1) produces an algorithmic hypothesis class B, and, for any
δ ∈ (0, 1), with probability at least 1− δ, the expected loss LDT can be upper bounded by:

LΓ
D ≤ LΓ

S + 2
‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

4

δ
+B(Γ)‖Γ‖2

√
log 2

δ

2
. (5)

Combining (3), (4), and (5), we obtain the generalization bound (2).

Remark 3. If γi = 1
N ,∀i ∈ {1, . . . , N}, we recover the standard argument stability bound from

(2), which suggests assigning equal weights to all instances to achieve a fast convergence rate, due
to ‖Γ‖∞ and ‖Γ‖2. In particular, if ‖Γ‖∞ (and hence ‖Γ‖22) is O( 1

N ), (2) leads to a convergence
rate of O( 1√

N
). However, in the setting of transfer learning, it is usually the case that NT �

NS . Consequently, we may have ‖Γ‖∞ � 1
NT

, which implies that transfer learning has a faster
convergence rate than single-task learning. On the other hand, as we will show in Step 3, the loss
bound B is also a function of Γ, which suggests a new criterion for instance weighting.

Step 3: Bound B(Γ). The following lemma shows that the model complexity of the transfer
learning algorithm (1) can be upper bounded in terms of the performance∇.

Lemma 1. Let hS be the optimal solution of the instance weighting transfer learning problem (1).
Then, we have:

‖hS‖2 ≤

√
∇

2λ(1− 2η)
+
‖hSS‖22 + ‖hST ‖22

2
.

By bounding the model complexity, we obtain various upper bounds for different loss functions.

Corollary 1. The hinge loss function of the learning algorithm (1) can be upper bounded by:

B(Γ) ≤ 1 +R

√
∇

2λ(1− 2η)
+
‖hS‖22 + ‖hT ‖22

2
.

For regression, if the response variable is bounded by |y| ≤ Y , the `q loss of (1) can be bounded by:

B(Γ) ≤

(
Y +R

√
∇

2λ(1− 2η)
+
‖hS‖22 + ‖hT ‖22

2

)q
.
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Algorithm 1 gapBoostgapBoostgapBoost

Input: SS , ST ,K, ρS ≤ ρT ≤ 0, γmax, a learning algorithm A
1: Initialize DS1 (i) = DT1 (i) = 1

NS+NT
for all i

2: for k = 1, . . . ,K do
3: Call A to train a base learner hk using SS ∪ ST with distribution DSk ∪DTk
4: Call A to train an auxiliary learner hSk over source domain using SS with distribution DSk
5: Call A to train an auxiliary learner hTk over target domain using ST with distribution DTk

6: εk =
NS∑
i=1

DSk (i)1hk(xSi )6=ySi
+
NT∑
i=1

DTk (i)1hk(xTi )6=yTi
, αk = log 1−εk

εk

7: for i = 1, . . . , NS do
8: βSi = ρS1hS

k
(xSi )6=hT

k
(xSi ) + αk1hk(xSi )6=ySi

, DSk+1(i) = DSk (i) exp
(
βSi
)

9: end for
10: for i = 1, . . . , NT do
11: βTi = ρT 1hS

k
(xTi )6=hT

k
(xTi ) + αk1hk(xTi )6=yTi

, DTk+1(i) = DTk (i) exp
(
βTi
)

12: end for
13: Zk+1 =

∑NS
i=1 D

S
k+1(i) +

∑NT
i=1 D

T
k+1(i)

14: if DSk+1(i), DTk+1(i) > γmaxZk+1 then
15: DSk+1(i), DTk+1(i) = γmaxZk+1

16: end if
17: Normalize DSk+1 and DTk+1 such that

∑NS
i=1 D

S
k+1(i) +

∑NT
i=1 D

T
k+1(i) = 1

18: end for
Output: f(x) = sign

(∑K
k=1 αkhk(x)

)

Remark 4. Lemma 1 shows that, given fixed weights, the model complexity (and hence the upper
bound of a loss function) is related to the performance gap between the source and target domains.
Lemma 1 reveals that transfer learning (1) can succeed when the hypotheses trained on their own
domains also work well on the other domains, which leads to a lower training loss and a faster
convergence to the best hypothesis in the class in terms of sample complexity.

By combining the Steps 1–3, we obtain Theorem 1.

By similar derivations, we obtain a PAC learning bound, which is also consistent with the instance
weighting rules.

Corollary 2. Let wS be the optimal solution of the transfer learning problem (1), and h∗ =
arg minh LDT (h) be the minimizer in the target domain. Assume that ‖x‖2 ≤ R,∀x ∈ X , and that
the loss function obeys the triangle inequality and is ρ-Lipschitz and convex. Then, for any δ ∈ (0, 1),
with probability at least 1− δ, we have:

LDT (hS) ≤ LDT (h∗) + ε′Γ + 2‖ΓS‖1 distY(DT ,DS) , (6)

where

ε′Γ = min

{
‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+

(
||Γ||2√
N

+ ‖Γ‖∞
)
B(Γ)

)√
N log 4

δ

2
,

2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

8

δ
+ 2‖Γ‖2B(Γ)

√
log 4

δ

2

}
.

3.3 gapBoost

As distY(DT ,DS) can be estimated from the training sample, it is possible to derive a weighting
scheme by minimizing the generalization bounds (2) as in previous works in the literature [25, 7].
However, one common issue with this approach is that it leads to high computational cost for large
sample size and it is usually restricted to linear hypotheses. In contrast, our algorithmic goal is
to derive a computationally efficient method that is applicable to large-scale data and also flexible
enough to accommodate arbitrary learning algorithms for transfer learning.
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Table 1: Comparison of boosting algorithms for transfer learning.

Rule 1 Rule 2 Rule 3 Rule 4

AdaBoost X X 7 7
TrAdaBoost X 7 X 7
TransferBoost X 7 X 7
gapBoost X X X X

To this end, we propose gapBoost in Algorithm 1, which explicitly exploits the rules from Section 3.1.
The algorithm trains a joint learner for source and target domains, as well as auxiliary source and
target learners (lines 3–5). Then, it up-weights incorrectly labeled instances as per traditional boosting
methods and down-weights instances for which the source and target learners disagree; the trade-off
for the two schemes is controlled separately for source and target instances via hyper-parameters ρS
and ρT (lines 6–12). Finally, the weights are clipped to a maximum value of γmax and normalized
(lines 13–17). 1. gapBoost follows Rule 1 by training the base learner hk at each iteration, which
aims to minimize the weighted empirical loss over the source and target domains. 2. By tuning γmax,
it explicitly controls ‖Γ‖∞ and implicitly controls ‖Γ‖2, as required by Rule 2. Additionally, as each
base learner hk is trained with a different set of weights, the final classifier f returned by gapBoost
is potentially trained over a balanced distribution. 3. Moreover, by setting ρT ≥ ρS , gapBoost
penalizes instances from the source domain more than from the target domain, implicitly assigning
more weight to the target domain sample than to the source domain sample, as suggested by Rule 3.
4. Finally, as ρS , ρT ≤ 0, the weight of any instance x will decrease if the learners disagree (i.e.,
hSk (x) 6= hTk (x)). By doing so, gapBoost follows Rule 4 by minimizing the gap∇. 5. The trade-off
between the rules is balanced by the choice of the hyper-parameters ρT , ρS and γmax.

Table 1 compares various traditional boosting algorithms for transfer learning in terms of the instance
weighting rules. Conventional AdaBoost [13] treats source and target samples equally, and therefore
does not reduce ‖ΓS‖1 or minimize the performance gap. On the other hand, TrAdaBoost [10] and
TransferBoost [12] explicitly exploit Rule 3 by assigning less weight to the source domain sample
at each iteration. However, they do not control ‖Γ‖∞ or ‖Γ‖2, so the weight of the target domain
sample can be large after a few iterations. Most critically, none of the previous algorithms minimize
the performance gap explicitly as we do, which can be crucial for transfer learning to succeed.

The generalization performance of gapBoost is upper bounded by the following proposition.

Proposition 1. Let f(x) =
∑K
k=1 αkhk(x) be the ensemble of classifiers returned by gapBoost,

with each base learner trained by solving (1). For simplicity, we assume that
∑K
k=1 αk = 1. Then,

for any δ ∈ (0, 1), with probability at least 1− δ, we have

LDT (f) ≤ LST (f) +
2ρ2R2γT

∞
λ

√
2 log 4

δ +B(Γ)

√
log 2

δ

2NT
.

where γT∞ is the largest weight of the target sample over all boosting iterations.

Remark 5. We observe that if γT∞ �
√

1
NT

, the bound will be dominated by the second term. Then,

Proposition 1 suggests to set γmax = O( 1√
NT

) to achieve a fast convergence rate. On the other hand,

as the loss function is convex, B(Γ) can be upper bounded by B(Γ) ≤
∑K
k=1 αkB(Γk), where Γk

is the set of weights at the k-th boosting iteration. In other words, one should aim to minimize the
performance gap for every boosting iteration to achieve a tighter bound.

4 Experiments

We evaluated gapBoost on two benchmark data sets.

20 Newsgroups This data set contains approximately 20,000 documents, grouped by seven top
categories and 20 subcategories. Each transfer learning task involved a top-level classification
problem, while the source and target domains were chosen from different subcategories. The source
and target data sets were in the same way as in [10], yielding 6 transfer learning problems.

Office-Caltech This data set contains approximately 2,500 images from four distinct domains:
Amazon (A), DSLR (D), Webcam (W), and Caltech (C), which enabled us to construct 12 transfer
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Table 2: Comparison of different methods on the 20 Newsgroups (top) and Office-Caltech (bottom)
data sets in term of error rate (%). The row titles are standard names used in the literature to identify
the transfer problems. Our algorithm, gapBoost, outperforms all baselines in the majority of transfer
problems, and is competitive with the top performerc in the remaining ones. Notably, the performance
of gapBoost is considerably better in all cases than the no-transfer baseline, AdaBoostT . Standard
error is reported after the ±.

AdaBoostT AdaBoostT&S TrAdaBoost TransferBoost gapBoost

comp vs sci 12.45± 0.47 13.45± 0.48 12.03± 0.41 8.83± 0.37 7.68± 0.25
rec vs sci 10.99± 0.37 11.79± 0.35 10.03± 0.36 7.93± 0.30 7.39± 0.21
comp vs talk 11.83± 0.42 14.57± 0.47 10.67± 0.37 6.45± 0.25 7.10± 0.27
comp vs rec 15.80± 0.53 17.50± 0.64 14.86± 0.67 12.11± 0.43 9.81± 0.29
rec vs talk 12.08± 0.36 9.40± 0.31 12.21± 0.40 6.26± 0.30 5.66± 0.21
sci vs talk 11.74± 0.49 10.52± 0.37 10.13± 0.46 6.45± 0.26 5.92± 0.24
A→ C 43.87± 0.52 27.76± 0.88 37.57± 0.68 27.86± 0.82 27.06± 0.87
A→ D 32.65± 1.35 28.33± 1.33 34.93± 1.43 28.96± 1.38 25.08± 1.37
A→W 37.23± 0.98 26.94± 1.17 31.03± 0.95 26.95± 1.15 24.34± 1.10
C→ A 39.92± 0.74 20.32± 0.80 29.13± 0.80 19.68± 0.80 19.13± 0.83
C→ D 27.88± 1.14 25.69± 1.19 19.84± 1.09 23.44± 1.33 21.03± 1.20
C→W 30.25± 1.05 24.50± 1.30 22.86± 0.95 23.41± 1.30 21.55± 1.20
D→ A 44.30± 0.45 40.86± 0.39 45.33± 0.48 40.50± 0.44 40.66± 0.39
D→ C 44.00± 0.56 40.09± 0.46 43.72± 0.62 40.35± 0.46 40.00± 0.46
D→W 50.63± 0.58 49.64± 0.66 49.95± 0.65 49.63± 0.65 50.24± 0.62
W→ A 42.91± 0.46 37.22± 0.56 44.24± 0.52 37.02± 0.53 37.04± 0.52
W→ C 44.12± 0.50 37.93± 0.58 44.78± 0.65 37.79± 0.56 37.48± 0.50
W→ D 40.63± 1.45 45.52± 1.58 40.00± 1.51 44.88± 1.58 41.74± 1.40
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Figure 1: Test error rates (%) with different sizes of target sample on different tasks and on average
across all tasks. gapBoost consistently outperforms the baselines on all regimes of target sample size.
Since gapBoost more effectively leverages the target instances, its improvement over the baselines is
more noticeable as the target sample size increases. Error bars represent standard error.

problems by alternately selecting each possible source-target pair. All four domains share the same
10 classes, so we constructed 5 binary classification tasks for each transfer problem and the averaged
results are reported.

Performance Comparison We evaluated gapBoost against four baseline algorithms: AdaBoostT
trained only on target data, AdaBoostT&S trained on both source and target data, TrAdaBoost, and
TransferBoost. Logistic regression is used as the base learner for all methods, and the number of
boosting iterations is set to 20. The hyper-parameters of gapBoost were set as γmax = 1√

NT
as per

Remark 5, ρT = 0, which corresponds to no punishment for the target data, and ρS = log 1
2 .

In both data sets we pre-processed the data using principal component analysis (PCA) to reduce the
the feature dimension to 100. For each data set, we used all source data and a small amount of target
data (10% on 20 Newsgroups and 10 points on Office-Caltech) as training sample, and used the rest of
the target data for testing. We repeated all experiments over 20 different random train/test splits and
the average results are presented in Table 2, showing that our method is capable of outperforming all
the baselines in the majority of cases. In particular, gapBoost consistently outperforms AdaBoostT ,
empirically indicating that it avoids negative transfer.
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Figure 2: Test error rates (%) averaged across all tasks with respect to the values of the hyper-
parameter ρS for varying sample sizes. Rightmost graphic shows results averaged over all sample
sizes. gapBoost becomes less sensitive to the choice of ρS as the target sample grows larger. In all
cases, there is a range of ρS that outperforms all baselines. Error bars represent standard error.

Figure 3: Test error rates (%) with varying ρS and ρT . The valley curves correspond to ρT = 0 (i.e.,
the purple curves in Figure 2). Hence, regions below the curve indicate better hyper-parameters.

Learning with different number of target examples To further investigate the effectiveness of
gapBoost, we varied the fraction of target instances of the 20 Newsgroups data set used for training,
from 0.01 to 0.8. Figure 1 shows full learning curves on three example tasks, as well as the average
performance over all six tasks. The results reveal that gapBoost’s improvement over the baselines
increases as the number of target instances grows, indicating that it is able to leverage target data
more effectively than previous methods.

Parameter sensitivity Finally, we empirically evaluated our algorithm’s sensitivity to the choice of
hyper-parameters. We first fixed ρT = 0 and varied exp(ρS) in the range of [0.1, . . . , 0.9]. Figure 2
shows the results averaged over all transfer problems on the 20 Newsgroups data set, showing that
as the size of the target sample increases, the influence of the hyper-parameter on performance
decreases. In particular, we see that we are able to obtain a range of hyper-parameters for which
our method outperforms all baselines in all sample size regimes. Next, we repeat the experiment by
varying ρS and ρT together. Figure 3 shows that by properly choosing both parameters (e.g., ρS = 0,
ρT = log 2), gapBoost can achieve even better performance. This empirically verifies the intuition
that, when the target data set is small (e.g., 1%), one should choose a relatively larger ρS to leverage
more source data. As the target data increase, the results are less sensitive to the hyper-parameters.

5 Conclusions

We propose the notion of performance gap to measure the divergence between domains in transfer
learning by exploiting the label information in the target domain. We relate this notion with the model
complexity and show that it can be viewed as an algorithm-dependent regularizer. In addition, our
theoretical analysis justifies four intuitively reasonable rules for instance weighting, and provides
new insight into transfer learning. We highlighted the role of performance gap minimization and
presented gapBoost, an algorithm that explicitly exploits the rules for instance weighting. The
empirical evaluation justifies the effectiveness of our algorithm.

While the theoretical analysis is based on the convexity assumption, our principles are quite general,
and so would be applicable to a wide variety of algorithms (such as deep nets) for transfer learning.
In addition, the principle of performance gap minimization opens up several avenues for knowledge
transfer. For example, it could be used to analyze other forms of transfer learning like parameter
or feature transfer [37]. It could also help develop knowledge transfer strategies for other learning
paradigms such as meta-learning or lifelong learning [31]. On the theoretical side, future directions
could include extending the notion of performance gap to unlabeled data for domain adaptation [29],
and to non-stationary environments [27]. We plan to explore these questions in future work.
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