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ABSTRACT

Understanding black-box machine learning models is important towards their
widespread adoption. However, developing globally interpretable models that ex-
plain the behavior of the entire model is challenging. An alternative approach is to
explain black-box models through explaining individual prediction using a locally
interpretable model. In this paper, we propose a novel method for locally inter-
pretable modeling – Reinforcement Learning-based Locally Interpretable Model-
ing (RL-LIM). RL-LIM employs reinforcement learning to select a small number
of samples and distill the black-box model prediction into a low-capacity locally
interpretable model. Training is guided with a reward that is obtained directly by
measuring agreement of the predictions from the locally interpretable model with
the black-box model. RL-LIM near-matches the overall prediction performance
of black-box models while yielding human-like interpretability, and significantly
outperforms state of the art locally interpretable models in terms of overall pre-
diction performance and fidelity.

1 INTRODUCTION

Artificial Intelligence (AI) is advancing at a rapid pace, particularly with recent advances in deep
neural networks and ensemble methods (Goodfellow et al., 2016; He et al., 2016; Chen & Guestrin,
2016; Ke et al., 2017). This progress has been fueled by ‘black-box’ machine learning models where
the decision making is controlled by complex non-linear interactions between many parameters that
are difficult for humans to understand and interpret. However, in many real-world applications AI
systems are not only expected to perform well but are also required to be interpretable: doctors
need to understand why a particular treatment is recommended, and financial institutions need to
understand why a loan was declined. Use cases of model interpretability vary across applications:
it can provide trust to users by showing rationales behind decisions, enable detection of systematic
failure cases, and provide actionable feedback for improving models (Rudin, 2018).

Many studies have suggested a trade-off between performance and interpretability (Virág & Nyitrai,
2014; Johansson et al., 2011). This is correct in that globally interpretable models, which attempt
to explain the entire model behavior, typically yield considerably worse performance than ‘black-
box’ models (Lipton, 2016). To go beyond the performance limitations of globally interpretable
models, another promising direction is locally interpretable models, which instead of explaining the
entire model explain a single prediction (Ribeiro et al., 2016). Methodologically, while a globally
interpretable model fits a single inherently interpretable model (such as a linear model or a shal-
low decision tree) to the entire training set, locally interpretable models aim to fit an inherently
interpretable model locally, i.e. for each instance individually, by distilling knowledge from a high
performance black-box model. Such locally interpretable models are very useful for real-world AI
deployments to provide succinct and human-like explanations to users. They can be used to identify
systematic failure cases (e.g. by seeking common trends in input dependence for failure cases), de-
tect biases (e.g. by quantifying feature importance for a particular variable), and provide actionable
feedback to improve a model (e.g. understand failure cases and what training data to collect).

To be useful in practice, locally interpretable models need to maximize two objectives: (i) the overall
prediction performance (how well it predicts compared to the ground truth labels) – for the model
to be accurate, and (ii) fidelity (how well it approximates the ‘black-box’ model predictions) – to
ensure the model is reliably approximating the black-box model’s predictions in the neighborhood
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of interest (Plumb et al., 2019; Lakkaraju et al., 2019). To this end, a few methods have recently
been proposed for locally interpretable modeling: Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro et al., 2016), Supervised Local modeling methods (SILO) (Bloniarz et al., 2016),
and Model Agnostic Supervised Local Explanations (MAPLE) (Plumb et al., 2018). LIME in partic-
ular has gained notable popularity and has been deployed in many applications due to its simplicity.
However, the overall prediction performance and fidelity metrics are not reaching desired levels in
many cases (Alvarez-Melis & Jaakkola, 2018; Zhang et al., 2019; Ribeiro et al., 2018; Lakkaraju
et al., 2017). Indeed, as we show in our experiments, there are frequent cases where existing locally
interpretable models even underperform commonly low-performing globally interpretable models.

One of the fundamental challenges to fit a locally interpretable model is the representational capac-
ity difference while applying distillation. Black-box machine learning models, such as deep neural
networks or ensemble models, have much larger representational capacity than locally interpretable
models. This can result in underfitting with conventional distillation techniques, leading to subopti-
mal performance (Hinton et al., 2015; Wang et al., 2019). We address this fundamental challenge by
proposing a novel Reinforcement Learning-based method to fit Locally Interpretable Models which
we call RL-LIM. RL-LIM efficiently utilizes the small representational capacity of locally inter-
pretable models by training with a small number of samples that are determined to have the highest
value contribution to the fitting of a locally interpretable model. In order to select these highest-value
instances, we train instance-wise weight estimators (modeled with deep neural networks) using a re-
inforcement signal that quantifies the fidelity metric (i.e. how well does the model approximate the
black-box model predictions). The contributions of this paper can be summarized as:

1. We introduce the first method that tackles interpretability through data-weighted training, and
show that reinforcement learning is highly effective for end-to-end training of such a model.

2. We show that distillation of a black-box model into a low-capacity interpretable model can be sig-
nificantly improved by fitting with a small subset of relevant samples that is controlled efficiently
by our method.

3. On various classification and regression datasets, we demonstrate that RL-LIM significantly out-
performs alternative models (LIME, SILO and MAPLE) in overall prediction performance and
fidelity metrics – in most cases, the overall performance of locally interpretable models obtained
by RL-LIM is very similar to complex black-box models.

2 RELATED WORK

Locally interpretable models: There are various approaches to interpret black-box models –
(Gilpin et al., 2018) provides a good overview. One approach is to directly decompose the predic-
tion into feature attributions by considering what-if cases. Shapley values (Štrumbelj & Kononenko,
2014) and their computationally-efficient variants (Lundberg & Lee, 2017) are commonly-used
methods in this category. Other notable methods are based on activation differences, e.g. DeepLIFT
(Shrikumar et al., 2017), or saliency maps using the gradient flows, e.g. CAM (Zhou et al., 2016) and
Grad-CAM (Selvaraju et al., 2017). In this paper, we focus on the direction of locally interpretable
modeling – distilling a black-box model into an interpretable model for each input instance.

Locally Interpretable Model-agnostic Explanation (LIME) (Ribeiro et al., 2016) is the most popular
method for locally interpretable modeling. LIME is based on modifying a data instance by tweaking
the feature values and then learning from the impact of the modifications on the output. A funda-
mental challenge for LIME is the need for a meaningful distance metric to determine neighborhoods,
as simple metrics like Euclidean distance may yield poor fidelity in some cases and the estimation
can be highly-sensitive to normalization (Alvarez-Melis & Jaakkola, 2018) especially with categor-
ical variables. Supervised Local modeling methods (SILO) (Bloniarz et al., 2016)) aims to improve
LIME by determining the neighborhoods for each instance using ad-hoc tree-based ensemble meth-
ods. Model Agnostic Supervised Local Explanations (MAPLE) (Plumb et al., 2018) furthers adds
a method for feature selection on top of SILO – it utilizes ad-hoc tree-based ensemble methods to
determine the weights of training instances for each target instance and uses the weights to opti-
mize a locally interpretable model. However, SILO and MAPLE still have shortcomings because
the tree-based ensemble methods are optimized independently from the locally interpretable model
– lack of joint optimization results in suboptimal fidelity for the locally interpretable model. Over-
all, to construct a locally interpretable model, a key problem is how to select the optimal training

2



Under review as a conference paper at ICLR 2020

instances for each testing instance, because the selected training instances mostly determine the
constructed locally interpretable model. The number of possibilities for training instance selection
is extremely large (exponential in the number of training instances). LIME heuristically utilizes
Euclidean distances, whereas SILO and MAPLE use ad-hoc tree-based ensemble methods. Our
proposed method, RL-LIM, takes a very different perspective: to properly and efficiently explore
the large possible solution space, RL-LIM utilizes reinforcement learning to find the optimal policy
that selects the training instances that maximize the fidelity of the locally interpretable model.

Data-weighted training: Optimal weighing of training data is a paramount problem in machine
learning. By upweighting valuable instances and downweighting the low quality or problematic
instances, better performance can be obtained in certain learning scenarios, such as imbalanced
or noisy labels (Jiang et al., 2018). One approach for data weighting is utilizing Influence Func-
tions (Koh & Liang, 2017), that are based on oracle access to gradients and Hessian-vector prod-
ucts. Jointly-trained student-teacher methods constitute another approach (Jiang et al., 2018; Bengio
et al., 2009) to learn a data-driven curriculum. Using the feedback from the teacher network, training
instance-wise weights are learned for the student model. Aligned with our motivations, meta learn-
ing is considered for data weighting in Ren et al. (2018). Their proposed method utilizes gradient
descent-based meta learning, guided by a small validation set, to maximize the target performance.

In this work we consider data-weighted training for a novel purpose: interpretability. Unlike gradi-
ent descent-based meta learning, our approach uses reinforcement learning to integrate the reward
directly with the fidelity metric. Aforementioned works estimate the same ranking of training in-
stances for the entire dataset. Instead, our method yields an instance-wise ranking of training data
points, different for each testing instance. This enables efficient distillation of a black-box model
prediction into a locally interpretable model.

3 REINFORCEMENT LEARNING-BASED MODELING

We consider a training dataset D = {(xi, yi), i = 1, ..., N} ∼ P for training of a black-box model
f , where xi ∈ X is the feature vector in a d-dimensional feature space X and yi ∈ Y is the
corresponding label in a label space Y . We also assume that there exists a probe dataset Dp =
{(xpj , y

p
j ), j = 1, ...,M} ∼ P where M is the number of probe instances. The probe dataset is

used to evaluate the model performance to guide meta-learning as in Ren et al. (2018). If there is no
explicit probe dataset, we can randomly partition a subset of the training dataset as the probe dataset
and the remainder as the training dataset. RL-LIM is composed of three models:

1. Black-box model f : X → Y – any machine learning model that needs to be explained (e.g. a
deep neural network or a decision tree-based ensemble model),

2. Locally interpretable model gθ : X → Y – an inherently interpretable model by design (e.g. a
linear model or a shallow decision tree),

3. Instance-wise weight estimation model hφ : X × X × Y → [0, 1] – a function that outputs
the instance-wise weights to fit the locally interpretable model. It uses concatenation of a probe
feature, a training feature, and a corresponding black-box model prediction on the training feature
as its inputs. It can be a complex machine learning model – e.g. here a deep neural network.

Our objective is to construct an accurate locally interpretable model gθ such that the predictions
made by it are similar to the predictions of the given black-box model f∗ – i.e. the locally inter-
pretable model has high fidelity. We use a loss function, L : Y × Y → R to quantify the fidelity
of the locally interpretable model (e.g. mean absolute error, lower the better). In RL-LIM, the three
necessary components of an RL framework are as follows: the state is the vector of input features,
the action is the selection vector, and the reward is the fidelity which depends on the input fea-
tures and the selection vector. The instance-wise weight estimator model is the agent that outputs
the actions based on the state (input features). The environment is comprised of the input feature
generating process, as well as the black-box model for the target task.

The representational capacity difference between the black-box model and the locally interpretable
model is the bottleneck we aim to address. Ideally, to avoid underfitting, locally interpretable models
should be learned with a minimal number of training instances that are most effective in capturing the
model behavior. We propose an instance-wise weight estimation model hφ to estimate the probabil-
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ities of training instances that should be used for fitting the locally interpretable model. Integrating
with the accurate locally interpretable modeling goal, we propose the following objective:

min
hφ

Exp∼PX
[
L(f∗(xp), g∗θ(xp)(x

p))
]
+ λExp,x∼PX

[
hφ(xp, x, f∗(x))

]
s.t. g∗θ(xp) = argmingθ Ex∼PX

[
hφ(xp, x, f∗(x))× Lg(f∗(x), gθ(x))

] (1)

where λ ≥ 0 is a hyper-parameter that controls the number of training instances used to fit the locally
interpretable model (we study the impact of performance on λ in Section 4.2), and hφ(xp, x, f∗(x))
represents the instance-wise weight for each training pair (x, f∗(x)) for the probe data xp. Lg is the
loss function to fit the locally interpretable model, for which we use the mean squared error between
predicted values for regression and logits for classification. φ and θ are the trainable parameters,
whereas f∗ (the pre-trained black-box model) is fixed.

The first term in the objective function Exp∼PX
[
L(f∗(xp), g∗θ(xp)(x

p))
]

represents the local predic-
tion differences between black-box model and locally interpretable model (referred to as fidelity
metric). The second term in the objective function Exp,x∼PX

[
hφ(xp, x, f∗(x))

]
represents the ex-

pected number of selected training points to fit the locally interpretable model. Lastly, the constraint
ensures that the locally interpretable model is derived from weighted loss function, where weights
are the output of the instance-wise weight estimator hφ. Our formulation does not assume any con-
straint on gθ – it could be any inherently interpretable model suitable for the data type of interest.
Next, we describe how Eq. (1) can be efficiently addressed with reinforcement learning.

3.1 TRAINING AND INFERENCE

The RL-LIM method, shown in Fig. 1, can be thought of as encompassing 5 stages:
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Figure 1: The proposed RL-LIM method. White blocks represent fixed (not learnable) models, and
grey blocks represent learnable (trainable) models. Stage 0: Black-box model training. Stage 1:
Auxiliary dataset construction. Stage 2: Interpretable baseline training. Stage 3: Instance-wise
weight estimator training. Stage 4: Interpretable inference.
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• Stage 0 – Black-box model training: This stage is the preliminary stage for RL-LIM.
Given the training set D, the black-box model f is trained to minimize a loss function
(Lf ) (e.g. mean squared error for regression or cross-entropy for classification), i.e., f∗ =

argminf
1
N

∑N
i=1 Lf (f(xi), yi). If the pre-trained black-box model is already saved, we can

skip this stage and retrieve the given pre-trained black-box model to f∗.

• Stage 1 – Auxiliary dataset construction: Using the pre-trained black-box model f∗, we create
auxiliary training and probe datasets, as D̂ = {(xi, ŷi), i = 1, ..., N} (where ŷi = f∗(xi)) and
D̂p = {(xpj , ŷ

p
j ), j = 1, ...,M} (where ŷpj = f∗(xpj )), respectively. These auxiliary datasets (D̂,

D̂p) are used for instance-wise weight estimation models and locally interpretable model training.

• Stage 2 – Interpretable baseline training: To improve the stability of the instance-wise weight
estimator training, a baseline model is observed to be beneficial. As the baseline model gb : X →
Y , we use a globally interpretable model (such as a linear model or shallow decision tree) opti-
mized to replicate the predictions of the black-box model: g∗b = argming

1
N

∑N
i=1 L(g(xi), ŷi).

• Stage 3 – Instance-wise weight estimator training: We train an instance-wise weight estimator
using the auxiliary datasets (D̂, D̂p). To encourage exploration, we consider probabilistic se-
lection, with a sampler block that is based on the output of the instance-wise weight estimator –
hφ(xpj , xi, ŷi) represents the probability that (xi, ŷi) is selected to train locally interpretable model
for the probe instance xpj . Let the binary vector c(xpj ) ∈ {0, 1}N represent the selection opera-
tion, such that (xi, ŷi) is selected for training locally interpretable model for xpj when ci(xpj ) = 1.
Correspondingly, ρφ(xp) is the probability mass function for c(xpj ) given hφ(·):

ρφ(xpj , c(x
p
j )) =

N∏
i=1

[
hφ(xpj , xi, f

∗(xi))ci(xpj ) · (1− hφ(xpj , xi, f
∗(xi)))1−ci(xpj )

]
As the original form of the optimization problem in Eq. (1) is intractable due to the expectation
operations, we employ approximations:

– The sample mean is used as an approximation of the first term of the objective function as
1
M

∑M
j=1 L(f∗(x

p
j ), g

∗
θ(xpj )

(xpj ))).

– The second term of the objective, which represents the average selection probability, is
approximated as the number of selected instances (divided by N ) to have ||c(xpj )||1 =
1
N

∑N
i=1 |ci(x

p
j )|.

– The constraint term is approximated using the sample mean of the training loss as g∗
θ(xpj )

=

argmingθ
1
N

∑N
i=1

[
ci(xpj ) · Lg(f∗(xi), gθ(xi))

]
.

The sampler block yields a non-differential objective, and we cannot train the instance-wise
weight estimator using conventional gradient descent-based optimization. There are approxi-
mations such as training in expectation (Raffel et al., 2017) or Gumbel-softmax (Jang et al.,
2016). Instead, motivated by its many successful applications (Ranzato et al., 2015; Zaremba
& Sutskever, 2015; Zhang & Lapata, 2017), we use REINFORCE algorithm (Williams, 1992)
such that the selection action is rewarded by the performance of its impact. The loss function for
the instance-wise weight estimator l(φ) is expressed as:

l(φ) = Expj∼PX

[
Ec(xpj )∼ρφ(xpj ,·)

[
L(f∗(xpj ), g

∗
θ(xpj )

(xpj ))) + λ||c(xpj )||1
]]

To apply the REINFORCE algorithm, we directly compute the gradient∇φ l̂(φ) as:

∇φ l̂(φ) = Expj∼PX

[
Ec(xpj )∼ρφ(xpj ,·)

[
L(f∗(xpj ), g

∗
θ(xpj )

(xpj ))) + λ||c(xpj )||1
]
∇φ log ρφ(xpj , c(x

p
j ))
]

Using the gradient∇φ l̂(φ), we employ the following steps iteratively to update the parameters of
the instance-wise weight estimator φ:

1. Estimate instance-wise weights wi(xpj ) = hφ(xpj , xi, ŷi) and instance-wise selection vector
ci(xpj ) ∼ Ber(wi(xpj )) for each training and probe instance in a mini-batch.
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2. Optimize the locally interpretable model with the selection vector for each probe instance:

g∗θ(xpj )
= argmin

gθ

N∑
i=1

[
ci(xpj ) · Lg(f

∗(xi), gθ(xi))
]

3. Update the instance-wise weight estimation model parameter φ:

φ← φ− α

M

M∑
j=1

[
L(f∗(xpj ), g

∗
θ(xpj )

(xpj ))− Lb(x
p
j ) + λ||c(xpj )||1

]
· ∇φ log ρφ(xpj , c(x

p
j ))

where α > 0 is a learning rate and Lb(xpj ) = L(f∗(x
p
j ), g

∗
b (x

p
j )) is the baseline loss against which

we benchmark the performance improvement. We repeat the steps above until convergence.
• Stage 4 – Interpretable inference: Unlike when training, we use a fixed instance-wise weight

estimator (without the sampler and interpretable baseline) and merely fit the locally interpretable
model at inference. Given the test instance xt, we obtain the selection probabilities from the
instance-wise weight estimator, and using these as the weights, we fit the locally interpretable
model via weighted optimization. The outputs of the trained interpretable model are the instance-
wise predictions and the corresponding explanations (e.g., local dynamics of the black-box model
predictions at xt given by the coefficients of the fitted linear model).

3.2 COMPUTATIONAL COST

In this subsection, we analyze the computational cost of RL-LIM for training and inference. As a
representative and commonly used example, we assume linear regression as the locally interpretable
model, which has a computational complexity of O(d2N) + O(d3) to fit, where d is the number
of features and N is the number of training instances. When N >> d (which is often the case in
practice), the training computational complexity is approximated as O(d2N) (Tan, 2018).

Training: Given a pre-trained black-box model, Stage 1 involves running inferenceN times and the
total complexity depends on the complexity of the black-box model. Unless the black-box model
is very complex, the computational complexity of Stage 1 becomes much smaller than Stage 3.
Stage 2 has negligible computational overhead. At Stage 3, we iteratively train the instance-wise
weight estimator and fit the locally interpretable model from scratch using weighted optimization.
Therefore, the computational complexity is O(d2NNI) where NI is the number of iterations in
Stage 3 (typically NI < 10, 000 until convergence). Thus, the training complexity scales roughly
linearly with the number of training instances.

Interpretable inference: To infer with the locally interpretable model, we need to fit the locally
interpretable model after obtaining the instance-wise weights from the trained instance-wise weight
estimator. Thus, for each testing instance, the computational complexity is O(d2N).1

For instance, on a single NVIDIA V100 GPU, on Facebook Comment dataset (consisting∼ 600,000
samples), RL-LIM yields a training time of less than 5 hours (including Stage 1, 2 and 3) and an
interpretable inference time of less than 10 seconds per a testing instance. On the other hand, LIME
results in much longer interpretable inference time (around 30 seconds per a testing instance) due to
acquiring a large number of black-box model predictions for the inputs perturbations, whereas SILO
and MAPLE are similar to RL-LIM.

4 EXPERIMENTS

We compare RL-LIM to multiple benchmarks on 3 synthetic datasets and 5 UCI public datasets.

Datasets: The 3 public datasets for regression problems are: (1) Blog Feedback, (2) Facebook
Comment, (3) News Popularity; the other 2 public datasets for classification problems are: (4) Adult
Income, (5) Weather. Details of the data descriptions can be found in the hyper-links of each dataset
(colored in blue). Data statistics can be found in Table 3 in Appendix A. In this section, we mainly
focus on the tabular datasets because the local dynamics are more important and useful to explain
for them; however, RL-LIM method can be generalized to other data types in a straightforward way.

1A subset of the training dataset can be used to reduce complexity (with decreased fidelity).
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Black-box models: We focus on approximating black-box models that are shown to yield competi-
tive performance on the target tasks: 3 tree-based ensemble methods (1) XGBoost (Chen & Guestrin,
2016), (2) LightGBM (Ke et al., 2017), (3) Random Forests (RF) (Breiman, 2001); and deep neural
networks (4) Multi-layer Perceptron (MLP). Also, we use (5) Ridge Regression (RR) and (6) Re-
gression Tree (RT) (for regression) and (7) Logistic Regression (LR) and (8) Decision Tree (DT)
(for classification) as globally interpretable models to benchmark.2 We focus on two types of lo-
cally interpretable models: (1) Ridge regression, (2) Shallow regression tree (with a max depth of
3). We report the performance with ridge regression for regression and with shallow regression tree
for classification in this section. The results of the other two combinations (with ridge regression for
classification and with shallow regression tree for regression) are described in Appendix E.

Comparisons to previous work: We compare the performance of RL-LIM with three competing
methods: (1) Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016), (2)
Supervised Local modeling methods (SILO) (Bloniarz et al., 2016), (3) Model Agnostic Supervised
Local Explanations (MAPLE) (Plumb et al., 2018).

Performance metrics: To evaluate the performance of locally interpretable models using real-world
datasets, we quantify the overall prediction performance and its fidelity. We assume a disjoint testing
dataset Dt = {(xtk, ytk)}Lk=1 for evaluation. For the overall prediction performance, we compare the
predictions of the locally interpretable models with the ground-truth labels. We use Mean Absolute
Error (MAE) for regression and Average Precision Recall (APR) for classification. For fidelity,
we compare the outputs (predicted values for regression and logits for classification) of the locally
interpretable models and of the black-box model. We consider two metrics: R2 score (Legates &
McCabe, 1999) and Local MAE (LMAE). The details of the metrics are described in Appendix C.

Implementation details: We implement instance-wise weight estimator using a multi-layer per-
ceptron with tanh activation. The number of hidden units and layers are optimized by the cross-
validation. In most cases, 5-layer perceptron with 100 hidden units performs reasonably-well across
all datasets. All features are normalized to be between zero and one, using standard minmax scaler.
Categorical variables are transformed using one-hot encoding.

4.1 EXPERIMENTS ON SYNTHETIC DATASETS – RECOVERING LOCAL DYNAMICS

On real-world datasets it is challenging to directly evaluate the explanation quality of the locally in-
terpretable models due to the absence of ground-truth explanations. Thus we initially focus on syn-
thetic datasets (with known ground-truth explanations) to directly evaluate how well the locally in-
terpretable models can recover the underlying local dynamics. We construct three synthetic datasets
such that the 11-dimensional input features X are sampled from N (0, I) and Y are:

1. Syn1: Y = X1 + 2X2 if X10 < 0 and Y = X3 + 2X4 if X10 ≥ 0

2. Syn2: Y = X1 + 2X2 if X10 + eX11 < 1 and Y = X3 + 2X4 if X10 + eX11 ≥ 1

3. Syn3: Y = X1 + 2X2 if X10 +X3
11 < 0 and Y = X3 + 2X4 if X10 +X3

11 ≥ 0

All three datasets have different local dynamics in different input regimes. We directly use the
ground truth function as the black-box model and focus on how well locally interpretable modeling
can capture the local dynamics. We evaluate the performance of capturing local dynamics using
Absolute Weight Difference (AWD): AWD = ||w − ŵ||, where w is the ground truth coefficients
to generate Y and ŵ is the derived coefficient from the locally interpretable models. We use the
estimated coefficients of the ridge regression as the derived local dynamics (ŵ).

As shown in Fig. 2, RL-LIM significantly outperforms other benchmarks in discovering the local
dynamics on all three datasets and in different regimes. RL-LIM can actively learn the linear and
non-linear decision boundaries for the local dynamics. Note that LIME completely fails to recover
the local dynamics as it uses the Euclidean distance uniformly for all features and cannot distinguish
the special properties of the features that alter the local dynamics. SILO and MAPLE only use the
predictions to discover the local dynamics; thus, it is hard to discover the decision boundary that
depends on the other variables which are independent to the predictions. Fig. 5 in Appendix D
shows the learning curves of RL-LIM demonstrating the efficiency of reinforcement learning.

2We use python packages (including Sklearn and Tensorflow) to implement those predictive models and the
details can be found in the hyper-links (colored in blue) of each model and Appendix B.
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Figure 2: Synthetic dataset results. Mean absolute weight difference (AWD) with 95% confidence
intervals (of 10 independent runs) on three synthetic datasets. X-axis: Distance from the boundary
where the local dynamics change, such as X10 = 0 for Syn1 (in percentile), Y-axis: AWD (the
lower, the better). We exclude LIME in these graphs due to its poor performance in terms of AWD
(it is higher than 1.6 in all distance regimes for all three synthetic datasets).

4.2 THE EFFECT OF THE NUMBER OF SELECTED SAMPLES ON FIDELITY

In RL-LIM, optimal distillation is enabled by using a small subset of training instances to fit the
low-capacity locally interpretable model. The number of selected instances is controlled by λ in our
method – if λ is high/low, RL-LIM penalizes more/less on the number of selected instances; thus,
less/more instances are selected to construct the locally interpretable model.

Figure 3: Fidelity & average selection probability of training instances as a function of the number
of selected samples on three synthetic datasets. X-axis: λ, Y-axis: LMAE and average selection
probability of training instances. LMAE is Local MAE – lower is better.

We analyze the efficacy of λ in controlling the likelihood of selection and the dependency of fidelity
on λ. We expect that if we select a too small/large number of training instances, the locally inter-
pretable model will overfit/underfit which negatively affects the fidelity in both cases. Fig. 3 shows
that there is a clear relationship between λ and the local fidelity. If λ is too large, RL-LIM selects
too small number of instances; thus, the fitted locally interpretable model is less accurate (due to
overfitting). On the other hand, if λ is too small, RL-LIM selects too large number of instances
and deteriorates fidelity (due to underfitting). To achieve the optimal λ, we conduct cross-validation
experiments and select λ which achieves the best validation fidelity (e.g. λ = 0.5 in Syn2). Fig.
3 shows the average selection probability of the training instances for each λ. As λ increases, the
average selection probabilities monotonically decrease due to the higher penalty on the number of
selected training instances. Note that even using a small portion of training instances, RL-LIM
can accurately distill the predictions of black-box models into locally interpretable models which is
crucial to understand and interpret the predictions using the most relevant training instances.

4.3 EXPERIMENTS ON REAL DATASETS – OVERALL PERFORMANCE AND FIDELITY

On multiple real datasets, we evaluate the overall prediction performance and fidelity. For the re-
gression and classification problems, we use ridge regression and shallow regression trees as the
locally interpretable model. More results can be found in Appendix E.

As can be seen in Table 1, the performance of globally interpretable ridge regression (trained on
the entire dataset from the scratch) is much worse than other complex non-linear models, implying
that modeling non-linear relationships between the features and the labels is important towards high
prediction performance. For other locally interpretable modeling methods (LIME, SILO, MAPLE),
the performance is far worse than the original black-box model, showing that they fail at efficiently
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Datasets Models XGBoost LightGBM MLP RF

(RR-MAE) Metrics MAE R2 MAE R2 MAE R2 MAE R2

Original 5.131 1.0 4.965 1.0 4.893 1.0 5.203 1.0
RL-LIM 5.289 .8679 4.971 .9069 4.994 .7177 4.993 .8573

Blog LIME 9.421 .3440 10.243 .3019 10.936 -.2723 19.222 -.2143
(8.420) SILO 6.261 .0005 6.040 .2839 5.413 .4274 6.610 .4500

MAPLE 5.307 .8248 4.981 .8972 5.012 .5624 5.058 .8471

Original 24.18 1.0 20.22 1.0 18.36 1.0 30.09 1.0
RL-LIM 22.92 .7071 24.84 .4268 20.23 .5495 22.65 .4360

Facebook LIME 35.20 .2205 38.19 .2159 38.82 .2463 51.77 .1797
(24.64) SILO 31.41 -.4305 39.10 -1.994 22.35 .3307 42.05 -.7929

MAPLE 23.28 .6803 41.86 -3.233 24.77 -.1721 44.75 -1.078

Original 2995 1.0 3140 1.0 2255 1.0 3378 1.0
RL-LIM 2958 .7534 2957 .5936 2260 .9761 2396 .6523

News LIME 5141 -.2467 6301 -2.008 2289 .5030 9435 -7.477
(2989) SILO 3069 .4547 3006 .4025 2257 .9617 3251 .3816

MAPLE 2967 .7010 3005 .3963 2259 .9534 3060 .5901

Table 1: Real-world regression dataset results. Overall prediction performance (metric: MAE, lower
is better) and fidelity (metric: R2 score, higher is better) on regression problems with ridge regres-
sion as the locally interpretable model. ‘Original’ is the performance of the original black-box model
that the models are approximating. MAE of global ridge regression (RR) can be found below the
data name. Red represents performance that is worse than global ridge regression and the negative
R2 scores. Bold represents the best results.

distilling the non-linear black-box models. In some cases (especially on the Facebook dataset),
the performance of the benchmarks is even worse than the performance of global ridge regression
(highlighted in red), questioning the value of using these locally interpretable models instead of
globally interpretable ridge regression.

In contrast, RL-LIM achieves similar overall prediction performance to the black-box models and
significantly outperforms global ridge regression. Table 1 also compares the fidelity in terms of R2

score for regression using ridge regression as the locally interpretable model (LMAE results can be
found in Appendix E.3). We observe that R2 scores for some cases (especially on Facebook dataset
and LIME) are negative which represent that the outputs of the locally interpretable models are even
worse than the constant mean value estimator. On the other hand, RL-LIM achieves higher and
positive R2 values consistently for all datasets and black-box models than other benchmarks.

Table 2 shows a similar analysis for classification using shallow regression trees (with max depth of
3) as the locally interpretable model (Regression trees are used to model logit outputs for classifica-
tion.). The overall prediction performance of four black-box models are significantly better than the
globally interpretable decision tree which demonstrates the superior fitting by complex black-box
models. Among the locally interpretable models, RL-LIM achieves the best APR and R2 score for
most cases, underlining its strength in distilling the predictions of the black-box model accurately.
In some cases, the benchmarks (especially for LIME) achieve lower overall prediction performance
than the globally interpretable decision tree (highlighted in red). The overall prediction performance
and fidelity metrics of all locally interpretable models seem better for classification problems than
regression problems. We expect that the predictions of black-box models are mostly highly confi-
dent, i.e. located near 0 or 1; thus, locally interpretable models can easily distill the predictions of
the black-box models for classification than regression.

4.4 QUALITATIVE ANALYSES – INTERPRETATIONS OF RL-LIM ON ADULT INCOME DATASET

In this subsection, we qualitatively analyze the local explanations provided by RL-LIM on the Adult
Income dataset. Although RL-LIM is able to provide local explanations for each individual sepa-
rately, we analyze its explanations in subgroup granularity for better visualization and understand-
ing. Fig. 4 represents the feature importance (derived by RL-LIM as the local explanations) for
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Datasets Models XGBoost LightGBM MLP RF

(DT-APR) Metrics APR R2 APR R2 APR R2 APR R2

Original .8096 1.0 .8254 1.0 .7678 1.0 .7621 1.0
RL-LIM .8011 .9889 .8114 .9602 .7710 .9451 .7881 .8788

Adult LIME .6211 .5009 .6031 .3798 .4270 .2511 .6166 .3833
(.6388) SILO .8001 .9869 .8107 .9583 .7708 .9470 .7833 .8548

MAPLE .7928 .9794 .8034 .9405 .7719 .9410 .7861 .8622

Original .7133 1.0 .7299 1.0 .7205 1.0 .7274 1.0
RL-LIM .7071 .9734 .7118 .9601 .7099 .9124 .7102 .9008

Weather LIME .6179 .7783 .6159 .6913 .5651 .3417 .6209 .3534
(.5838) SILO .6991 .9680 .7052 .9452 .6997 .8864 .7042 .8398

MAPLE .6973 .9675 .7056 .9446 .6983 .8856 .6983 .8856

Table 2: Real-world classification dataset results. Overall prediction performance (metric: APR,
higher is better) and fidelity (metric: R2 score, higher is better) on classification problems with
shallow regression tree as the locally interpretable model. ‘Original’ is the performance of the
original black-box model that the models are approximating. APR of global decision tree (DT) can
be found below the data name.

Figure 4: Qualitative interpretability results. The analyses of feature importance (derived by RL-
LIM) for 5 types of subgroups in Adult Income dataset: (a) Age, (b) Gender, (c) Marital status, (d)
Race, (e) Education. The color represents the feature importance for each subgroup.

five subgroups in predicting the annual income using XGBoost as the black-box model. We use
ridge regression as the locally interpretable model and the absolute value of fitted coefficients as
the estimated feature importance. As can be observed in Fig. 4, for age subgroups, capital gain
seems much more important for mature people (older than 25) than young people (younger than
25). For education subgroups, capital gain/loss, occupation, and native countries are more critical
for highly-educated people (Doctorate, Prof-school, and Masters graduates) than the others. We do
not discover notable biases of black-box models for gender, marital status, and race subgroups.

5 CONCLUSIONS

We propose a novel method for locally interpretable modeling of pre-trained black-box models. Our
proposed method employs reinforcement learning to select a small number of valuable instances and
use them to train a low-capacity locally interpretable model. The selection mechanism is guided with
a reward obtained from the similarity of predictions of the locally interpretable model and the black-
box model. Our approach near-matches the performance of black-box models and significantly
outperforms alternative techniques in terms of overall prediction performance and fidelity metrics
consistently across various datasets and black-box models.
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A DATA STATISTICS

Problem Data Name # of samples # of features Label distribution

Regression
Blog 60,021 280 6.6 (0-0-22)

Facebook 603,713 54 7.2 (0-0-30)
News 39,644 59 3395.4 (584-1400-10800)

Classification Adult 48,842 108 11,687 (23.9%)
Weather 112,925 61 25,019 (22.2%)

Table 3: Data Statistics (# represents the number). Label distributions: # of positive labels (positive
label ratio) for classification problem, Mean (5%-50%-95% percentiles) for regression problem.

B HYPER-PARAMETERS OF THE PREDICTIVE MODELS

In this paper, we use 8 different predictive models. For each predictive model, the corresponding
hyper-parameters used in the experiments are as follows:

• XGBoost: booster - gbtree, max depth - 6, learning rate - 0.3, number of estimators - 1000, max
depth - 6, reg alpha - 0

• LightGBM: booster - gbdt, max depth - None, learning rate - 0.1, number of estimators - 1000,
min data in leaf - 20

• Random Forests: number of estimators - 1000, criterion - gini, max depth - None, warm start -
False

• Multi-layer Perceptron: Number of layers - 4, hidden units - [feature dimensions, feature di-
mensions/2, feature dimensions/4, feature dimensions/8], activation function - relu, early stoping
- True with patient 10, batch size - 256, maximum number of epochs - 200, optimizer - Adam

• Ridge Regression: alpha - 1
• Regression Tree: max depth - 3, criterion - gini
• Logistic Regression: solver - lbfgs, no regularization
• Decision Tree: max depth - 3, criterion - gini

We follow the default settings for the other hyper-parameters that are not mentioned here.
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C PERFORMANCE METRICS

• Mean Absolute Error (MAE):

MAE = E(xt,yt)∼P ||g∗θ(xt)(x
t)− yt)||1 '

1

L

L∑
k=1

||g∗θ(xtk)
(xtk)− ytk||1,

• Local MAE (LMAE):

LMAE = Ext∼PX ||g∗θ(xt)(x
t)− f∗(xt)||1 '

1

L

L∑
k=1

||g∗θ(xtk)
(xtk)− f∗(xtk))||1,

• R2 score (Legates & McCabe, 1999):

R2 = 1−
Ext∼PX ||f∗(xt)− g∗θ(xt)(x

t)||22
Ext∼PX ||f∗(xt)− Ex̂t∼PX [f

∗(x̂t)]||22
' 1−

1
L

∑L
k=1 ||f∗(xtk)− g∗θ(xtk)

(xtk)||22
1
L

∑L
k=1 ||f∗(xtk)−

1
L

∑L
k=1[f

∗(xtk)]||22
.

If R2 = 1, the predictions of the locally interpretable model perfectly match the predictions of the
black-box model. On the other hand, if R2 = 0, the locally interpretable model performs as similar
as the constant mean value estimator. If R2 < 0, the locally interpretable model performs worse
than the constant mean value estimator.

D LEARNING CURVES OF RL-LIM

Figure 5: Learning curves of RL-LIM on three synthetic datasets. X-axis: The number of iter-
ations on instance-wise weight estimator training, Y-axis: Rewards (LMAE of baseline (globally
interpretable model) - LMAE of RL-LIM), higher the better.
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E ADDITIONAL RESULTS

E.1 REGRESSION WITH SHALLOW REGRESSION TREE AS THE LOCALLY INTERPRETABLE
MODEL

Datasets Models XGBoost LightGBM MLP RF

(RT-MAE) Metrics MAE R2 MAE R2 MAE R2 MAE R2

Original 5.131 1.0 4.965 1.0 4.939 1.0 5.203 1.0
RL-LIM 5.121 .8242 4.778 .8939 4.587 .6375 4.652 .8990

Blog LIME 11.80 .2658 13.22 .1483 7.396 -.6201 19.61 -.4116
(5.955) SILO 5.149 .8035 4.818 .8816 4.649 .6177 4.715 .8774

MAPLE 5.329 .7991 5.024 .8660 4.609 .6339 5.016 .8201

Original 24.18 1.0 20.22 1.0 18.36 1.0 30.09 1.0
RL-LIM 21.82 .9307 21.35 .9194 18.56 .8832 22.44 .7236

Facebook LIME 36.69 .3278 44.21 .1809 40.85 -.1513 51.70 .2301
(22.28) SILO 22.42 .8655 22.33 .7235 19.57 .8566 24.41 .6917

MAPLE 22.15 .8824 23.43 .8581 20.32 .8035 27.12 .3134

Original 2995 1.0 3140 1.0 2255 1.0 3378 1.0
RL-LIM 2938 .9382 2504 .4104 2226 .9016 2431 .2768

News LIME 6272 -.6267 7737 -2.960 2390 .0013 9637 -7.075
(3093) SILO 2910 .1020 2854 .3461 2274 .8201 2874 .2278

MAPLE 2968 .9288 2846 .3631 2284 .8021 2888 .1872

Table 4: Real-world regression dataset results. Overall prediction performance (metric: MAE, lower
is better) and fidelity (metric: R2 score, higher is better) on regression problems with shallow regres-
sion tree as the locally interpretable model. ‘Original’ is the performance of the original black-box
model that the models are approximating. MAE of global regression tree (RT) can be found below
the data name. Red represents performance that is worse than global regression tree and the negative
R2 scores. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF

Blog

RL-LIM .7530 1.358 1.273 1.413
LIME 9.160 11.16 5.006 17.461
SILO .8325 1.379 1.178 1.934

MAPLE 1.029 1.598 1.359 2.158

Facebook

RL-LIM 7.240 6.867 5.596 15.77
LIME 31.52 37.75 30.58 45.58
SILO 8.459 9.149 6.997 18.63

MAPLE 7.985 8.644 7.290 23.17

News

RL-LIM 389.0 1072 116.6 957.1
LIME 4455 6243 504.0 9969
SILO 496.7 1214 160.6 1175

MAPLE 440.7 1201 163.6 1196

Table 5: Fidelity results (Metric: LMAE, lower the better) on regression problems with shallow
regression tree as the locally interpretable model. Bold represents the best results.
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E.2 CLASSIFICATION WITH RIDGE REGRESSION AS THE LOCALLY INTERPRETABLE MODEL

Datasets Models XGBoost LightGBM MLP RF

(LR-APR) Metrics APR R2 APR R2 APR R2 APR R2

Original .8096 1.0 .8254 1.0 .7678 1.0 .7621 1.0
RL-LIM .7977 .9871 .8039 .9439 .7670 .9791 .7977 .9217

Adult LIME .6803 .7195 .6805 .6259 .6957 .8310 .7057 .6759
(.7553) SILO .7912 .9750 .7884 .9301 .7655 .9778 .7664 .9140

MAPLE .7947 .9840 .8011 .9386 .7683 .9636 .7958 .8961

Original .7133 1.0 .7299 1.0 .7205 1.0 .7274 1.0
RL-LIM .7140 .9879 .7290 .9801 .7212 .9755 .7331 .9450

Weather LIME .6376 .7898 .6392 .6873 .6395 .5321 .6387 .4513
(.7009) SILO .7134 .9888 .7281 .9773 .7220 .9797 .7277 .9024

MAPLE .7134 .9897 .7273 .9778 .7213 .9702 .7308 .9323

Table 6: Real-world classification dataset results. Overall prediction performance (metric: APR,
higher is better) and fidelity (metric: R2 score, higher is better) on classification problems with
ridge regression as the locally interpretable model. ‘Original’ is the performance of the original
black-box model that the models are approximating. APR of global logistic regression (LR) can be
found below the data name. Red represents the results that are worse than global logistic regression
and the negative R2 scores. Bold represents the best results.

E.3 REGRESSION WITH RIDGE REGRESSION AS THE LOCALLY INTERPRETABLE MODEL -
FIDELITY ANALYSIS IN TERMS OF LOCAL MAE (LMAE)

Datasets Models XGBoost LightGBM MLP RF

Blog

RL-LIM .8679 1.135 1.432 1.651
LIME 6.534 8.037 8.207 17.01
SILO 2.220 3.046 2.393 3.909

MAPLE .9690 1.416 1.550 1.984

Facebook

RL-LIM 6.394 21.29 8.217 33.64
LIME 32.57 33.70 27.38 48.03
SILO 19.51 30.07 11.52 40.14

MAPLE 7.664 31.25 13.31 44.38

News

RL-LIM 436.9 1049 74.11 905.8
LIME 3317 4766 327.4 8828
SILO 657.2 1253 79.85 1345

MAPLE 500.5 1261 88.19 1157

Table 7: Fidelity results (Metric: LMAE, lower the better) on regression problems with ridge re-
gression as the locally interpretable model. Bold represents the best results.
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E.4 COMPARISON TO DIFFERENTIABLE WEIGHTING BASELINES

In this subsection, we additionally compare RL-LIM to two baselines that have differentiable ob-
jective for weighting: (1) straight-through estimator (STE) (Bengio et al., 2013), (2) Learning to
Reweight (L2R) (Ren et al., 2018). The experimental setup is the same with the synthetic experi-
ments in Section 4.1 and the performance metric is Average Weight Difference (AWD). As can be
seen from Table 8, the first approach, STE, converges fast but to a suboptimal AWD, whereas L2R
overfits to the fidelity metric and cannot guide weighting of the training samples properly, eventually
yielding poor AWD.

AWD Syn1 Syn2 Syn3

RL-LIM 0.1562 0.3325 0.3920
STE 0.1717 0.3601 0.4307
L2R 0.7532 0.7283 0.7506

Table 8: Average Weight Differences (AWD) of RL-LIM, STE, and L2R on three synthetic datasets.
Bold represents the best results.

The sampler block in RL-LIM makes the optimization problem of the RL-LIM non-differentiable.
The main motivation of using the sampler in RL-LIM is to encourage exploration in order to sys-
tematically explore the extremely large action space. When we utilize straight-through estimator to
make the entire process differentiable, the model converges faster but to a suboptimal solution due
to the under-exploration of the action space.

The main difference between L2R and RL-LIM is that L2R learns weights of the training samples
that are the same across all validation and testing samples; on the other hand, RL-LIM uses a single
instance-wise weight estimator model to learn different weights of the training samples for each
probe samples. If we apply L2R to this framework, we need to separately apply L2R for each probe
sample. Therefore, there would be a high likelihood of overfitting to the probe dataset because it
would only use one validation sample to learn the weights of the training samples.

E.5 SAMPLE COMPLEXITY ANALYSIS

In this subsection, we report the sample complexity analysis results of RL-LIM, comparing to: (1)
randomly selected subsamples (Random), (2) STE-based weighting (STE). We vary the number of
training samples (from 200 to 2000) and compute the AWD on three synthetic datasets.

Figure 6: AWD performances in terms of the number of training samples used to train three models
(RL-LIM, STE, Random) - Lower the better.

As can be seen in Fig. 6, with randomly selected subsamples, it only works well when we have an
extremely small number of training samples due to a smaller chance of overfitting. For STE-based
model, it converges fast; thus, it works better with smaller training samples; however, for larger
training samples, it performs worse than RL-LIM due to under-exploration of the action space.
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F ANALYSIS OF INSTANCE-WISE WEIGHTS DISTRIBUTIONS

In this section, we analyze the instance-wise weights of training samples visualizing the distributions
of the instance-wise weights of training samples for the entire probe samples, and the dependence
of the average instance-wise weights of training samples on the distance from the probe sample.

(a) (b)

(c) (d)

Figure 7: (a) Instance-wise weight distributions - Syn1, (b) Instance-wise weight distributions -
Syn2, (c) Instance-wise weight distributions - Syn3, (d) Average instance-wise weights of training
samples in terms of distance from the probe sample (percentile)

As can be seen in Fig. 7 (a)-(c), the instance-wise weights have quite skewed distribution. Some
samples (e.g. with average instance-wise weights above 0.5) are much more critical to interpreting
the probe sample than many others (e.g. average instance-wise weights below 0.1)

In Fig. 7 (d), there is a clear trend that the samples near the probe sample have higher average
instance-wise weights, which shows that RL-LIM learns the meaningful distance metrics to measure
the relevance while interpreting the probe samples. This trend is consistent across all three synthetic
datasets.
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