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ABSTRACT

Understanding and improving Generative Adversarial Networks (GAN) using
notions from Optimal Transport (OT) theory has been a successful area of study,
originally established by the introduction of the Wasserstein GAN (WGAN). An
increasing number of GANs incorporate OT for improving their discriminators, but
that is so far the sole way for the two domains to cross-fertilize. In this work we
address the converse question: is it possible to recover an optimal map in a GAN
fashion? To achieve this, we build a new model relying on the second Wasserstein
distance. This choice enables the use of many results from OT community. In
particular, we may completely describe the dynamics of the generator during
training. In addition, experiments show that practical uses of our model abide
by the rule of evolution we describe. As an application, our generator may be
considered as a new way of computing an optimal transport map. It is competitive
in low-dimension with standard and deterministic ways to approach the same
problem. In high dimension, the fact it is a GAN-style method makes it more
powerful than other methods.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are powerful probabilistic
generative models which have attained state-of-the-art results, especially in high-dimensional image
data. Recently, Optimal Transport (OT) theory has contributed to the success of GANs, mainly in
defining more robust training objectives (Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al.,
2018; Sanjabi et al., 2018). In this work, we explore a contribution in the other direction: we show
that an adversarially trained generative model can recover an optimal map, i.e. a map between two
distributions with a minimal cost of “transport”.

Estimation of optimal maps constitutes a central problem in the OT community, especially for high-
dimensional continuous distributions (Peyré & Cuturi, 2018). The well-known success of GANs in
generative modelling of high-dimensional data suggests that such a generator might provide a good
approximation of the optimal transport map in high-dimensional applications. There has also been
considerable recent interest in using GANs to learn unsupervised mappings across domains (Zhu
et al., 2017; Almahairi et al., 2018; Galanti et al., 2018). However, to date, these methods generally
rely on architectural features and heuristics to ensure meaningful mappings. OT theory provides a
means of formalizing learned mapping between distributions, hence placing this line of inquiry on
stronger theoretical foundations (Courty et al., 2017a).

A fundamental problem with existing GAN frameworks is that we cannot theoretically characterize
the training dynamics of the generator, nor the final mapping that it learns. As the generator’s
training signal derives from the discriminator, any formal description of the generator’s training
dynamics must rely on a theoretical characterization of the discriminator throughout training. In the
case of Wasserstein GANs (Arjovsky et al., 2017) and its extensions, there is no uniqueness of the
optimal discriminator at each update step, and hence the generator may follow one of infinitely many
paths of evolution throughout training (Arjovsky & Bottou, 2017). For traditional GANs relying on
f -divergences, discriminators are updated only a few times at each iteration of the training procedure,
and could be far from the optimal discriminator. In such cases, characterizing the generator’s evolution
in terms of the ideal discriminator is irrelevant. On the other hand, the uniqueness of optima and the
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simplicity of geodesics in the case of the second Wasserstein metric (Villani, 2008) makes it a good
candidate as a discriminator objective.

We introduce the W2GAN that minimizes the second Wasserstein distance. Within the W2GAN
framework, we can characterize the evolution of the generated distribution. More specifically, we
show that it follows the Wasserstein-2 geodesic between the generator’s initial distribution and the
target distribution. Crucially, the generator of W2GAN is not learning an arbitrary mapping onto
the target distribution. We show that, at convergence, it is reproducing the optimal transport map
between the generator’s initial distribution and the target distribution.

Our contributions are the following:

• We introduce W2GAN, in which the generator recovers an optimal map in high-dimensional
spaces.

• We show that the training dynamics of our generator is characterized as following a unique
geodesic between the initial distribution and the target distribution. Our analysis is based
on interpreting the signal given by the discriminator at each update of the generator as
a local update toward an optimal transport map. While this can be applicable to other
Wasserstein GAN models, with the W2GAN, this insight extends to a global description of
the generator’s trajectory.

• We verify our proposed model on synthetic low-dimensional data, and show that it perform
competitively on high-dimensional image data.

2 RELATED WORK

The intersection of GANs (Goodfellow et al., 2014) and OT theory was mainly initiated by the
introduction of WGAN (Arjovsky et al., 2017), which proposed using the first Wasserstein distance
as an alternative to the f -divergence (Nowozin et al., 2016). The objective of the discriminator
in WGAN and its extensions (Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018)
corresponds to a particular instance of the Kantorovitch problem, which is the main problem at stake
in OT theory. The Kantorovitch problem consists of finding an optimal plan for “transporting” one
distribution onto another according to a predefined point-wise cost function. Borrowing these notions
from OT theory has proved to be useful for improving both the understanding and performance of
GANs. Salimans et al. (2018) proposed replacing the discriminator with the Sinkhorn algorithm,
which can compute any Wasserstein metric. Alternatively, Sanjabi et al. (2018) used the optimal
transport map as a new way to train a GAN discriminator.

The optimal map has other important applications such as computing barycenters of distributions (Ra-
bin et al., 2011; Bonneel et al., 2015). Wasserstein barycenters may be used as a meaningful way to
interpolate between probability measures (Cuturi & Doucet, 2014). Nonetheless, computing the opti-
mal map remains challenging in some situations. Recently, regularized versions of the Kantorovitch
problem were proposed to provide improved algorithms for computing the optimal map between
(semi-)discrete distributions (Cuturi, 2013; Genevay et al., 2016). Seguy et al. (2018) developed a
parametric approach to obtain a two-step procedure for computing an optimal map in the case of
continuous distributions. In all of these methods, dealing with high dimensional data is challenging.
One naturally suspects that a GAN-based approach of this problem would be efficient, knowing the
success of such models in high dimensions.

For learning an optimal map using GANs, Wasserstein metrics are of main interest, especially given
the relationship between the discriminator and the optimal map (Lei et al., 2017). In this context,
however, the first Wasserstein distance is not convenient as the gradient flow of this metric is hard to
solve (Ambrosio et al., 2008), and the relationship between the discriminator and the optimal map is
neither unique, nor easily computed. What misses is a unique and tangible characterization of the
training dynamics of the generator.

Characterizing generator’s dynamics is a complex problem. We need to understand the evolution
of a probability measure through a signal given by a real function over distributions – the discrim-
inator. OT theory deals extensively with the characterization of paths in the space of probability
measures. Specifically, it allows one to relate probability measures and their evolution through
gradient flows (Villani, 2008; Ambrosio et al., 2008). Bottou et al. (2018); Arjovsky & Bottou (2017)
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explored how to relate the generator’s evolution with paths in the space of probability measures
described by the discriminator. In the particular context of Wasserstein-based GANs, it is possible to
link the generator’s evolution with the Wasserstein-1 geodesics, which unfortunately happen to be in
a great number. On the other hand, in the case of the second Wasserstein distance, the geodesics are
unique and related to the optimal map in a simple way (Ambrosio et al., 2008).

3 BACKGROUND

We state in this section some basic notions from OT theory (Villani, 2008; Santambrogio, 2010;
Ambrosio & Gigli, 2013) which will be necessary for the rest of the paper. We provide a more
comprehensive presentation in Appendix 8.4.

Optimal Transport problem and Wasserstein distances Computing Wasserstein distance and
optimal transport map are two intrinsically related problems. Given two probability measures µ and
ν on the euclidean space Rd, an optimal map or a Monge map T is a function minimizing the Monge
problem:

inf
T∈AT

∫
Rd
c(x, T (x))dµ(x) (1)

where AT is the set of all maps from Rd to Rd that respect the marginal ν, or more formally written
as T#µ = ν 1. This objective involves a fixed point-wise cost function c : Rd ×Rd → R. When the
cost c is a power p of the euclidean distance, the value of (1) is called the p-th Wasserstein distance,
and denoted Wp(µ, ν) 2. We will assume this form for the cost function in the rest of the paper. In
this case, it can be shown that we recover the value of Wp(µ, ν) with a relaxed formulation of (1),
which is called the dual Kantorovich problem:

sup
φ,ψ∈A∗(µ,ν)

∫
x∈X

φ(x)dµ(x) +

∫
y∈Y

ψ(y)dν(y)

A∗(µ, ν) :={(φ, ψ) : Rd → R/ ∀x, y ∈ X × Y, φ(x) + ψ(y) 6 c(x, y)}
(2)

We will also denote as V ∗(φ, ψ) the value
∫
x∈X φ(x)dµ(x) +

∫
y∈Y ψ(y)dν(y). A pair (φ, ψ)

maximizing 2 are called Kantorovitch potentials. We will refer to the constraint in the definition of
A∗(µ, ν) as the c-inequality constraint or simply the inequality constraint.

In WGAN and its extensions, the discriminator corresponds to these Kantorovitch potentials comput-
ing W1. More generally, it is possible to consider φ, ψ as discriminators computing any Wasserstein
distance Wp (Salimans et al., 2018; Sanjabi et al., 2018). On the other hand, the generator’s update
rule is driven by the gradient of the discriminator, i.e. the Kantorovitch potentials. In the particular
case of of W2, we can derive a simple relationship between these potentials’ gradients and the Monge
map T solving (1).

Relating Potentials to the Monge map An important property, which holds for W2, is that we
can relate the dual Kantorovitch solution φ and the Monge map T (Brenier, 1991). T is unique and
determined by:

T = Id−∇φ (3)

where Id is the identity. A detailed and more generalized statement of this relationship is given
by Proposition (2) in the Appendix. In fact, there is also a converse statement: given a function
T : Rd 7→ Rd and a probability measure µ, T is a Monge map between µ and T#µ if T is the
gradient of a strictly convex function. That is, If T can be written as x − ∇φ(x) for some real
function φ one can rephrase this condition as ‖x‖

2
2

2 − φ(x) being strictly convex. Such a φ is said to
be c-concave.

This relationship suggests that when the discriminator is optimizing the W2 metric, the generator
would be driven by the optimal map T .

1The map T#µ is called the push-forward measure of µ and is defined as T#µ(A) = µ(T−1(A)) for any
Borel set A ∈ Rd.

2Rigorously, optimizing (1) leads to W p
p (µ, ν)
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4 W2GAN: THE MODEL

In this section, we introduce the W2GAN model in which the discriminator computes the second
Wasserstein distance W2. Let us denote our discriminator (φ, ψ), a target distribution Px and our
generator G(z) where z ∼ Pz . Here z is not necessarily meant as the usual low-dimensional latent
variable in GAN. In all generality, z could have the same dimension as x (e.g. as in unsupervised
domain translation applications). In such a case, the next section will show that if G is initialized as
the identity function, the training of our generator will compute a Monge map between Pz and Px.

For optimization purposes, it is preferable to deal with a regularized version of (2). We choose to use
the L2 regularization, but one could use other penalties (Cuturi, 2013; Seguy et al., 2018; Blondel
et al., 2017) 3. Hence our discriminator’s objective for approaching W 2

2 (G#Pz, Px) is:

sup
φ,ψ
LD(φ, ψ,G) := sup

φ,ψ
E(z,x)∼Pz×Px

[
φ(G(z)) + ψ(x)− λineq(φ(G(z)) + ψ(x)− ‖G(z)− x‖22

2
)2+

]
(4)

where (.)+ := max(0, .) and λineq is a scalar controlling the strength of the penalty. We will refer to
the penalty term by Lineq(φ, ψ) in the rest of the paper. Our generator’s objective will then be

inf
G
Ez∼Pz (φ(G(z)) (5)

The training procedure of W2GAN is detailed in Algorithm 1. In the next section we will prove
that W2GAN’s generator can recover the Monge map between the initial generated distribution and
the target distribution. The experiment section will provide empirical evidence confirming this and
comparing it with other methods.

5 THE GENERATOR RECOVERING A MONGE MAP

The proof that our generator recovers a Monge map consists of characterizing the dynamic of the
W2GAN’s generator during training. We observe that it follows a pre-determined trajectory: the
unique W2 geodesic between the initial distribution and the target distribution. This result is stronger
than only recovering the Monge map at the end of training, which will be a corollary to the analysis
of the W2-geodesics detailed in the background section. Hence, this extra piece of information is
another interesting theoretical fact: one can uniquely characterize the dynamic of evolution of our
generator during training. The analysis of this evolution is divided in two part. First we examine the
direction of the update in the space of probability measure locally, for one generator update. Second,
we concatenate these local updates to obtain a global description of the trajectory. The first technical
tool we need is the characterization of geodesics in the W2 case.

Geodesics in the space of probability measures Recall that W2 is a metric over distributions and
thus makes the space over probability measures a metric space (Villani, 2008). Studying properties of
this space starts with the analysis of its geodesics. That is, for any given distributions µ and ν, we
look for paths described by µt such that µ0 = µ, µ1 = ν and

∀0 6 s 6 t 6 1,W2(µs, µt) = (t− s)W2(µ, ν)

It happens that such geodesics are unique (Villani, 2008). Given the unique Monge map T between
µ and ν, the only constant speed geodesic is given by µt := Tt#µ where Tt = (1 − t)Id + tT .
By (3), we can write T (x) = x − ∇φ(x) for any Kantorovitch potential φ solving (2). Hence
Tt(x) = x− t∇φ(x). In particular, this guarantees that tφ(x) is a Kantorovitch potential solving (2)
for µ and µt = Tt#µ.

We now move to the analysis of our generator’s training dynamics. We first discuss the general update
rule for any GAN model.

3The same regularized approach is taken for the gradient penalty or lipschitzness of the discriminator
in Gulrajani et al. (2017) and Petzka et al. (2018). This lipschitzness constraint is in fact a particular case of the
general c-inequality constraint in the case of W1 (Villani, 2008). Hence WGAN-GP and its extensions rely on
the exact same procedure: softening the hard constraint by adding a penalty in the discriminator’s objective
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Local evolution of the generator of any GAN Let us consider the general objective of a GAN

min
θ

max
D

Ez∼PzL1(D,Gθ(z)) + Ex∼PxL2(D,x) (6)

We can also use the random variables notations Gθ(z) ∼ Gθ#Pz =: µθ and x ∼ Px. Denoting
θt, θt+1 the current parameter for the generator and the next one and α > 0 the hyper-parameter
update, the above leads to the common update rule used by GAN methods:

θt+1 = θt − α∇θtEz∼PzL1(D,Gθt(z)) = θt − αEz∼Pz∇θtL1(D,Gθt(z)) (7)

where the last equality holds when one can control the norms of the gradients in order to invoke
the Dominated Convergence theorem. We reinterpret this update rule using the functional gradient
analysis as in (Anonymous, 2019; Johnson & Zhang, 2018). One may see that we obtain exactly the
same update rule by differentiating the following objective at θ = θt:

min
θ
Ez∼Pz‖Fα(Gθt(z))−Gθ(z)‖22 (8)

where Fα(x) := x− α
2∇xL1(D,x). Hence it is a completely equivalent formulation of the minimiza-

tion objective for the generator. Eqn. (8) states that given the current generated distribution Gθt(z),
the next parameter θ will be chosen so that Gθ(z) will be close to FαGθt(z). Then if we want to
locally understand how the generated distribution moves, we have to analyze this push-forward by Fα.
Instead of looking at the space of parameters, we directly consider the space of probability measures.
Given the current µθt , we consider the multiple possible push-forwards of µθt , that is all the H#µθt
for different functions H from Rd to itself. One may also see a push-forward as the random variable
H(Gθt(z)). As in (Anonymous, 2019), we associate a loss to any such function:

L(H) := Ez∼Pz (H(Gθt(z))) (9)

In particular, L(Id) is just the current loss of the generator. We can take the derivative of L at
identity to obtain the direction onto which the generated distribution should be updated, but now in
the space of probability measures instead of the space of parameters. This is done by computing
Gateaux differentials. That is, we first consider any direction h and compute the following directional
derivative assuming bounds and regularity which allows us to switch the order of the expectation and
the derivative:

lim
ε→0

L(Id+ εh)− L(Id)

ε
= Ez∼Pz [∇L1(D,Gθt(z))h(Gθt(z))] (10)

Equation (10) is homogeneous in h and thus the gradient of L at identity is the function∇L1(D,x).
This is tantamount to saying that choosing h(x) to be −∇xL1(D,x) will be locally the best choice
for decreasing the loss of the generator. We thus consider the update in the space of distributions
that sends Id(Gθt(z)) = Gθt(z) onto Hα(Gθt(z)) where Hα(x) := x − α

2∇xL1(D,x). This is
analogous to gradient descent in the space of probability measures: we considered the loss of the
current distribution Id(Gθt(z)) and updated it in the most significant direction given by Hα. Now,
we can observe that Hα = Fα. Let us summarize what this means: given the current loss of the
generated distribution µθt , the update rule in the ideal space of probability measures consists of taking
the new distribution Fα#µθt . Then the update rule according to (8) in the space of parameters is only
choosing θt+1 so that the new generated distribution µθt+1

is as close to the ideal update Fα#µθt .

Links with a certain Monge map It is tempting to interpret the previous Fα(x) = x −
α
2∇xL1(D,x) as an optimal transport map (or Monge map) in the Wasserstein-2 sense between the
current distribution µθt and the distribution Fα#µθt . Indeed, the expression of Fα is quite similar to
the Monge map T given in proposition (3). That is, T (x) = x−∇φ(x) where φ is a Kantorovitch
potential maximizing (2). However, there are still two apparent obstacles:

1. In the expression of Fα the scalar α > 0 has no correspondence in the expression of T .
2. How can we ensure that L1(D,x) is indeed a Kantorovitch potential, i.e. is an optimum of

(2) for µ = µθt and ν = Fα#µθt

The second question is answered in the background section: the requirement that L1(D, .) needs
to be c-concave. This does not hold for general GANs where the complexity of the discriminator
function makes it impossible to decide whether ‖x‖

2
2

2 − L1(D,x) is strictly convex. In our case,
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L1(D,x) = φ(x) where φ is a Kantorovitch potential. A Kantorovitch potential automatically
satisfies such a condition, so the problem is solved.

For the first concern, when α = 2, F2 is exactly the Monge map T from µθt to Px. The characteriza-
tion of W2 geodesics in (5) shows that any Fα for 0 6 α 6 2 is actually also a Monge map between
µθt and Fα#µθt . This solves the first obstruction. We also know that Fα#µθt lies in the unique
Wasserstein 2 geodesic between µθt and F2#µθt = Px. We can summarize this by saying that an up-
date of the current generated distribution µθt consists of taking a step of size α > 0 along the optimal
transport map toward the distribution µθt −∇L1(D,Gθt)#µθt = µθt −∇φ#µθt = T#µθt = Px.
In the experiment section, we empirically confirm that the discriminator provides a signal along the
optimal map.

From local to global dynamic of the generator We now want to extend the local description of
the generator’s dynamics by showing that the subsequent generated distributions µθ0 , µθ1 , . . . µθn
all live on the W2 geodesic joining µθ0 to Px. Let us assume this is the case for a fixed n > 0.
As in the previous paragraph, we will assume the parametric update to match the update in the
space of probability measures 4. From the previous paragraph, the update at time n in the space of
probability measures leads to µθn+1 = Fα#µθn . From the notations introduced when we discussed
W2 geodesics in (5), Fα = Tα

2
where T is a Monge map between µθn and Px. By the description

of such geodesics µθn+1
is on the geodesic between µθn and Px. Now we use the uniqueness of

displacement interpolation between geodesics (Villani, 2008) to obtain that this geodesic between
µθn and Px is a restriction of the geodesic between µθ0 to Px. As a result, the latter contains µθn+1

.
We conclude by induction that all the generated distributions progress toward Px on the expected
W2-geodesic. In Figure 4 of the experiments section, we visualize our generator following this
geodesic during training.

In particular, denotingG∞(z) the generator at convergence, we relate it to the optimal map T between
µθ0 and Px:

T#µθ0 = TGθ0#Pz = G∞#Pz ∼ Px (11)

For more information on the speed of convergence of the generated distribution, we conduct a
similar analysis in the Appendix 8.2 relying on the notion of gradient flows (Ambrosio et al., 2008).
Notice that our generator produces more than the Monge map – it provides a discrete version of the
W2-geodesic between the distributions as we observe it during training. This is another problem of
interest, see for instance the work of Seguy & Cuturi (2015).

In practice, our model is more complicated than WGAN and its extensions. First because the
discriminator in W2GAN involves two functions φ and ψ. Second because the c-inequality constraint
has a simpler formulation in the case of W1. 5 It is thus worth asking if we could have conducted the
previous analysis in the Wasserstein-1 case.

The Wasserstein-1 case Our model shares a lot with GANs relying on the first Wasserstein metric,
and one might wonder why we do not use e.g WGAN, WGAN-GP or WGAN-LP as they achieve
state-of-the art performance in generative modelling. For the purpose of learning an optimal map,
this section is meant to explain why we cannot theoretically rely on such models, at least by trying to
adapt our analysis to the W1 case. Experimentally, however, as WGAN and its extensions rely on a
similar objective as W2GAN, the seem to be following an optimal map – at least in some cases. Let
us enumerate what parts of the previous analysis does not apply to the case of W1:

• The local analysis could actually be applied in a similar way. Recall that local direction
given to the generated distribution by the Wasserstein GAN discriminator is −∇f(.) where
f is a (non unique) Kantorovitch potential in the W1 case. It is true then that there exists an
associated Monge map T from the current distribution toward the true distribution. This
relationship is T (x)

‖T (x)‖ = −∇f(x) (Brenier, 1991). Hence, we can get the direction of an OT

4It is important to notice the strong assumption made on parameter’s updates. We indeed assumed that each
step was ideal in the sense the parametric update exactly matched the update in the space of probability measures.
In practice, the limitation induced by parameters might result in deviation from the trajectory described by the
Monge map. We further examine this parametric obstruction in the Appendix (8.3)

5This is because in the Wasserstein-1 case, φ and ψ are related by φ = −ψ by a c-concavity argument, and
that the c-inequality constraint is tantamount to lipschitzness of the potentials.
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map thanks to the knowledge of the dual optimal variable, but not its norm. Thus, locally,
the generator is updated toward the true distribution, and in the direction of the optimal map,
but the magnitude of the update step is impossible to obtain.

• Going from a local to global analysis is much more difficult in the case of W1. Recall that
in the case of W2, the main ingredient of the discussion was the uniqueness of geodesics
and their nice analytic description. In the case of W1, there are eventually infinitely many
geodesics. A great description of this fact is available in (Bottou et al., 2018). Hence, while
locally the discriminator may be one among many Kantorovitch potentials, it is hard to
decide whether globally the generator follows a geodesic. Although this seems to be true
as every local direction is happening on geodesics, it would remain impossible to decide
which geodesic the generator is following. It would be of interest to describe different kind
of W1-geodesics and understand the ones that Wasserstein GANs’ generators are prone to
follow.

• Essentially because of the previous discussion it is also really hard to solve the gradient flow
of the W1 metric as we do in the Appendix 8.2 in the case of W2.

In conclusion, while we might have a locally nice description of GANs relying on W1, we cannot
obtain a global description. Low dimensional experiments still strongly suggest that their generators
might recover a Monge map at the end of training.

6 EXPERIMENTS

6.1 2-DIMENSIONAL SYNTHETIC DATA

We first consider learning optimal maps between synthetic datasets in 2-dimensional space, in which
we can visualize them easily 6. Each dataset is composed of two parts: X and Y , each composed of 2D
data, and we verify that we can learn optimal maps from X to Y . We consider three datasets (samples
are shown in Figure 1-(a)). (i) 4-Gaussians: X and Y are mixtures of 4 Gaussians with equal mixture
weights. The mixture centers of Y is closer together than that of X . (ii) Checkerboard: X and Y
are mixtures of uniform distributions over 2D squares, of size 4 and 5 respectively, with equal mixture
weights. The mixture centers of the two distributions form an alternating ”checkerboard” pattern.
(iii) 2-Spirals: X and Y are uniform distributions over spirals that are rotations of each other. We
also show in Figure 1-(b) optimal maps between data samples obtained by the optimal assignment
algorithm, which we will refer to as Discrete-OT. We use this as a benchmark for evaluating optimal
maps obtained by various methods on these specific data samples.

We apply our proposed W2GAN model on these three datasets, where the generator takes input
samples from X and and maps them to Y . Note that we first initialize the generator as an identity
function 7, in order to verify our theoretical analysis that the generator can recover globally an
optimal map between its initial and target distributions. As baselines, we compare with the following
methods: (i) Barycentric-OT: a two-step algorithm for computing optimal maps between continuous
or discrete distributions introduced by Seguy et al. (2018). The algorithm is based on first computing
a regularized optimal transport plan, then estimating a parametric optimal map as a barycentric
projection. (ii) WGAN-GP (Gulrajani et al., 2017), and (iii) WGAN-LP (Petzka et al., 2018). Both
of these GAN-based models use the W1 metric as the objective of the discriminator, but differ by
the form of gradient penalty on the discriminator. We similarly initialize their generators as identity
functions.

We show in Figure 2 results of each of these models on the three 2D datasets. When compared to the
Discrete-OT map in Figure 1-(b), we can see that our proposed W2GAN can successfully recover
the Monge map in all three datasets. In comparison, Barycentric-OT performs mostly very well,
but we notice a clear collapse in the mapping in the case of 4-Gaussians. WGAN-GP generally
performs poorly, and we observe that training becomes especially unstable as G(X) approaches Y –
sometimes diverging from a good solution. This happens even with more training of the discriminator
and smaller generator learning rates. WGAN-LP, on the other hand, matches the performance of

6More experimental details can be found in Appnedix 8.9.1
7We experiment with two methods for identity initialization: reconstruction and adding a skip connection to

output with very small initial weights.
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(a) Data samples

(b) Discrete-OT on data samples

Figure 1: True data samples with corresponding optimal maps (black arrows) obtained with Discrete-
OT. (a) 1024 data samples of X (magenta) and Y (green) in 4-Gaussians, Checkerboard, 2-Spirals.
(b) Optimal map computed using optimal assignment algorithm between 200 samples from X and Y

W2GAN in all three datasets. The fact this optimal map seems to match the Monge map of the W2

case is interesting according to our analysis in 5, which indeed indicates that locally the generator is
driven on some optimal maps, but cannot predict on which W1 geodesic the generator will globally
evolve. The experiments might suggest that WGAN and its extensions are more prone to choosing
certain W1 geodesics. It clearly outperforms WGAN-GP, which is unstable according to the argument
of Petzka et al. (2018) that the gradient penalty in WGAN-GP can prevent the discriminator from
converging.

We also verify our analysis 5 that the local direction given to the generator is Id − α
2∇φ, which

corresponds to a small step in the global direction Id−∇φ. This direction is also supposed to be an
optimal map T according to 3. We can see in Figure 3 that the approximation of the Monge map by
φ is quite reasonable. This is especially interesting, given that φ, as well as ψ, are both real functions
which are not explicitly trained to recover the Monge map.

Finally, Figure 4 shows the generator’s dynamics in checkerboard dataset. We see that it evolves on
the optimal map.

6.2 HIGH-DIMENSIONAL DATA

Next, we move to the more challenging setting of learning optimal maps in high-dimensions. We
first consider the task of mapping samples of a 28× 28 multivariate Gaussian8 to MNIST, which was
originally proposed by Seguy et al. (2018), and compare with their method. We follow the exact
experimental setting of Seguy et al. (2018). We also use the same architecture for both W2GAN
generator and their Barycentric-OT network for fair comparison 9. Figure 5 shows the generated
samples (output of learned mappings) by our model and the Barycentric-OT model. Qualitatively
speaking, W2GAN seems to generate much better MNIST samples, which confirms that it is a
competitive method for estimating the Monge maps in high dimensions.

In this second set of experiments, we apply our model to the unsupervised domain adaptation task,
which is a standard experimentation setting for evaluating large-scale OT maps (Courty et al., 2017b).
We also try to follow the same experimental settings of Seguy et al. (2018), where the model learns to
map across USPS and MNIST datasets. In unsupervised domain adaptation, we have labels in one
dataset (e.g. USPS) and our goal is to train a classifier for the other dataset (e.g. MNIST) without
having access to any labels in it. An optimal map is assumed to learn a mapping in the image space
that preserves, as much as possible, the digit identity.

Similar to Seguy et al. (2018), we evaluate the accuracy the different models using a 1-nearest
neighbour (1-NN) classifier. As a baseline, we train the classifier using source (USPS/MNIST)

8With mean and covariance matrix estimated with maximum-likelihood on MNIST training data.
9More experimental details can be found in Appendix 8.9.2
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(a) Barycentric-OT (b) WGAN-GP (c) WGAN-LP (d) W2GAN (ours)

Figure 2: Mappings learned in three synthetic datasets by Barycentric-OT (Seguy et al., 2018),
WGAN-GP (Gulrajani et al., 2017), WGAN-LP (Petzka et al., 2018) and our proposed W2GAN. The
generator maps (gray arrows) samples from X (magenta) to samples G(X) (red) such that it matches
distribution of Y (green). W2GAN and WGAN-LP can successfully recover optimal map between
X and Y in all three datasets. The generator is initialized as identity before training, thus the analysis
implies it is learning a map between X and Y .

(a) Approximated Monge
map by T (x) = x−∇φ(x)

(b) φ(x) (c) ψ(x)

Figure 3: In W2GAN, the discriminator approximates the Monge map locally. (a) Gradient direction
provided by φ to the generator. φ takes the magenta distribution as input. The arrows displayed
correspond to the approximation of T using the discriminator (b) Heat-map of values of φ over R2.
(c) Heat-map of values of ψ over R2.

images, and test it on target (MNIST/USPS) images (i.e. identity mapping). We compare this trivial
mapping to the mapping obtained by both our W2GAN model and Barycentric-OT, where here
the 1-NN classifier is trained on domain transferred source digits. We can see in Table 1 that our
model achieves better results than Barycentric-OT. We note that our baseline is slightly lower than
that of Seguy et al. (2018), possibly due to image-processing differences, and correspondingly, our
implementation of Barycentric-OT also achieves slightly lower accuracy. Even so, we can achieve
higher accuracy with our model compared to the result reported in their paper.

7 CONCLUSION AND FUTURE WORK

We believe this work offers a new perspective on GANs: a way to characterize the dynamics of the
generator during training, and as a main application a way to compute a Monge map. In W2GAN, the

9
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(a) step 500 (b) step 3000 (c) step 5500 (d) step 8000

Figure 4: Evolution of the generator (top row) and the gradient it receives from φ (bottom row)
through training. The generator starts as an identity function and is trained to recover the green
distribution. We can track its evolution during training with gray arrows. The gradient it receives
from φ is represented by black arrows from the generated distribution G(X) (magenta) toward the
direction given by the discriminator’s signal G(X) −∇φ(G(X)). The generator is following the
W2-geodesic.

(a) MV-Gaussian inputs (b) Barycentric-OT outputs (c) W2GAN outputs

Figure 5: Comparing learned maps by W2GAN model and Barycentric-OT (Seguy et al., 2018)
on the task of mapping 28 × 28 MV-Gaussian to MNIST. (a) Samples from MV-Gaussian with
mean and covariance estimated from MNIST. (b) Corresponding samples from Barycentric-OT. (c)
Corresponding samples from our W2GAN model.

USPS to MNIST MNIST to USPS

Source 33.31 70.05
Barycentric-OT (Seguy et al., 2018) 60.50 77.92

Barycentric-OT (our implementation) 58.68 63.48
W2GAN 67.89 80.02

Table 1: Accuracy of 1-NN classifier (in %) trained using source vs. transported data.

generator recovers an optimal map between its initialized distribution and the target distribution. To
establish this, we connected the generator’s training procedure, and especially the signal it receives
from the discriminator, with the Wasserstein-2 geodesics. In the Appendix 8.1, we raise interesting
questions about our model left for future works. In particular, how to generalize this analysis of
the generator dynamic during training to other GANs? How to confirm that asymptotically, when
the term of regularization goes to 0, the gradient of the regularized optimal potential φ for (4) does
indeed recover the relationship 3 with the optimal map T solving (1)? In the appendix 8.3 we explore
the down-to-earth case of update in the space of parameters. It would be also important to try relating
the ideal geodesics in the space of probability measures with the actual projections in the space of
parameters.

10
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8 APPENDIX

8.1 REMAINING QUESTIONS AND FUTURE WORKS

In the following we detail questions raised by our model.

• A crucial relationship used in our model is (22), relating an optimal map T solving the Monge
problem (1) with the Kantorovitch potential φ solving the dual (2). We recall that this link is
T (x) = x−∇φ(x) for any x in the support of the initial distribution. In practice though, we
get this potential by solving a regularized version of (2), for instance (4) or (27). Assuming
for simplicity we deal with (4), we face a dual problem which basically removes the hard
constraint defining (2) by including a penalty term Lineq in the main objective, the emphasis
of which we control with the hyperparameter λineq. Denoting φλineq the corresponding
solution -which may be proven to be unique up to translation- it seems to constitute a hard
challenge to prove that φλineq → φ as λineq → 0. The case of the entropy penalty, that is
when we define the regularization Lineq(φ, ψ) := −E(x,y)∼µ×ν [exp(φ(x)+ψ(y)−c(x,y)λineq

)] has
been widely studied. In a discrete setting, the convergence might be obtained as a result
of Cominetti & San Martı́n (1994), but their analysis does not straightforwardly scale to the
case of absolutely continuous probability measures. What we would find more useful is
to prove the convergence ∇φλineq → ∇φ, as it would mean that our approximation of the
optimal transport map T using relationship (3) is valid. Notice that the entropy regularized
dual also admits a primal formulation, which solution πλineq may be proven to converge in
some sense to the unique transport map π solving (19) (Carlier et al., 2017). No similar
results have been found about the dual variables for the moment. Also, the case of other
penalties as the L2 one remain open problems.
• In a similar fashion, it would enrich our analysis to have bounds on the deviation from the

ideal trajectory, the W2-geodesic, when we assume some errors of approximation for the
generator and the discriminator. In the same way, how far is the final generated distribution
from the Monge map in this more realistic case?
• Another crucial theoretical need for strengthening our analysis would be to deepen the

parametric analysis 8.3 and try to understand the trajectory of the generated distribution in
the parameter space more thoroughly. Ideally, one would like to prove that this trajectory
would be some projection of the W2-geodesic in the space of parameters.
• In practice, what are the new possibilities enabled by the analysis of the generator’s dynamic

and the W2GAN model? First, it would be of interest to characterize the dynamic of GANs
relying of f -divergences in a similar manner. In the Wasserstein-1 case, it is possible
that knowing the generator is learning an optimal correspondence could be useful in a
domain transfer situation, especially in high dimension where those models perform well.
In particular, listing the different W1-geodesics and characterizing the ones that are mainly
followed by WGAN’s generators could be a great insight.
• On the other hand, as the W2GAN’s discriminator approximates the second Wasserstein

distance, it enables tackling the challenge of computing Wasserstein barycenters of distribu-
tions (Cuturi & Doucet, 2014). In fact, it seems likely that an adversarial and parametric
method would perform well in the task of generating all Wasserstein interpolations between
distributions in high-dimension, a difficult problem addressed by Xie et al. (2018) for
instance.

8.2 CONTINUOUS ANALYSIS OF THE GENERATOR’S EVOLUTION

We here strengthen the argument that during training, the generated distribution µθ is following the
”line” defined the optimal transport map between its initialization µθ0 and the target distribution Px.
As in the previous discussion, we assume the discriminator (φ, ψ) to compute exactly the squared
second Wasserstein distance W 2

2 (µθ, Px), i.e. we suppose it is trained infinitely many times at
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each update of the generator, and we forget about the bias induced by the c-inequality constraint
being encoded in the objective as a penalty (informally, we assume λineq = 0). We again look at the
evolution of the generated distribution in the case of ideal updates in the space of probability measures.
The difference in this case is that we consider α → 0, thus writing G(t, Z) as a time-dependent
random variable where G is in the space of L2 functions and t is a fictive time variable. In this case
we may equivalently work on the corresponding generated probability distribution of interest, which
we denote as µt := µθt . Then our generated distribution evolves according to the gradient flow

µ̇t = −∇W 2
2 (µt, Px). (12)

One would need to introduce the definition of gradient flow in the space of probability measures, in
particular the notion of real functions’ gradient with respect to probability measures and velocities of
time-dependent measures in order to fully express the meaning of the above. We refer to Ambrosio
et al. (2008) for a comprehensive overview. We can refine (12) thanks to Ambrosio et al. (2004) and
obtain:

µ̇t = Tt − Id (13)
where Tt is the unique optimal transport map, Solving (1) between µt and Px. According to the
gradient flow (13), locally, we recover that the generated distribution evolves towards Px by following
the Wasserstein-2 geodesic. In fact, this is a global behaviour, from Ambrosio et al. (2008):
Theorem 1. Denote T the optimal transport map between µ0 and Px. Then we have that the gradient
flow solving (12) is uniquely determined:

µt = [e−tId+ (1− e−t)T ]#µ0 (14)

Hence a consequence (also from Ambrosio et al. (2008)) is that the generated distribution evolves
exponentially fast towards Px:
Corollary 1.

∀t > 0,W 2
2 (µt, PX) = e−2tW 2

2 (µ0, Px) (15)

The evolution in (14) suggests that the generated distribution follows the Wasserstein-2 geodesic
between µ0 and Px. That means the training dynamic of the generator ”draws” the optimal transport
map between µ0 and Px. At the end of training, the generator G(∞, .) provides a certain optimal
transport map. For each z, the ’arrows’ joining G(0, z) and G(∞, z) together constitute the optimal
map. Figure 7 in the Appendix helps visualizing this analysis.

8.3 THE PARAMETRIC CASE

We now turn to the more realistic case of a parametrized generator Gθ(z), i.e we will analyse the
update in the space of parameters. Lui et al. (2017) already made the conjecture that a generator
trained with the second Wasserstein distance would have its parameters updated towards the direction
of an optimal transport. Let us prove their statement in the case of our model. In the following, Jf (u)
denotes the Jacobian of a function f at point u. Let Gθ(z) be our parametrized generator, which we
assume to admit derivatives w.r.t both the parameters θ and z. Recall the notation µθ := PGθ(z) =
Gθ#Pz where Pz is the measure known beforehand on the latent variable z. We consider the context
of alternating gradient descent with learning rate α > 0 for the generator. We naturally associate the
fictive time variable t, so that we consider the discrete update equation:

θt+1 = θt − α
∂W 2

2 (µθt , Px)

∂θ
(16)

Proposition 1. At each generator update, we assume the discriminator φ, ψ to achieve
supφ,ψ V

∗(φ, ψ, µθ, Px) = W 2
2 (µθ, Px) where V ∗(φ, ψ, µθ, Px) :=

∫
Rd
φ(x)dP (x) +∫

Rd
ψ(x)dPx is the value function of the dual Kantorovitch problem (2). Then (16) admits a

tractable form as:
∂W 2

2

∂θ
= Ez∼Pz (J

T
φ(Gθ(z))

(θ)) = Ez∼Pz (∇θφ(Gθ(z)))

Moreover, the gradient ascent dynamics of the generator are linked to the optimal transport map T
solving (1) between µθ and Px as:

∀z,G(θt+1, z) = G(θt, z)+αJG(.,z)(θt)×Ez∼Pz
(
JTG(.,z)(θt)× [T (G(θt, z))−G(θt, z)]

)
+o(α)

(17)
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In the above, we use the notation G(θ, z) := Gθ(z) to clarify where the derivatives are taken.
Equation (17) is close to the one conjectured in Lui et al. (2017). Following their approach, for the
sake of clarity, we consider the case where the latent variable z is a constant. Then we read (17) as

G(θt+1, z) = G(θt, z) + αJG(.,z)(θt)J
T
G(.,z)(θt)× [T (G(θt, z))−G(θt, z)]

As similarly observed in Lui et al. (2017), if we ignore the possibly significant effect of
JG(.,z)(θt)J

T
G(.,z)(θt), the term T (G(θt, z)) − G(θt, z) enforces G to be updated on the optimal

transport plan joining µθ and Px.

We want to highlight the strong sensitivity of the model to any error of approximation. The dynamics
of the generator is easily perturbed by biased updates. Let us denote the generated distribution at time
t = k by µk. Let us also introduce gk as the Wasserstein geodesics between µk and Px. Imagine, for
instance, that there exists k > 0, such that µk+1 is not on the optimal path between µk and Px. Then,
from now on, the generator will evolve ideally on the Optimal Transport map joining µk+1 and Px,
and thus will no longer evolve in the previous geodesic. More succinctly, gk+1 6= gk. In some sense,
the learning dynamics of the generator is a Markov process in that it ”forgets” the previous updates.
A wrong update leads to a generator that no longer evolves exactly on the optimal map between the
initial µ0 and the target Px. It would certainly be of interest to have a mathematical framework that
accounts for this variance in the evolution of the generator, but this is beyond the scope of this paper.

8.4 RESULTS IN OPTIMAL TRANSPORT THEORY

We develop a bit more the materials of the background section, introducing the same notions with
more details in the same order.

Monge Problem Optimal Transport (OT) theory (Villani, 2008; Santambrogio, 2010; Ambrosio
& Gigli, 2013) introduces a natural quantity to distinguish two probability measures. Given two
probability measures µ and ν on the euclidean space Rd, the original Monge problem is to find a
map T that “transports” the µ distribution on ν, and minimizes the cost of the transport, which is
point-wise defined by a fixed cost function c : Rd ×Rd → R. The value c(x, y) can be seen as the
cost for transporting a unit from x to y. The problem is summarized by:

inf
T∈AT

∫
Rd
c(x, T (x))dµ(x) (18)

where AT is the set of all maps from Rd to Rd that respect the marginal ν, more formally written
as T#µ = ν. The map T#µ is called the push-forward measure of µ and is defined as T#µ(A) =
µ(T−1(A)) for any Borel set A ∈ Rd. Figure 6 in the Appendix provides an illustration of the shape
of an optimal transport map T solving (1).

Kantorovitch relaxation Unfortunately, problem (1) often does not admit a solution as AT might
be empty 10. To circumvent this issue, one considers the so-called Kantorovitch relaxation of this
problem:

Vc(µ, ν) := inf
π∈A(µ,ν)

∫
x,y∈Rd

c(x, y)dπ(x, y) (19)

where A(µ, ν) is the set of joint distributions whose first and second marginals are equal to µ and
ν respectively. The joint π is called the transport plan between µ and ν. If π is deterministic —
specifically, for any x, there is a unique y such that π(x, y) > 0 — then it is also a transport map
as defined in the Monge problem. It suffices to define such a map T (x) by the only y respecting
π(x, y) > 0. However, we could instead consider π to be a “one-to-many” transport plan: for each
x, there might be several y such that π(x, y) > 0. While Monge’s development had the problem
of non-existence of the transport map, the Kantorovitch relaxation A(µ, ν) is never empty. In
particular, it always contains the independent joint distribution µ× ν. In many situations, under mild
assumptions on the cost function c (semi-lower continuity and bounded from below), there always

10For instance, let us take µ = δ0 a dirac at 0 and ν := 1
2
(δ−1 + δ1) a weighted sum of diracs, both on real

line. One can see that any map T would have to send 0 on either −1 or 1, hence the constraint T#µ = ν cannot
hold
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exists a minimizer of (19), so that the infimum might be replaced by a minimum (Ambrosio & Gigli,
2013). We distinguish between a transport map T achieving the minimum in (1) and a transport
plan π minimizing (19). Note that for most applications, we are more interested in obtaining an
approximation of the optimal transport map than a transport plan.

Dual of Kantorovitch One could also work with the dual of problem (19), which is proven to lead
to the same value Vc(µ, ν). We write this dual as:

sup
φ,ψ∈A∗(µ,ν)

∫
x∈X

φ(x)dµ(x) +

∫
y∈Y

ψ(y)dν(y)

A∗(µ, ν) :={(φ, ψ) : Rd → R/ ∀x, y ∈ X × Y, φ(x) + ψ(y) 6 c(x, y)}
(20)

We will also denote as V ∗(φ, ψ) the value
∫
x∈X φ(x)dµ(x) +

∫
y∈Y ψ(y)dν(y). A pair (φ, ψ)

maximizing V ∗ are called Kantorovitch potentials. We will refer to the constraint in the definition
of (2) which forces the sum of the potentials φ and ψ to be upper-bounded by the cost as the
c-inequality constraint or simply the inequality constraint.

Wasserstein distances When the cost c is a distance, Vc(µ, ν) exactly matches the famous
W1(µ, ν), which is called the first Wasserstein distance between µ and ν. When the cost c is a
distance to a power of some positive integer p, Vc(µ, ν)1/p is denoted Wp(µ, ν) and is commonly
called the pth Wasserstein distance. An important result is that these Wp distances are actually
respecting the axioms of a distance over distributions (Villani, 2008). For the sake of simplicity, we
will abusively extend the term “Wasserstein distance” to any Vc, for any cost function c, even though
not all choices of c lead to Vc being a metric over probability distributions.

Computing Wasserstein distances The discriminator of the Wasserstein GAN (WGAN) (Arjovsky
et al., 2017) computes the dual formulation (2), with ν being the “true” distribution X (defined by
training examples) and µ being the “fake” distribution G(Z) (defined by samples drawn from the
generator). In practice, the inequality constraint on potentials φ, ψ may be enforced by the addition
of a constraint-violation penalty term to the objective (Gulrajani et al., 2017). Although introduced
for other reasons, Cuturi (2013) proposed an efficient penalized version of (19) whose resulting
optimization problem is called the entropic-regularized optimal transport problem. We shall only
provide its dual form:

sup
φ,ψ

V ∗(φ, ψ) + λineqLineq(φ, ψ) (21)

where Lineq penalizes (φ, ψ) when they violate the inequality constraint:

Lineq(φ, ψ) := −E(x,y)∼µ×ν

[
exp

(
φ(x) + ψ(y)− c(x, y)

λineq

)]
Other penalties were theoretically explored by Blondel et al. (2017), including the widely used
L2-penalty (Seguy et al., 2018):

Lineq(φ, ψ) := −E(x,y)∼µ×ν

[
(φ(x) + ψ(y)− c(x, y))

2
+

]
where (.)+ := max(0, .). Objective (21) was shown to asymptotically recover the value of (2) when
λineq → 0 (Carlier et al., 2017).

Due to its suitability for training parametric models such as neural network, we exploit this optimiza-
tion objective to compute Wasserstein distances Wp. As it is provable (Ambrosio & Gigli, 2013)
that the ‘differential’ of Wp(., ν) with respect to its first variable is −φ (where φ is a Kantorovitch
potential), we may conclude that a GAN framework where the discriminator accurately computes (2)
through (21) provides a means of training a generative model. The details of such a framework are
developed in the next section.

Links between the Kantorovitch potentials and the Monge map We end this section by explor-
ing the relationship between optimal potentials and optimal transport plans and maps. The goal is
to recover an approximation of the solution of (1), namely an optimal transport map, given optimal
solutions of (2) (i.e. Kantorovitch potentials). Getting an approximate transport plan might be

16



Under review as a conference paper at ICLR 2019

done by considering a specific relationship that holds between the solutions of the dual and the
primal in regularized versions of the optimal transport (Cuturi, 2013; Xie et al., 2018). As for an
optimal transport map, Seguy et al. (2018) provides a two-step procedure, that is, they first compute a
regularized transport plan, and then calculate an approximate transport map by doing a barycentric
projection of the plan. In our case, we begin by the observation that there is no distinction between an
optimal plan and its corresponding map in the case of the Wasserstein distances Wp with p > 1. In
addition, the primal-dual relationship is straightforward. Getting an optimal transport map solving (1)
is a by-product of computing Kantorovitch potentials by solving (2). We summarize this famous
statement (Brenier, 1991):

Proposition 2. Fix p > 2 and the cost c(x, y) := ‖x−y‖p
p . Then there is one unique optimal

transport plan π solving (19). It is deterministic, that is it corresponds to an optimal transport map
T solving (1): π = (Id× T ). Also, the Kantorovitch potentials φ, ψ are unique up to a translation
and the following relation holds:

∀x ∈ supp(µ), T (x) = x− ‖∇φ(x)‖
1
p−1−1∇φ(x) (22)

Finally, we recall a useful result for the converse question: given a function T from Rd to itself and
a probability µ, is T a Monge map between µ and T#µ? In the case of the second Wasserstein
distance, Brenier’s polarization theorem (Brenier, 1991) says this is true if T is the gradient of a
strictly convex function. If T may be written x−∇φ(x) for some real function φ one can rephrase
this condition as ‖x‖

2
2

2 − φ(x) is strictly convex. Such a φ is said to be c-concave. In particular, any
Kantorovitch potential φ is c-concave.

Geodesics in the space of probability measures Recall that W2 is a metric over distributions and
thus makes the space over probability measures a metric space. Studying properties of this space
starts with the analysis of its geodesics. That is, for any given distributions µ and ν, we look for
constant speed paths described by µt such that µ0 = µ, µ1 = ν and

∀0 6 s 6 t 6 1,W2(µs, µt) = (t− s)W2(µ, ν)

It happens that such geodesics are unique (Villani, 2008). Given a Monge map T between µ and
ν, the only constant speed geodesic is given by µt := Tt#µ where Tt = (1 − t)Id + tT . It is a
remarkable fact, compared with the case of the first Wasserstein distance, where the geodesics are
eventually in infinite number. This is one obstruction to conduct directly our analysis in this case, and
this is one reason we appeal to W2 instead of W1.

By 3, we can write T (x) = x − ∇φ(x) for any Kantorovitch potential φ solving (2). Hence
Tt(x) = x− t∇φ(x). In particular, this guarantees that tφ(x) is a Kantorovitch potential solving (2)
for µ and µt = Tt#µ.

8.5 PROOFS

Proof of proposition 2. This result is a particular case of a well-known correspondence between
Kantorovitch potentials and optimal transport map. In fact, when the cost c is such that c(x, y) =
h(x− y) and h is strictly convex, one has the existence and uniqueness of an optimal Monge map T
solving (1) and a specific relationship with the Kantorovith potential φ, ψ solving (2) Villani (2008);
Santambrogio (2017):

T (x) = x− (∇h)−1(∇φ(x))

Fix p > 2 and consider the case of the p-Wasserstein distance. Then c(x, y) = h(x − y) where
h(x) := 1

p‖x‖
p. A norm is always convex by triangle inequality, and any x→ xp is strictly convex

and increasing on R+, so the previous result provides the uniqueness of the optimal transport map T .
It only remains to invert the gradient of h. A quick calculation gives:

∀y ∈ Im∇h,∇h−1(y) = ‖y‖
1
p−1−1y

as we supposed the norm to be the euclidean one. Plugging this into the first expression, we obtain
the desired result.
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Proof of proposition 1. Proving the first part of proposition 2 is exactly similar as the way it is done
for the Wasserstein-1 case in Arjovsky et al. (2017). We recall that the main ingredients of the proof
is first to convey an envelop theorem to obtain that

∇θW 2
2 (µθt , Px) = ∇θEz∼Pz [φ(G(θ, z))]

and second to use a dominated convergence argument to invert the expectation and the gradient
operator in the right-hand side of the above.
For the second part of the proof, we rewrite the gradient ascent equation (16) for the generator
parameter θ:

θt+1 = θt − α∇θW 2
2 (µθt , Px) = θt − αEz∼Pz [∇θφ(G(θt, z))] = θt − αEz∼Pz [JTφ(G(θt,z))

(θt)]

= θt − αEz∼Pz [((∇φ(G(θt, z)))
TJG(.,z)(θt))

T ] = θt − αEz∼Pz [(JG(.,z)(θt)
T∇φ(G(θt, z))]

Therefore, for a fix latent variable z0,

G(θt+1, z0) = G(θt − αEz∼Pz [JG(.,z)(θt)
T∇φ(G(θt, z))], z0)

Then by first order Taylor expansion:

G(θt+1, z0) = G(θt, z0)− αJG(.,z0)(θt)Ez∼Pz [JG(.,z)(θt)
T∇φ(G(θt, z)] + o(α)

We conclude using the hypothesis that φ is maximizing the dual of Kantorovitch and is related to an
optimal map T through (3).

8.6 EXPLOITING A PRIMAL-DUAL RELATIONSHIP AND INTERPOLATING THE CONSTRAINT TO
IMPROVE THE MODEL

In the following, we explain two important modifications of the objective functions for the dis-
criminator inspired by optimal transport theory. In order to unify notations, we consider the two
random variables X and Y to be discriminated by φ, ψ. In the GAN context, one may think of X
as the generated distribution G(Z) and Y as the true distributions. In both cases the discriminator
objective is divided into two parts. First, a main objective LOT(φ, ψ,X, Y ) := E(φ(X) + ψ(Y ))
which corresponds to the dual of the Kantorovitch problem. Second, the inequality constraint
Lineq(φ, ψ,X, Y ) := −λineqE[(φ(X) + ψ(Y ) − ‖X−Y ‖

2
2

2 )2+]. One could prefer an other choice of
regularization such as the entropy penalty. Hence the overall objective for the discriminator is:

sup
φ,ψ
LOT(φ, ψ,X, Y ) + Lineq(φ, ψ,X, Y )

The first idea is to take advantage of relation (3), which we know to be true between an optimal
potential φ and an optimal map T . In fact, optimal transport theory asserts that the inequality
constraint should be exactly saturated where there is some transport (Villani, 2008):

Theorem 2. Consider any lower-semicontinuous cost function c and a optimal transport plan for (19),
and Kantorovitch potentials φ, ψ for (2). Then,

∀x, y, (x, y) ∈ supp(π) =⇒ φ(x) + ψ(y) = c(x, y) (23)

In our case, that is when the cost is a pth power of the euclidean distance, we know from Proposition 1
than an optimal transport plan is actually an optimal transport map T , and we dispose of a relationship
with the corresponding Kantorovitch potential φ. Hence an immediate consequence of the above for
the case of the square of the euclidean distance is:

Corollary 2. For the Kantorovitch problem (1) related to c(x, y) :=
‖x−y‖22

2 , that is the computation
of the second Wasserstein distance, given Kantorovitch potentials φ, ψ:

∀x ∈ supp(µ), φ(x) + ψ(x−∇φ(x)) =
‖∇φ(x)‖22

2
(24)
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Thus we suggest enforcing our discriminator to abide by relation (24). Notice that the previous
corollary admits an exact symmetric relationship involving the gradient of ψ. This is done by adding
the following penalty during training:

Leq(φ, ψ,X, Y ) := −λeq

[(
φ(X) + ψ(X −∇φ(X))− ‖∇φ(X)‖22

2

)2

(25)

+

(
φ(Y −∇ψ(Y )) + ψ(Y )− ‖∇ψ(Y )‖22

2

)2
]

(26)

We call it the c-equality penalty term as it tries to enforce the dual functions to saturate to c-inequality
constraint at the right locations. Hence the overall objective of the discriminator is:

sup
φ,ψ
LOT(φ, ψ,X, Y ) + Lineq(φ, ψ,X, Y ) + Leq(φ, ψ,X, Y ) (27)

Remark 1. It is interesting to bridge this objective with the one used in GAN relying on the first
Wasserstein distance. In WGAN-GP, the discriminator is asked to have gradient exactly equal to 1.
Translating that into the optimal transport theory, it is tantamount to have potentials φ, ψ saturating
the c-inequality. That is, this gradient penalty term is similar to our Leq. Importantly though, Petzka
et al. (2018) raised the fact that it is not a valid practice according to theory to ask the gradient norm
of the discriminator to be 1 everywhere. Instead, WGAN-LP is a model where the gradient’s norm is
enforced to be less than 1, which is then translated into optimal transport perspective as potentials
φ, ψ respecting the c-inequality. Their penalty term is thus similar to our Lineq. Our model takes
advantage of the two forms. The difference is that our Leq is completely justified -at least because it
enforces a relationship which is true at optimum- thanks to the theory existing in the W2 case.

A second modification concerns the way we encode the penalty enforcing the inequality constraint to
be respected by φ, ψ. In fact, we modify Lineq in order to bring it closer to the theory. Looking at
the definition of A∗(µ, ν), the set of constraint of the dual of Kantorovitch problem (2), we see that
the c-inequality constraint should be respected point wise everywhere in the ambient space where
the distributions are defined. Instead, the entropy regularization or the L2 one only enforce it for
pairs x, y that live in the supports of the two distributions. We want to reduce this bias by somehow
enforcing the inequality on a broader set. It is sufficient that the potentials respect the inequality
constraint point wise on a convex compact set Ω containing the support of the two distributions.
Hence we suggest enforcing it on the convex envelop of the two supports: Ω :=Conv(supp(µ)

⋃
supp(ν)). To do so, we define two i.i.d random variables X̃ and Ỹ which follow the same law as
εX + (1− ε)Y where ε ∼ U([0, 1]). Hence the overall objective for φ, ψ is:

sup
φ,ψ
LOT(φ, ψ,X, Y ) + Lineq(φ, ψ,X, Y ) + Lineq(φ, ψ, X̃, Ỹ ) + Leq(φ, ψ,X, Y ) (28)

Remark 2. This interpolation idea has already been used in GANs relying on the first Wasserstein
distance, such as WGAN-GP and WGAN-LP in their gradient penalty. This practice was more
motivated by better results. Here we provided a theoretical argument in favor of such practice. On the
other hand, models trying to broaden GANs to higher order Wasserstein distances and/or to compute
optimal transport map (Sanjabi et al., 2018; Seguy et al., 2018; Salimans et al., 2018) in a similar
manner only enforced the constraint on the support of the distributions.

Remark 3. We motivated the definition of X̃ := εX + (1− ε)Y so that it basically takes value in
the convex envelop of X and Y. But in all generality, convex interpolation between two points cannot
recover all Conv(supp(µ)

⋃
supp(ν)). By Carathodory theorem, one would need to interpolate at

most between d+ 1 points to recover all of it. Although not impossible at all, we wanted to keep the
model simple and not depend on the dimension of the latent space Rd.

8.7 PARAMETERIZING φ AND ψ FOR STABILITY

An intuitive way of parameterizing φ and ψ is to simply replace φ and ψ with two neural networks of
the same architecture. A potential downside we found practically is that this parameterization tends
to be unstable. An alternative reparameterization is to replace ψ(Y ) with −φ(Y ) + ε(Y ) where both
φ and ε are neural networks. This reparameterization and the property that

φ(Y ) + ψ(Y ) ≤ 0
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Algorithm 1 W2GAN with D = (φ, ψ) and L2-regularization.

Require: latent space Z and true distribution X from which we have an available sample procedure.
Require: λeq, λineq, λε, ncritic, bD, p.
Require: Initial critic parameters w0,

initial generator parameters θ0.
while θ has not converged do

Initialize generator and discriminator losses LD,LG to 0.
for t = 1, ..., ncritic do

for i = 1, ..., bD do
Sample real data x, x′ ∼ PX , latent variable y, y′ ∼ PG(Z) and ε1, ε2 ∼ U([0, 1]).
Update LD according to 28 and optionally 29.

end for
Update (φ, ψ) with respect to LD.

end for
LG ← LOT.
Update G with respect to LG.

end while

yields an additional regularizer

Lε(φ, ψ,X, Y ) = −λε
[
ε(Y )2+

]
(29)

which we found particularly useful in the high dimensional setting.

8.8 ALGORITHMS

In algorithm 1, one can choose to use the equality constraint as an additional constraint for the
discriminator. One can also use the interpolation method, or any method of sampling in 8.6.

8.9 IMPLEMENTATION DETAILS AND ARCHITECTURE

Below we describe the implementation details of our experiments.

8.9.1 2D SETTING

For the 2D synthetic data experiments, the learning rate used for Barycentric-OT is 0.005 (although
we did not notice that the learning rate influenced the solution quality significantly). For the GAN
experiments, learning rates were chosen from the set {0.00001, 0.0005, 0.00005, 0.00001}. For the
Wasserstein-based GANs, the number of discriminator updates per generator update is chosen from
the set {5, 10, 20}. This is set to 1 in the Jensen-Shannon based GAN by default. λgp for both
WGAN-LP and WGAN-LP is set to 10, following their conventions. For W2-OT and W2GAN, we
set λeq = λineq = 200.To enforce that Gθ0(z) = z, we parameterize G by G(z) = H(z) + z, where
H(z) is initialized to be close to 0. H is parameterized by 4 fully connected hidden layers of size
128, with ReLU activations and batch norm in between the layers, and 1 fully connected final layer.
φ and ψ are each parameterized by 2 fully connected layers with ReLU activations in between, and 1
fully connected final layer.

8.9.2 MULTIVARIATE GAUSSIAN TO MNIST SETTING

In this experiment, MNIST images are kept at their original size of 28 × 28 and pixel values are
re-scaled to be in [−1, 1]. For Barycentric-OT, we use the same architecture as (Seguy et al., 2018).
We searched over λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}, and use the ADAM optimizer with learning
rate= 0.0002 and β1 = 0.5, β2 = 0.999 for both the dual variables and the mapping. We run the
experiment with a batch size of 64 for 200, 000 iterations for each phase.

For W2GAN, to enforce that Gθ0(z) is close to identity, and that G(z) ∈ [−1, 1] we reparameterize
G by G(z) = 2 · H(z) + zclip where zclip is z clipped to be in [−1, 1] and tanh is used as the
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final activation layer of H . We use the same architecture as barycentric-OT with the addition of
BatchNorm in between the layers of the generator. Specifically, the architecture for our model is
FC(28∗28 → 1024)-BN-RELU-FC(1024 → 1024)-BN-RELU-FC(1024 → 28∗28)-Tanh for H in
the generator, and FC(28∗28 → 1024)-RELU-FC(1024 → 1024)-RELU-FC(1024 → 1) for both
φ and ε in the discriminator. We note that in the high dimensional setting, better training stability
and image quality is achieved by using both Leq and Lε which complement Lineq in enforcing the
constraint. We set λineq = λeq = λε = 10 and use the ADAM optimizer with learning rate = 0.0001
and β1 = 0.5, β2 = 0.999 for both the generator and the discriminator. We ran the experiment for
100, 000 iterations with a batch size of 64.

8.9.3 UNSUPERVISED DOMAIN ADAPTATION SETTING

The USPS dataset consists of 16 × 16 grayscale images of digits, with significantly less training
and testing data (7291 train and 2007 test images). The MNIST digits are rescaled to 16 × 16
to match the USPS digits, and the grayscale pixels in both datasets are scaled to be in [−1, 1].
For this set of experiments, we use the same architecture as (Seguy et al., 2018) for Barycentric-
OT, and choose the best model between using entropy regularization and L2 regularization and
λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}. We use the ADAM optimizer with learning rate= 0.0002 and
β1 = 0.5, β2 = 0.999 for both the dual variables and the mapping. We ran the experiment for 20, 000
iterations for each phase with a batch size of 1024.

For W2GAN, to ensure that Gθ0(z) is identity and that G(z) ∈ [−1, 1], we reparameterize G by
G(z) = 2 ·H(z) + z where the last activation layer of G is tanh. we use similar architecture as the
previous experiment for our model. Specifically, the architecture is FC(16∗16→ 200)-BN-RELU-
FC(200→ 500)-BN-RELU-FC(500→ 16∗16)-Tanh for H in the generator, and FC(16∗16→ 200)-
RELU-FC(200→ 500)-RELU-FC(500→ 1) for both φ and ε in the discriminator. We use the same
optimizers and hyperparameters as experiment above.

8.10 ADDITIONAL FIGURES

(a) The discrete case. (b) The continuous case.

Figure 6: The Monge problem. (a) A discrete example of the Monge problem (1) for distributions in
R2. The µ distribution consists in three equally weighted diracs in x1, x2 and x3, while the ν one is
represented by y1, y2 and y3 in the same way. Black arrows denote the actual optimal transport map
T. The green arrows together also define a map from µ onto ν, but it is not optimal. (b) A continuous
example of the Monge problem (1). µ and ν are uniform distributions on the blue and green ellipsoids
respectively. The optimal transport map T is defined for any point in the support of µ, and we see
how it transports some points onto ν’s support with the arrows.
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Figure 7: The time evolving generated distribution minimizing its Wasserstein distance with the
true distribution X . The latent space is fixed and we denote it as Z. Green arrows give the shape
of the optimal transport map T between the initial distribution G(0, Z) and the true distribution X .
During training, G(t, Z) does not follow an arbitrary path for converging toward X . It follows the
Wasserstein-2 geodesic between G(0, Z) and X described by T.
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