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Abstract

Standard methods for quantitative MRI are quite time consuming whereas techniques based
on deep learning have the potential to be significantly faster while also improving parameter
estimation accuracy. The presented models aim to explore the different aspects of MR data,
notably the spatial and temporal correlations in and between the signal evolutions. The
models developed include purely temporal-focused and spatial-focused models as well as a
model trained in both domains. The importance of pre-selecting important features prior
to training was also studied and tested.
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1. Introduction

In recent years a novel approach to quantitative MRI, Magnetic Resonance Fingerprinting
(MRF) has been developed. Quantitative MRI aims to measure specific tissue parameters,
which can only be seen as contrasts on MRI scans, so as to better characterise biological
tissue. In a clinical context, this would allow for a direct comparison between patients and
a healthy population, as well as for following the progression of longitudinal diseases (Pier-
paoli, 2010). Currently, quantitative MRI is inefficient as it only allows for one parameter
to be measured at a time. The sequence must also be carefully constructed, and the signal
function must be fitted in each voxel, which means the sequence is much slower than a
weighted image. Thus, it is often unsuitable for a clinical environment, requiring very time
consuming scans which would be rendered useless by interscan motion. Magnetic Reso-
nance Fingerprinting (MRF) is a recent technique which ‘aims at providing simultaneous
measurements of multiple parameters such as T1, T2, relative spin density, B0 inhomogene-
ity (off-resonance frequency), etc., using a single, time-efficient acquisition’ (Coppo et al.,
2016). MRF works by varying acquisition parameters in a pseudorandom manner so as to
get unique, uncorrelated signal evolutions from each of the tissues. These are then com-
pared to a dictionary of simulated signals each with corresponding parameter values which
are assigned to the closest matching measured signal evolution. However, this dictionary
matching algorithm is quite time inefficient and lacks robustness to noise which has led to
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the development of deep learning methods to determine the tissue parameters. Most of
these methods take into account either the spatial or the temporal nature of the signal evo-
lution. Studying currently available techniques, we aimed to explore and compare different
approaches taking into account both spatial and temporal properties of the MRF signal.

2. Methods

All models were trained and tested on a digital brain phantom acquired on a 1.5T Ingenia
MR system (Philips, Best, The Netherlands) using a 12-element head coil following the data
acquisition developed by Cruz et al (Cruz et al., 2018). The image contrast was simulated
at each point in time for a total of 1750 time-points. The code was written using Python
3.6 in Colaboratory, an online Jupyter notebook environment. The models were trained
using the deep learning library Keras (Chollet et al., 2015) implemented on the TensorFlow
backend (Abadi et al., 2015).

The importance of the temporal property of the data was determined by LSTM-based
deep learning architectures inspired by Oksuz et al’s work (Oksuz et al., 2018). A basic
LSTM model composed only of LSTM layers followed by some fully connected layers was
compared to an LSTM-CNN model. The latter was composed of a single LSTM layer
followed by 2D convolutional layers. The data for the LSTM-CNN model had to be down-
sampled (in the time dimension, to 292 time-points) due to memory limitations.

The spatial correlations’ importance was studied using CNN-based models. A Dense-
CNN model composed of fully connected layers followed by 2D convolutional layers was
developed and compared to a CNN model. The latter had the same architecture without
the initial fully connected layers. Both models followed a pre-processing of the data which
included applying a singular value decomposition (SVD) to extract the most important
features. This was applied to each signal in the temporal dimension, originally composed
of 1750 time-points, to a number defined by the rank of the SVD. The models were both
trained for several SVD ranks, selecting from 1 to 500 important features. The initial
Dense-CNN model was then optimised giving the least amount of error for 60 important
features (Final Proposed - Table 1).

Method Prediction Time (s) T1 MAE (ms) T2 MAE (ms)

Dictionary Matching 96.48 266.90±40.42 79.72±6.74
Balsiger (Balsiger et al., 2018) 11.05 193.25±34.69 53.78±12.71

Cohen (Cohen et al., 2018) 18.21 222.03±12.42 72.01±3.10
Hoppe (Hoppe et al., 2017) 1.51 85.79±27.10 23.26±10.45

CNN 2.07 81.20±28.13 29.96±10.82
LSTM 59.49 101.90±27.98 25.89±10.02

Final Proposed 3.48 60.68±22.33 16.34±6.09

Table 1: Comparison of the T1 and T2 mean absolute error for different methods
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(a) Difference between T1 maps (b) Difference between T2 maps

(c) Original and reconstructed T1 (top) and T2
(bottom) maps from the final model predictions

Figure 1: Comparison of T1 and T2 maps

3. Conclusions

The LSTM-CNN model achieved errors of 88.84±26.23ms for T1 and 25.62±10.08ms for
T2 when the data was downsampled by a factor of 6. The basic LSTM model was found to
perform slightly worse than the LSTM-CNN model although no downsampling was required
in this case. Prior to optimisation, the Dense-CNN model was found to give the least error
after applying an SVD reducing the number of features trained to 60. Errors in this case
were found to be 86.96±24.21ms and 26.75±7.99ms for T1 and T2 respectively. The final
version of the Dense-CNN model using 60 features was found to be most accurate. Mean
absolute errors were 60.68±22.33ms for T1 and 16.34±6.09ms for T2, outperforming other
methods. Comparing with the CNN model demonstrated the importance of the initial fully
connected layers. These act as pre-feature processors, selecting important features in the
data to allow for a more efficient performance of the convolutional layers afterwards.

Future works may include training the LSTM-CNN model with full temporal resolution
so as to compare more accurately the performance of the LSTM-CNN model with the other
models, and assessing these methods on larger datasets.
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