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ABSTRACT

Quantifying the value of data is a fundamental problem in machine learning. Data
valuation has multiple important use cases: (1) building insights about the learning
task, (2) domain adaptation, (3) corrupted sample discovery, and (4) robust learn-
ing. To adaptively learn data values jointly with the target task predictor model,
we propose a meta learning framework which we name Data Valuation using Re-
inforcement Learning (DVRL). We employ a data value estimator (modeled by a
deep neural network) to learn how likely each datum is used in training of the pre-
dictor model. We train the data value estimator using a reinforcement signal of the
reward obtained on a small validation set that reflects performance on the target
task. We demonstrate that DVRL yields superior data value estimates compared to
alternative methods across different types of datasets and in a diverse set of appli-
cation scenarios. The corrupted sample discovery performance of DVRL is close
to optimal in many regimes (i.e. as if the noisy samples were known apriori),
and for domain adaptation and robust learning DVRL significantly outperforms
state-of-the-art by 14.6% and 10.8%, respectively.

1 INTRODUCTION

Data is an essential ingredient in machine learning. Machine learning models are well-known to
improve when trained on large-scale and high-quality datasets (Hestness et al., 2017; Najafabadi
et al., 2015). However, collecting such large-scale and high-quality datasets is costly and challeng-
ing. One needs to determine the samples that are most useful for the target task and then label them
correctly. Recent work (Toneva et al., 2019) suggests that not all samples are equally useful for
training, particularly in the case of deep neural networks. In some cases, similar or even higher test
performance can be obtained by removing a significant portion of training data, i.e. low-quality or
noisy data may be harmful (Ferdowsi et al., 2013; Frenay & Verleysen, 2014). There are also some
scenarios where train-test mismatch cannot be avoided because the training dataset only exists for
a different domain. Different methods (Ngiam et al., 2018; Zhu et al., 2019) have demonstrated the
importance of carefully selecting the most relevant samples to minimize this mismatch.

Accurately quantifying the value of data has a great potential for improving model performance for
real-world training datasets which commonly contain incorrect labels, and where the input samples
differ in relatedness, sample quality, and usefulness for the target task. Instead of treating all data
samples equally, lower priority can be assigned for a datum to obtain a higher performance model –
for example in the following scenarios:

1. Incorrect label (e.g. human labeling errors).
2. Input comes from a different distribution (e.g. different location or time).
3. Input is noisy or low quality (e.g. noisy capturing hardware).
4. Usefulness for target task (label is very common in the training dataset but not as common in the

testing dataset).

In addition to improving performance in such scenarios, data valuation also enables many new use
cases. It can suggest better practices for data collection, e.g. what kinds of additional data would the
model benefit the most from. For organizations that sell data, it determines the correct value-based
pricing of data subsets. Finally, it enables new possibilities for constructing very large-scale training
datasets in a much cheaper way, e.g. by searching the Internet using the labels and filtering away
less valuable data.
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How does one evaluate the value of a single datum? This is a crucial and challenging question. It
is straightforward to address at the full dataset granularity: one could naively train a model on the
entire dataset and use its prediction performance as the value. However, evaluating the value of
each datum is far more difficult, especially for complex models such as deep neural networks that
are trained on large-scale datasets. In this paper, we propose a meta learning-based data valuation
method which we name Data Valuation using Reinforcement Learning (DVRL). Our method inte-
grates data valuation with the training of the target task predictor model. DVRL determines a reward
by quantifying the performance on a small validation set, and uses it as a reinforcement signal to
learn the likelihood of each datum being using in training of the predictor model. In a wide range of
use cases, including domain adaptation, corrupted sample discovery and robust learning, we demon-
strate significant improvements compared to permutation-based strategies (such as Leave-one-out
and Influence Function (Koh & Liang, 2017)) and game theory-based strategies (such as Data Shap-
ley (Ghorbani & Zou, 2019)). The main contributions can be summarized as follows:

1. We propose a novel meta learning framework for data valuation that is jointly optimized with the
target task predictor model.

2. We demonstrate multiple use cases of the proposed data valuation framework and show DVRL
significantly outperforms competing methods on many image, tabular and language datasets.

3. Unlike previous methods, DVRL is scalable to large datasets and complex models, and its com-
putational complexity is not directly dependent on the size of the training set.

2 RELATED WORK

Data valuation: A commonly-used method for data valuation is leave-one-out (LOO). It quantifies
the performance difference when a specific sample is removed and assigns it as that sample’s data
value. The computational cost is a major concern for LOO – it scales linearly with the number of
training samples which means its cost becomes prohibitively high for large-scale datasets and com-
plex models. In addition, there are fundamental limitations in the approximation. For example, if
there are two exactly equivalent samples, LOO underestimates the value of that sample even though
that sample may be very important. The method of Influence Function (Koh & Liang, 2017) was
proposed to approximate LOO in a computationally-efficient manner. It uses the gradient of the loss
function with small perturbations to estimate the data value. In order to compute the gradient, Hes-
sian values are needed; however these are prohibitively expensive to compute for neural networks.
Approximations for Hessian computations are possible, although they generally result in perfor-
mance limitations. From data quality assessment perspective, the method of Influence Function
inherits the major limitations of LOO.

Data Shapley (Ghorbani & Zou, 2019) is another relevant work. Shapley values are motivated by
game theory (Shapley, 1953) and are commonly used in feature attribution problems such as relating
predictions to input features (Lundberg & Lee, 2017). For Data Shapley, the prediction performance
of all possible subsets is considered and the marginal performance improvement is used as the data
value. The computational complexity for computing the exact Shapley value is exponential with
the number of samples. Therefore, Monte Carlo sampling and gradient-based estimation are used to
approximate them. However, even with these approximations, the computational complexity still re-
mains high (indeed much higher than LOO) due to re-training for each test combination. In addition,
the approximations may result in fundamental limitations in data valuation performance – e.g. with
Monte Carlo approximation, the ratio of tested combinations compared to all possible combinations
decreases exponentially. Moreover, in all the aforementioned methods data valuation is decoupled
from predictor model training, which limits the performance due to lack of joint optimization.

Meta learning-based adaptive learning: There are relevant studies that utilize meta learning for
adaptive weight assignment while training for various use cases such as robust learning, domain
adaptation, and corrupted sample discovery. ChoiceNet (Choi et al., 2018) explicitly models output
distributions and uses the correlations of the output to improve robustness. Xue et al. (2019) esti-
mates uncertainty of predictions to identify the corrupted samples. Li et al. (2019) combines meta
learning with standard stochastic gradient update with generated synthetic noise for robust learn-
ing. Shen & Sanghavi (2019) alternates the processes of selecting the samples with low loss and
model training to improve robustness. Shu et al. (2019) uses neural networks to model the rela-
tionship between current loss and the corresponding sample weights, and utilizes a meta-learning
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framework for robust weight assignment. Köhler et al. (2019) estimates the uncertainty to discover
the noisy labeled data and relabels mislabeled samples to improve the prediction performance of
the predictor model. Gold Loss Correction (Hendrycks et al., 2018) uses a clean validation set to
recover the label corruption matrix to re-train the predictor model with corrected labels. Learning to
Reweight (Ren et al., 2018) proposes a single gradient descent step guided with validation set per-
formance to reweight the training batch. Domain Adaptive Transfer Learning (Ngiam et al., 2018)
introduces importance weights (based on the prior label distribution match) to scale the training sam-
ples for transfer learning. MentorNet (Jiang et al., 2018) proposes a curriculum learning framework
that learns the order of mini-batch for training of the corresponding predictor model. Our method,
DVRL, differs from the aforementioned as it directly models the value of the data using learnable
neural networks (which we refer to as a data value estimator). To train the data value estimator, we
use reinforcement learning with a sampling process. DVRL is model-agnostic and even applicable
to non-differentiable target objectives. Learning is jointly performed for the data value estimator
and the corresponding predictor model, yielding superior results in all of the use cases we consider.

3 PROPOSED METHOD
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Figure 1: Block diagram of the DVRL framework for training. A batch of training samples is used as
the input to the data value estimator (with shared parameters across the batch) and the output corre-
sponds to selection probabilities: wi = hφ(xi, yi) of a multinomial distribution. The sampler, based
on this multinomial distribution, returns the selection vector s = (s1, ..., sBs) where si ∈ {0, 1} and
P (si = 1) = wi. The target task predictor model is trained only using the samples with selection
vector si = 1, using conventional gradient-descent optimization. The selection probabilities wi rank
the samples according to their importance – these are used as data values. The loss of the predic-
tor model is evaluated on a small validation set, which is compared to the moving average of the
previous losses (δ) to determine the reward. Finally, the reinforcement signal guided by this reward
updates the data value estimator. Block diagrams for inference are shown in Appendix A.

Framework: Let us denote the training dataset asD = {(xi, yi)}Ni=1 ∼ P where xi ∈ X is a feature
vector in the d-dimensional feature space X , e.g. Rd, and yi ∈ Y is a corresponding label in the
label space Y , e.g. ∆[0, 1]c for classification where c is the number of classes and ∆ is the simplex.
We consider a disjoint testing dataset Dt = {(xtj , ytj)}Mj=1 ∼ Pt where the target distribution Pt
does not need to be the same with the training distribution P . We assume an availability of a (often
small1) validation dataset Dv = {(xvk, yvk)}Lk=1 ∼ Pt that comes from the target distribution Pt.
The DVRL method (overview in Fig. 1) consists of two learnable functions: (1) the target task
predictor model fθ, (2) data value estimator model hφ. The predictor model fθ : X → Y is trained
to minimize a certain weighted loss function Lf (e.g. Mean Squared Error (MSE) for regression or
cross entropy for classification) on training set D:

fθ = arg min
f̂∈F

1

N

N∑
i=1

hφ(xi, yi) · Lf (f̂(xi), yi). (1)

fθ can be any trainable function with parameters θ, such as a neural network. The data value esti-
mator model hφ : X · Y → [0, 1], on the other hand, is optimized to output weights that determine

1We provide empirical results that how small the validation set can be in Section 4.5.
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the distribution of selection likelihood of the samples to train the predictor model fθ. We formulate
the corresponding optimization problem as:

min
hφ

E(xv,yv)∼P t
[
Lh(fθ(xv), yv)

]
s.t. fθ = arg minf̂∈F E(x,y)∼P

[
hφ(x, y) · Lf (f̂(x), y)

] (2)

where hφ(x, y) represents value of the training sample (x, y). The data value estimator is also a
trainable function, such as a neural network. Similar to Lf , we use MSE or cross entropy for Lh.

Training: To encourage exploration based on uncertainty, we model training sample selection
stochastically. Let w = hφ(x, y) denote the probability that (x, y) is used to train the predictor
model fθ. hφ(D) = {hφ(xi, yi)}Ni=1 is the probability distribution for inclusion of each training
sample. s ∈ {0, 1}N is a binary vector that represents the selected samples. If si = 1/0, (xi, yi)
is selected/not selected for training the predictor model. πφ(D, s) =

∏N
i=1

[
hφ(xi, yi)si · (1 −

hφ(xi, yi))1−si
]

is the probability that certain selection vector s is selected based on hφ(D). We
assign the outputs of the data value estimator model, w = hφ(x, y), as the data values. We can use
the data values to rank the dataset samples (e.g. to determine a subset of the training dataset) and to
do sample-adaptive training (e.g. for domain adaptation).

The predictor model can be trained using standard stochastic gradient descent because it is differen-
tiable with respect to the input. However, gradient descent-based optimization cannot be used for the
data value estimator because the sampling process is non-differentiable. There are multiple ways to
handle the non-differentiable optimization bottleneck, such as Gumbel-softmax (Jang et al., 2017)
or stochastic back-propagation (Rezende et al., 2014). In this paper, we consider reinforcement
learning instead, which directly encourages exploration of the policy towards the optimal solution
of Eq. (2). We use the REINFORCE algorithm (Williams, 1992) to optimize the policy gradients,
with the rewards obtained from a small validation set that approximates performance on the target
task. For the loss function l̂(φ):

l̂(φ) = E(xv,yv)∼P t
[
Es∼πφ(D,·)

[
Lh(fθ(xv), yv)

]]
=

∫
P t(xv)

[ ∑
s∈[0,1]N

πφ(D, s) ·
[
Lh(fθ(xv), yv)

]]
dxv,

we directly compute the gradient∇φ l̂(φ) as:

∇φ l̂(φ) =

∫
P t(xv)

[ ∑
s∈[0,1]N

∇φπφ(D, s) ·
[
Lh(fθ(xv), yv)

]]
dxv

=

∫
P t(xv)

[ ∑
s∈[0,1]N

∇φ log(πφ(D, s)) · πφ(D, s) ·
[
Lh(fθ(xv), yv)

]]
dxv

= E(xv,yv)∼P t
[
Es∼πφ(D,·)

[
Lh(fθ(xv), yv)

]
∇φ log(πφ(D, s))

]
,

where∇φ log(πφ(D, s)) is

∇φ log(πφ(D, s)) = ∇φ
N∑
i=1

log
[
hφ(xi, yi)si · (1− hφ(xi, yi))1−si

]
=

N∑
i=1

si∇φ log
[
hφ(xi, yi)

]
+ (1− si)∇φ log

[
(1− hφ(xi, yi))

]
.

To improve the stability of the training, we use the moving average of the previous loss (δ), with a
window size (T ), as the baseline for the current loss. The pseudo-code is shown in Algorithm 1.

Computational complexity: DVRL models the mapping between an input and its value with a
learnable function. The training time of DVRL is not directly proportional to the dataset size, but
rather dominated by the required number of iterations and per-iteration complexity in Algorithm
1. One way to minimize the computational overhead is to use pre-trained models to initialize the
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Algorithm 1 Pseudo-code of DVRL training

1: Inputs: Learning rates α, β > 0, mini-batch size Bp, Bs > 0, inner iteration count NI > 0,
moving average window T > 0, training dataset D, validation dataset Dv = {(xvk, yvk)}Lk=1

2: Initialize parameters θ, φ, moving average δ = 0
3: while until convergence do
4: Sample a mini-batch from the entire training dataset: DB = (xj , yj)

Bs
j=1 ∼ D

5: for j = 1, ..., Bs do
6: Calculate selection probabilities: wj = hφ(xj , yj)
7: Sample selection vector: sj ∼ Ber(wj)
8: for t = 1, ..., NI do
9: Sample a mini-batch (x̃m, ỹm, s̃m)

Bp
m=1 ∼ (xj , yj , sj)

Bs
j=1

10: Update the predictor model network parameters θ

θ ← θ − α 1

Bp

Bp∑
m=1

s̃m · ∇θLf (fθ(x̃m), ỹm))

11: Update the data value estimator model network parameters φ

φ← φ− β
[ 1

L

L∑
k=1

[Lh(fθ(xvk), yvk)]− δ
]
∇φ log πφ(DB , (s1, ..., sBs))

12: Update the moving average baseline (δ): δ ← T−1
T δ + 1

LT

∑L
k=1[Lh(fθ(xvk), yvk)]

predictor networks at each iteration. Unlike alternative methods like Data Shapley, we demonstrate
the scalability of DVRL to large-scale datasets such as CIFAR-100, and complex models such as
ResNet-32 (He et al., 2016) and WideResNet-28-10 (Zagoruyko & Komodakis, 2016). Instead of
being exponential in terms of the dataset size, the training time overhead DVRL is only twice of
conventional training. Please see Appendix D for further analysis on learning dynamics of DVRL
and Appendix B for additional computational complexity discussions.

4 EXPERIMENTS

We evaluate data value estimation quality of DVRL on multiple types of dataset and use cases.

Benchmark methods: We consider the following benchmarks: (1) Randomly-assigned values
(Random), (2) Leave-one-out (LOO), (3) Data Shapley Value (Data Shapley) (Ghorbani & Zou,
2019). For some experiments, we also compare with (4) Learning to Reweight (Ren et al., 2018),
(5) MentorNet (Jiang et al., 2018), and (6) Influence Function (Koh & Liang, 2017).

Datasets: We consider 12 public datasets (3 public tabular datasets, 7 public image datasets, and 2
public language datasets) to evaluate DVRL in comparison to multiple benchmark methods. 3 public
tabular datasets are (1) Blog, (2) Adult, (3) Rossmann; 7 public image datasets are (4) HAM 10000,
(5) MNIST, (6) USPS, (7) Flower, (8) Fashion-MNIST, (9) CIFAR-10, (10) CIFAR-100; 2 public
language datasets are (11) Email Spam, (12) SMS Spam. Details can be found in the hyper-links.

Baseline predictor models: We consider various machine learning models as the baseline pre-
dictor model to highlight the proposed model-agnostic data valuation framework. For Adult and
Blog datasets, we use LightGBM (Ke et al., 2017), and for Rossmann dataset, we use XGBoost
and multi-layer perceptrons due to their superior performance on the tabular datasets. For Flower,
HAM 10000, and CIFAR-10 datasets, we use Inception-v3 with top-layer fine-tuning (pre-trained
on ImageNet, (Szegedy et al., 2016)) as the baseline predictor model. For Fashion-MNIST, MNIST,
and USPS datasets, we use multinomial logistic regression, and for Email and SMS datasets, we use
Naive Bayes model. We also use ResNet-32 (He et al., 2016) and WideResNet-28-10 (Zagoruyko
& Komodakis, 2016) as the baseline models for CIFAR-10 and CIFAR-100 datasets in Section 4.3
to demonstrate the scalability of DVRL. For data value estimation network, we use multi-layer per-
ceptrons with ReLU activation as the base architecture. The number of layers and hidden units are
optimized with cross-validation.

5

https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/c/Rossmann-store-sales
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/alxmamaev/flowers-recognition
https://www.kaggle.com/zalando-research/fashionmnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/ishansoni/sms-spam-collection-dataset


Under review as a conference paper at ICLR 2020

Experimental details: In all experiments, we use Standard Normalizer to normalize the entire fea-
tures to have zero mean and one standard deviation. We transform categorical variables into one-hot
encoded embeddings. We set the inner iteration count (NI=200) for the predictor network, moving
average window (T=20), and mini-batch size (Bp=256) for the predictor network and mini-batch
size (Bs=2000) for the DVE network (large batch size often improves the stability of the reinforce-
ment learning model training (McCandlish et al., 2018)). We set the learning rate to 0.01 (β) for the
data value estimator (DVE) and 0.001 (α) for the predictor network. As the DVE architecture, for
tabular datasets, we use 5-layer perceptrons with 100 hidden units and ReLU; and for image datasets,
we use 5-layer perceptrons with 100 hidden units and ReLU on top of the CNN-based architecture
used for the predictor network (such as ResNet-32 or WideResNet-28-10 in Table 1). In order to
provide further informative signal to DVE, we propose to use an additional input of the difference
between the predictions of a separate predictive model (fined-tuned or trained from scratch on the
validation set) for the training samples and the original training labels. We simply concatenate this
additional input to the hidden states of DVE network. Intuitively, if the training label is corrupted,
the additional input would be high; thus, this could be an important signal for DVE to assign low
value to this sample. Ablation study for the variants of DVRL can be found in the Appendix C.6.

4.1 REMOVING HIGH/LOW VALUE SAMPLES

Removing low value samples from the training dataset can improve the predictor model perfor-
mance, especially in the cases where the training dataset contains corrupted samples. On the other
hand, removing high value samples, especially if the dataset is small, would decrease the perfor-
mance significantly. Overall, the performance after removing high/low value samples is a strong
indicator for the quality of data valuation.

Initially, we consider the conventional supervised learning setting, where all training, validation and
testing datasets come from the same distribution (without sample corruption or domain mismatch).
We use two tabular datasets (Adult and Blog) with 1,000 training samples and one image dataset
(Flower) with 2,000 training samples.2 We use 400 validation samples for tabular datasets and 800
validation samples for the image dataset. Then, we report the prediction performance on the disjoint
testing set after removing the high/low value samples based on the estimated data values.

Figure 2: Performance after removing the most (marked with ×) and least (marked with©) impor-
tant samples according to the estimated data values in a conventional supervised learning setting.

As shown in Fig. 2, even in the absence of sample corruption or domain mismatch, DVRL can
marginally improve the prediction performance after removing some portion of the least important
samples. Using only ∼60%-70% of the training set (the highest valued samples), DVRL can obtain
a similar performance compared to training on the entire dataset. After removing a small portion
(10%-20%) of the most important samples, the prediction performance significantly degrades which
indicates the importance of the high valued samples. Qualitatively looking at these samples, we ob-

2We use the small training dataset in this experiment in order to compare with LOO and Data Shapley which
have high computational complexities. DVRL is scalable to larger datasets as shown in Section 4.3.
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serve them to typically be representative of the target task which can be insightful. Overall, DVRL
shows the fastest performance degradation after removing the most important samples and the slow-
est performance degradation after removing the least important samples in most cases, underlining
the superiority of DVRL in data valuation quality compared to competing methods.

Next, we focus on the setting of removing high/low value samples in the presence of label noise in
the training data. We consider three image datasets: Fashion-MNIST, HAM 10000, and CIFAR-
10. As noisy samples hurt the performance of the predictor model, an optimal data value estimator
with a clean validation dataset should assign lowest values to the noisy samples. With the removal
of samples with noisy labels (‘Least’ setting), the performance should either increase, or at least
decrease much slower, compared to removal of samples with correct labels (‘Most’ setting). In this
experiment, we introduce label noise to 20% of the samples by replacing true labels with random
labels. As can be seen in Fig. 10, for all data valuation methods the prediction performance tends
to first slowly increase and then decrease in the ‘Least’ setting; and tends to rapidly decrease in the
‘Most’ setting. Yet, DVRL achieves the slowest performance decrease in ‘Least’ setting and fastest
performance decrease in the ‘Most’ setting, reflecting its superiority in data valuation.

Figure 3: Prediction performance after removing the most (marked with ×) and least (marked with
©) important samples according to the estimated data values with 20% noisy label ratio. Additional
results on Blog, HAM 10000, and CIFAR-10 datasets can be found in Appendix C.3. The prediction
performance is lower than state of the art due to a smaller training set size and the introduced noise.

4.2 CORRUPTED SAMPLE DISCOVERY

There are some scenarios where training samples may contain corrupted samples, e.g. due to cheap
label collection methods. An automated corrupted sample discovery method would be highly ben-
eficial for distinguishing samples with clean vs. noisy labels. Data valuation can be used in this
setting by having a small clean validation set to assign low data values to the potential samples with
noisy labels. With an optimal data value estimator, all noisy labels would get the lowest data values.

We consider the same experimental setting with the previous subsection with 20% noisy label ratio
on 6 datasets. Fig. 4 shows that DVRL consistently outperforms all benchmarks (Data Shapley, LOO
and Influence Function). The trend of noisy label discovery for DVRL can be very close to optimal
(as if we perfectly knew which samples have noisy labels), particularly for the Adult, CIFAR-10 and
Flower datasets. To highlight the stability of DVRL, we provide the confidence intervals of DVRL
performance on the corrupted sample discovery in Appendix E.

4.3 ROBUST LEARNING WITH NOISY LABELS

In this section, we consider how reliably DVRL can learn with noisy data in an end-to-end way,
without removing the low-value samples as in the previous section. Ideally, noisy samples should
get low data values as DVRL converges and a high performance model can be returned. To compare
DVRL with two recently-proposed benchmarks: MentorNet (Jiang et al., 2018) and Learning to
Reweight (Ren et al., 2018) for this use case, we focus on two complex deep neural networks as
the baseline predictor models, ResNet-32 (He et al., 2016) and WideResNet-28-10 (Zagoruyko &
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Figure 4: Discovering corrupted samples in three datasets with 20% noisy label ratio. ‘Optimal’
saturates at 20%, perfectly assigning the lowest data value scores to the samples with noisy labels.
‘Random’ does not introduce any knowledge on distinguishing clean vs. noisy labels, and thus the
fraction of discovered corrupt samples is proportional to the amount of inspection. More results on
Adult, Fashion-MNIST and Flower datasets are in Appendix C.4.

Komodakis, 2016), trained on CIFAR-10 and CIFAR-100 datasets. Additional results on other image
datasets are in Appendix C.1, and results on robust learning with noisy features are in Appendix C.2.

We consider the same experimental setting from Ren et al. (2018) on CIFAR-10 and CIFAR-100
datasets. For the first experiment, we use WideResNet-28-10 as the baseline predictor model and
apply 40% of label noise uniformly across all classes. We use 1,000 clean (noise-free) samples as
the validation set and test the performance on the clean testing set. For the second experiment, we
use ResNet-32 as the baseline predictor model and apply 40% background noise (same-class noise
to the 40% of the samples). In this case, we only use 10 clean samples per class as the validation set.
We consider five additional benchmarks: (1) Validation Set Only – which only uses clean validation
set for training, (2) Baseline – which only uses noisy training set for training, (3) Baseline + Fine-
tuning – which is initialized with the trained baseline model on the noisy training set and fine-tuned
on the clean validation set, (4) Clean Only (60% data) – which is trained on the clean training set
after removing the training samples with flipped labels, (5) Zero Noise – which uses the original
noise-free training set for training (100% clean training data). We exclude Data Shapley and LOO
in this experiment due to their prohibitively-high computational complexities.

Noise (predictor model) Uniform (WideResNet-28-10) Background (ResNet-32)

Datasets CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Validation Set Only 46.64 ± 3.90 9.94 ± 0.82 15.90 ± 3.32 8.06 ± 0.76
Baseline 67.97 ± 0.62 50.66 ± 0.24 59.54 ± 2.16 37.82 ± 0.69

Baseline + Fine-tuning 78.66 ± 0.44 54.52 ± 0.40 82.82 ± 0.93 54.23 ± 1.75
MentorNet + Fine-tuning 78.00 59.00 - -

Learning to Reweight 86.92 ± 0.19 61.34 ± 2.06 86.73 ± 0.48 59.30 ± 0.60

DVRL 89.02 ± 0.27 66.56 ± 1.27 88.07 ± 0.35 60.77 ± 0.57
Clean Only (60% Data) 94.08 ± 0.23 74.55 ± 0.53 90.66 ± 0.27 63.50 ± 0.33

Zero Noise 95.78 ± 0.21 78.32 ± 0.45 92.68 ± 0.22 68.12 ± 0.21

Table 1: Robust learning with noisy labels. Test accuracy for ResNet-32 and WideResNet-28-10 on
CIFAR-10 and CIFAR-100 datasets with 40% of Uniform and Background noise on labels.

As shown in Table 1, DVRL outperforms other robust learning methods in all cases. The perfor-
mance improvements with DVRL are larger with Uniform noise. Learning to Reweight loses 7.16%
and 13.21% accuracy compared to the optimal case (Zero Noise); on the other hand, DVRL only
loses 5.06% and 7.99% accuracy for CIFAR-10 and CIFAR-100 respectively with Uniform noise.
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4.4 DOMAIN ADAPTATION

In this section, we consider the scenario where the training dataset comes from a substantially dif-
ferent distribution from the validation and testing sets. Naive training methods (i.e. equal treatment
of all training samples) often fail in this scenario (Ganin et al., 2016; Glorot et al., 2011). Data
valuation is expected to be beneficial for this task by selecting the samples from the training dataset
that best match the distribution of the validation dataset.

Source Target Task Baseline Data Shapley DVRL
Google HAM10000 Skin Lesion Classification .296 .378 .448
MNIST USPS Digit Recognition .308 .391 .472
Email SMS Spam Detection .684 .864 .903

Table 2: Domain adaptation setting showing target accuracy. Baseline represents the predictor model
which is naively trained on the training set with equal treatment of all training samples.

We initially focus on the three cases from Ghorbani & Zou (2019), shown in Table 2. (1) uses Google
image search results (cheaply collected dataset) to predict skin lesion classification on HAM 10000
data (clean), (2) uses MNIST data to recognize digit on USPS dataset, (3) uses Email spam data
to detect spam in an SMS dataset. The experimental settings are exactly the same with Ghorbani
& Zou (2019). Table 2 shows that DVRL significantly outperforms Baseline and Data Shapley in
all three tasks. One primary reason is that DVRL jointly optimizes the data value estimator and
corresponding predictor model; on the other hand, Data Shapley needs a two step processes to
construct the predictor model in domain adaptation setting.

Next, we focus on a real-world tabular data learning problem where the domain differences are sig-
nificant. We consider the sales forecasting problem with the Rossmann Store Sales dataset, which
consists of sales data from four different store types. Simple statistical investigation shows a signif-
icant discrepancy between the input feature distributions across different store types, meaning there
is a large domain mismatch across store types (see Appendix F). To further illustrate distribution
difference across the store types, we show the t-SNE analysis on the final layer of a discriminative
neural network trained on the entire dataset in Appendix Fig. 11. We consider three different set-
tings: (1) training on all store types (Train on All), (2) training on store types excluding the store
type of interest (Train on Rest), and (3) training only on the store type of interest (Train on Specific).
In all cases, we evaluate the performance on each store type separately. For example, to evaluate the
performance on store type D, Train on All setting uses all four store type datasets for training, Train
on Rest setting uses store types A, B and C for training, and Train on Specific setting only uses the
store type D for training. Train on Rest is expected to yield the largest domain mismatch between
training and testing sets, and Train on Specific yield the minimal.

Predictor Model Store Train on All Train on Rest Train on Specific

(Metric: RMSPE) Type Baseline DVRL Baseline DVRL Baseline DVRL

XGBoost

A 0.1736 0.1594 0.2369 0.2109 0.1454 0.1430
B 0.1996 0.1422 0.7716 0.3607 0.0880 0.0824
C 0.1839 0.1502 0.2083 0.1551 0.1186 0.1170
D 0.1504 0.1441 0.1922 0.1535 0.1349 0.1221

Neural Networks

A 0.1531 0.1428 0.3124 0.2014 0.1181 0.1066
B 0.1529 0.0979 0.8072 0.5461 0.0683 0.0682
C 0.1620 0.1437 0.2153 0.1804 0.0682 0.0677
D 0.1459 0.1295 0.2625 0.1624 0.0759 0.0708

Table 3: Performance of Baseline and DVRL in 3 different settings with 2 different predictor models
on the Rossmann Store Sales dataset. Metric is Root Mean Squared Percentage Error (RMSPE,
lower the better). We use 79% of the data as training, 1% as validation, and 20% as testing. DVRL
outperforms Baseline in all settings.
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We evaluate the performance of Baseline (train the predictor model without data valuation) and
DVRL in 3 different settings with 2 different predictor models (XGBoost (Chen & Guestrin, 2016)
and Neural Networks (3-layer perceptrons)). As shown in Table 3, DVRL improves the performance
in all settings. The improvements are most significant in Train on Rest setting due to the large
domain mismatch. For instance, DVRL reduces the error more than 50% for store type B predictions
with XGBoost in comparison to Baseline. In Train on All setting, the performance improvement is
still significant, showing that DVRL can distinguish the samples from the target distribution. In
Appendix G, we demonstrate that DVRL actually prioritizes selection of the samples from the target
store type. In Train on Specific setting, the performance improvements are smaller – even without
domain mismatch, DVRL can marginally improve the performance by accurately prioritizing the
important samples within the same store type. These results further support the conclusions from
Fig. 2 in the conventional supervised learning setting that DVRL learns high quality data value
scores. Comparison to other domain adaptation benchmarks can be found in Appendix C.5.

4.5 DISCUSSION: HOW MANY VALIDATION SAMPLES ARE NEEDED?

DVRL requires a validation dataset from the target distribution that the testing dataset comes from.
Depending on the task, the requirements for the validation dataset may involve being noise-free in
labels, being from the same domain, or being high quality. Acquiring such a dataset can be costly in
some scenarios and it is desirable to minimize its size requirements.

We analyze the impact of the size of the validation dataset on DVRL with 3 different datasets: Adult,
Blog, and Fashion MNIST for the use case of corrupted sample discovery. Similar to Section 4.2,
we add 20% noise to the training samples and try to find the corrupted samples with DVRL. As
shown in Fig. 5, DVRL achieves reasonable performance with 100 to 400 validation samples. In
the Adult dataset, even 10 validation samples are sufficient to achieve a reasonable data valuation
quality. Both of these settings are often realistic in real world scenarios.

Figure 5: Number of validation samples needed for DVRL. Discovering corrupted samples in three
datasets (Adult, Blog and Fashion MNIST) with various number of validation samples. X-axis
represents the fraction of inspected data and y-axis is the fraction of discovered corrupted samples.
On Adult and Fashion-MNIST datasets, DVRL needs 13% and 14% of inspected samples to identify
50% of the corrupted samples respectively - merely 3% and 4% more than the optimal cases.

5 CONCLUSIONS

In this paper, we propose a meta learning framework, named DVRL, that adaptively learns data
values jointly with a target task predictor model. The value of each datum determines how likely
it will be used in training of the predictor model. We model this data value estimation task using a
deep neural network, which is trained using reinforcement learning with a reward obtained from a
small validation set that represents the target task performance. With a small validation set, DVRL
can provide computationally highly efficient and high quality ranking of data values for the training
dataset that is useful for domain adaptation, corrupted sample discovery and robust learning. We
show that DVRL significantly outperforms other techniques for data valuation in various applica-
tions on diverse types of datasets.
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A BLOCK DIAGRAMS FOR INFERENCE

Data Value 
Estimator(𝒙ଵ, 𝑦ଵ)

(𝒙ଶ, 𝑦ଶ)

(𝒙ே, 𝑦ே)

𝑤ଵ

𝑤ଶ

𝑤ே

Predictor

Value of the 
set of samples

(a) Data Valuation

A set of samples
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(b) Prediction

Corresponding 
Prediction

Figure 6: Block diagram of the proposed DVRL framework at inference time. (a) Data valuation,
(b) Prediction. For data valuation, the input is a set of samples and the outputs are the corresponding
data values. For prediction, the input is a sample and the output is the corresponding prediction.
Both the data value estimator and predictor are fixed (not trained) at inference time.

B COMPUTATIONAL COMPLEXITY

DVRL first trains the baseline model using the entire dataset (without re-weighting). Afterwards, we
can use this pre-trained baseline model to initialize the predictor network and apply fine-tuning with
DVRL update steps. The convergence of the fine-tuning process is much faster than the convergence
of training from the scratch.

We quantify the computational overhead of DVRL on the CIFAR-100 dataset (consisting 50k train-
ing samples) with ResNet-32 as a representative example. Overall, DVRL training takes less than 8
hours (given a pre-trained ResNet-32 model on the entire dataset) on a single NVIDIA Tesla V100
GPU without any hardware optimizations. The pre-training time of ResNet-32 on the entire dataset
(without re-weighting) is less than 4 hours; thus the total training time of DVRL is less than 12
hours from the scratch. On the other hand, the training time of Data Shapley (the most competi-
tive benchmark) is more than a week on Fashion MNIST (consisting lower dimensional inputs and
less number of classes) with a much simpler predictor model architecture (2-layered convolutional
neural networks).

At inference, the data value estimator can be used to obtain data value for each sample. The runtime
of data valuation is typically much faster (less than 1 ms per sample) than the predictor model (e.g.
ResNet-32 model).
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C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS ON ROBUST LEARNING WITH NOISY LABELS

We evaluate how DVRL can provide robustness for learning with noisy labels. We add various levels
of label noise, ranging from 0% to 50%, to the training sets and evaluate how robust the proposed
model (DVRL) is for the noisy dataset. In this experiment, we use three image datasets (CIFAR-10,
Flower, and HAM 10000). Note that we initialize the predictor model using pre-trained Inception-v3
networks on ImageNet and only fine-tune the top layer (transfer learning setting).

Noise CIFAR-10 Flower HAM 10000

ratio Clean DVRL Baseline Clean DVRL Baseline Clean DVRL Baseline

0% .8297 .8305 .8297 .9090 .9292 .9090 .7129 .7148 .7129
10% .8281 .8306 .7713 .9057 .9158 .7441 .7094 .7142 .6746
20% .8285 .8271 .6883 .9026 .9152 .5960 .7098 .7126 .6199
30% .8283 .8262 .5897 .8889 .8901 .4546 .7063 .7005 .5508
40% .8259 .8255 .4887 .8620 .8787 .2929 .7028 .6968 .4819
50% .8236 .8225 .3832 .8542 .8678 .2962 .7009 .6814 .4132

Table 4: Robust learning results with various noise levels on CIFAR-10, Flower, and HAM 10000
datasets. Clean is the performance of the predictor model when it is only trained with the sam-
ples with clean labels (e.g. at 20% noise level, it uses only 80% clean samples). Baseline is the
performance of the predictor model when it is trained with both noisy and clean labels.

Noisy labels significantly degrade the prediction performance when they are included in the training
dataset (see the increasing differences between Baseline and Clean in Table 4). DVRL demonstrates
high robustness up to high noisy label ratio (50%). In some cases (even without noisy labels (i.e.
0% noise ratio)), the prediction performance even outperforms the Clean case, as DVRL prioritizes
some clean samples more than others. Overall, DVRL framework is promising in maintaining high
prediction performance even with a significant increase in the amount of noisy labels.

C.2 ADDITIONAL RESULTS ON ROBUST LEARNING WITH NOISY FEATURES

In this section, we consider training with noisy input features, with a clean validation set. We
independently add Gaussian noise with zero mean and a certain standard deviation of σ to each
feature in the training set independently. We use two tabular datasets (Adult and Blog) to evaluate
the robustness of DVRL on input noise. As can be seen in Table 5, DVRL is robust with noise on
the features and the performance gains are higher with larger noise in comparison to Baseline (i.e.
treat all the noisy training samples equally), since DVRL can discover the training samples with less
corrupted by the additive noise among the entire noisy training samples and provide higher weights
on those less noisy samples.

σ
Blog Adult

Baseline DVRL Baseline DVRL

0.1 0.733 0.819 0.802 0.820
0.2 0.647 0.798 0.753 0.788
0.3 0.626 0.766 0.699 0.771
0.4 0.623 0.717 0.652 0.725

Table 5: Testing accuracy when trained with noisy features. σ is the standard deviation of the added
Gaussian noise, quantifying the level of perturbation on the features.
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C.3 ADDITIONAL RESULTS ON REMOVING HIGH/LOW VALUE SAMPLES WITH 20% LABEL
NOISE

Figure 7: Prediction performance after removing the most and least important samples, according
to the estimated data values. We assume a label noise with 20% ratio on (a) Blog, (b) HAM 10000,
(c) CIFAR-10 datasets.

C.4 ADDITIONAL RESULTS ON CORRUPTED SAMPLE DISCOVERY WITH 20% LABEL NOISE

Figure 8: Discovering corrupted samples in three datasets ((a) Adult, (b) Fashion-MNIST, (c) Flower
datasets) in the presence of 20% noisy labels. ‘Optimal’ saturates at the 20 % of the fraction,
perfectly assigning the lowest data value scores to the samples with noisy labels. ‘Random’ does not
introduce any knowledge on distinguishing clean vs. noisy labels, and thus the fraction of discovered
corrupt samples is proportional to the amount of inspection.
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C.5 COMPARISON TO OTHER DOMAIN ADAPTATION BENCHMARKS

In this subsection, we compare DVRL to two established domain adaptation benchmarks: Adversar-
ial Discriminative Domain Adaptation (ADDA) (Tzeng et al., 2017) and Domain Adversarial Neural
Networks (DANN) (Ganin et al., 2016). We use the same experimental settings given in Table 3 us-
ing Rossmann Store Sales dataset with neural networks as the predictor model. Table 6 represents
the domain adaptation results on ‘Train on all’ and ‘Train on Rest’ settings. As can be seen, DVRL
yields superior (or similar in a few cases) compared to the two methods, ADDA and DANN, that are
specifically designed for domain adaptation.

Settings Train on All Train on Rest

Methods Baseline DVRL ADDA DANN Baseline DVRL ADDA DANN

A 0.1531 0.1428 0.1465 0.1491 0.3124 0.2014 0.2119 0.2305
B 0.1529 0.0979 0.1193 0.1201 0.8071 0.5461 0.5444 0.5898
C 0.1620 0.1437 0.1503 0.1589 0.2153 0.1804 0.1871 0.1963
D 0.1459 0.1295 0.1351 0.1388 0.2625 0.1624 0.1910 0.2061

Table 6: Performance of Baseline, DVRL, ADDA, and DANN in train-on-all and train-on-rest set-
tings with neural networks as the predictor model on the Rossmann Store Sales dataset. Metric
is Root Mean Squared Percentage Error (RMSPE, lower the better). We use 79% of the data as
training, 1% as validation, and 20% as testing.

C.6 ABLATION STUDIES

In this subsection, we analyze the source of gains for three distinct components of DVRL: (1) dis-
crete representations of data value estimator, (2) baseline for stabilizing the RL training, (3) output
of the model trained on the clean validation set as the additional input (validation model). We report
the corrupted sample discovery results where the experimental settings are same with Section 4.2.

Models / Datasets Blog HAM-10000 CIFAR-10

DVRL 47.3% 60.2% 68.1%
DVRL without sampler 44.9% 58.3% 63.7%
DVRL without baseline 45.8% 56.6% 62.9%

DVRL without validation model 43.7% 57.1% 64.4%
Validation model only 43.1% 55.9% 62.3%

Table 7: Discovering corrupted samples in three datasets with 20% noisy label ratio. We report the
fraction of discovered corrupted samples after inspecting 20% of the samples with multiple variants
of DVRL (the higher the better).

As can be seen in Table 7, each component provides an additional gain in DVRL:

(1) A straightforward idea is to use the raw outputs of DVE to scale the contributions of each sample
in the loss term, without using the sampler. Yet, we show the benefit of the discrete representation
of DVE for data selection. The sampler encourages exploration of an extremely large action space
in a systematic way. This helps DVE and predictor model to converge to a better optimal solution.

(2) Baseline stabilizes the convergence of reinforcement learning; thus, yields higher gains on com-
plex datasets.

(3) The output of the validation model itself has informative signal as it achieves high performance
(since it is trained with small-scale but high quality data). We observe that this signal helps DVRL,
but even without this signal achieves high performance. We also observe that often a larger DVE
model (with more iterations) is needed to estimate the data value in the absence of the informative
signal from the validation model.

Note that we propose to use the output of the validation model as an additional input to the data
valuation framework; thus, this can also be regarded as another contribution of our work. Also, the
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output of the validation model is highly informative in the noisy sample discovery use case but not
that significant in other applications such as domain adaptation or performance improvement by low
value data removal in standard supervised learning setting.

D LEARNING CURVES OF DVRL

Fig. 9 shows the learning curves of DVRL on the noisy data (with 20% label noise) setting in
comparison to the validation log loss without DVRL (directly trained on the noisy data without re-
weighting) on 2 tabular datasets (Adult and Blog) and 4 image datasets (Fashion-MNIST, Flower,
HAM 10000, and CIFAR-10).

Figure 9: Learning curves of DVRL for 6 datasets with 20% noisy labels. x-axis: the number
of iterations for data value estimator training, y-axis: validation performance (log loss). (Orange:
validation log loss without DVRL, Blue: validation log loss with DVRL)

E CONFIDENCE INTERVALS OF DVRL PERFORMANCE ON CORRUPTED
SAMPLE DISCOVERY EXPERIMENTS

Figure 10: Corrupted sample discovery performance with 95% confidence intervals (computed by
10 independent runs) according to the estimated data values by DVRL. We assume a label noise with
20% ratio on (a) Adult and Blog, (b) Fashion-MNIST and Flower (c) HAM 10000 and CIFAR-10
datasets.
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F ROSSMANN DATA STATISTICS & T-SNE ANALYSIS

Store Type A B C D
# of Samples 457042 (54.1%) 15560 (1.8%) 112968 (13.4%) 258768 (30.6%)

Sales 1390-1660-1854 2052-2459-2661 1753-1974-2178 2109-2355-2524

Customers 169-203-221 436-492-543 192-232-259 224-246-259

Table 8: Rossmann data statistics. Report 25-50-75 percentiles for sales and customers. # represents
the number.

Figure 11: t-SNE analyses on the final layer representations of each store type in Rossmann dataset.

G FURTHER ANALYSIS ON ROSSMANN DATASET IN Train on All SETTING

Figure 12: Histograms of the training samples from the target store type in Train on All setting based
on the sorted data values estimated by DVRL. (x-axis: the sorted data values (in percentiles), y-axis:
counts of training samples from the target store type (in ratio).

To further understand the results in Train on All setting, we sorted (in a decreasing order) the training
samples by their data values estimated by DVRL and illustrate the distributions of the training sam-
ples that come from the target store type. As can be seen in Fig. 12, DVRL prioritizes the training
samples which come from the same target store type.
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