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ABSTRACT

Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings
where there is a single, labeled, source and a single target domain. However, in many
real-world settings one seeks to adapt to multiple, but somewhat similar, target domains.
Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail
to leverage shared information among multiple domains. In this work, we propose an
information theoretic approach for domain adaptation in the novel context of multiple target
domains with unlabeled instances and one source domain with labeled instances. Our
model aims to find a shared latent space common to all domains, while simultaneously
accounting for the remaining private, domain-specific factors. Disentanglement of shared
and private information is accomplished using a unified information-theoretic approach,
which also serves to establish a stronger link between the latent representations and the
observed data. The resulting model, accompanied by an efficient optimization algorithm,
allows simultaneous adaptation from a single source to multiple target domains. We test
our approach on three challenging publicly-available datasets, showing that it outperforms
several popular domain adaptation methods.

1 INTRODUCTION

In real-world data, the training and test instances often do not come from the same underlying distribution
(Sun et al. (2016)). For example, in the task of object recognition/classification from image data, this may
be due to the image noise, changes in the object view, etc., which induce different biases in the observed
data sampled during the training and test stage. Consequently, assumptions made by traditional learning
algorithms are often violated, resulting in degradation of the algorithms’ performance during inference of test
data. Domain Adaptation (DA) approaches (Fernando et al. (2013); Gong et al. (2012); Kodirov et al. (2015);
Yoo et al. (2016)) aim to tackle this by transferring knowledge from a source domain (training data) to an
unlabeled target domain (test data) to reduce the discrepancy between the source and target data distributions,
typically by exploring domain-invariant data structures.

Existing DA methods tackle the adaptation problems in one of the two settings: (semi)supervised DA and
unsupervised DA (Csurka (2017)). The former assume that in addition to the labeled data of the source
domain, some labeled data from the target domain are also available for training/adapting the classifiers. In
contrast, the latter does not require any labels from the target domain but rather explores the similarity in the
data distributions of the two domains. In this work, we focus on the unsupervised DA (uDA) scenario, which
is more challenging due to the lack of correspondences in source and target labels.

Most works on uDA today focus on a single-source-single-target-domain scenario. However, in many
real-world applications, unlabeled data may come from different domains, thus, with different statistical
properties but with common task-related content. For instance, we may have access to images of the same
class of objects (e.g., cars) recorded by various types of cameras, and/or under different camera views and
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Figure 1: Illustration of domains with common (a) and pairwise-shared spaces (b). We tackle the domain adaptation
task when all domains share a common task/space, which is then leveraged to transfer knowledge across multiple target
domains.

at different times, rendering multiple different domains (e.g., datasets). Likewise, facial expressions of
emotions, such as joy and surprise, shown by different people and recorded under different views, result
in multiple domains with varying data distributions. In most cases, these domains have similar underlying
data distributions, which can be leveraged to build more effective and robust classifiers for tasks such as
the object or emotion recognition across multiple datasets/domains. To this end, traditional uDA methods
focus on the single-source-single-target DA scenario. However, in the presence of multiple domains, as
typically encountered in real-world settings, this pair-wise adaptation approach may be suboptimal as it
fails to leverage simultaneously the knowledge shared across multiple task-related domains. Recently, Zhao
et al. (2017) showed that by having access to multiple source domains can facilitate better adaptation to
a single target domain, when compared to the pair-wise DA approach. While this is intuitive due to the
access to multiple labelled source domains, offering more adaptation flexibility for the target domain (i.e.,
by efficiently exploring the data labels across multiple source domains that are most related to the target
domain), it comes at the expense of the data labelling in multiple source domains, which can be costly and
time-consuming. In either case, a single source domain or readily available multiple source domains, to
the best of our knowledge, a simultaneous adaptation to multiple and unlabelled target domains remains
an unexplored DA scenario. However, this DA scenario is important as we usually have access to multiple
unlabeled domains; yet, the adaptation process is also more challenging due to the lack of supervision in the
target domains. Still, multi-target DA can have advantages over a single-target DA when: (i) there is direct
knowledge sharing between the source and multiple target domains (fig. 1a), and (ii) the source and a target
domain are related through another target domain (fig. 1b). While this seems intuitive, it is critical how the
data from multiple unlabelled target domains are leveraged within the multi-target DA approach, in order to
improve its performance over the single target DA approaches and naive fusion of multiple target domains.

To this end, we propose a Multi-Target DA-Information-Theoretic-Approach (MTDA-ITA) for single-source-
multi-target DA. We exploit a single source domain and focus on multiple target domains to investigate
the effects of multi-target DA; however, the proposed approach can easily be extended to multiple source
domains. This approach leverages the data from multiple target domains to improve performance compared
to individually learning from pair-wise source-target domains. Specifically, we simultaneously factorize the
information from each available target domain and learn separate subspaces for modeling the shared (i.e.,
correlated across the domains) and private (i.e., independent between the domains) subspaces of the data
(Salzmann et al. (2010)). To this end, we employ deep learning to derive an information theoretic approach
where we jointly maximize the mutual information between the domain labels and private (domain-specific)
features, while minimizing the mutual information between the the domain labels and the shared (domain-
invariant) features. Consequently, the more robust feature representations are learned for each target domain
by exploiting dependencies between multiple target domains. We show on benchmark datasets for DA that
this approach leads to overall improved performance on each target domain, compared to independent DA for
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each pair of source-target domains, or the naive combination of multiple target domains, and state-of-the-art
models applicable to the target task.

2 THE PROPOSED METHOD

Without loss of generality, we consider a multi-class (K-class) classification problem as the running example.
Furthermore, let (X;Y;D) = f(xi;yi;di)gNi=0 be a collection of M domains (a labeled source domain,
and M � 1 unlabeled target domains), where xi denotes the i-th sample, and yi = [y1

i ; y
2
i ; :::; y

K
i ] and

di = [d1
i ; d

2
i ; :::; d

M
i ] are the K-D and M -D encoding of the class and domain labels for xi, respectively.

Note that the class labels are only available for the source samples.

The latent space representation of the data point x is denoted as z = [zs; zp], where zs and zp are the
(latent) shared and private features of the data point x, respectively. By factorizing the joint distribution
p(x;y;d; zs; zp) as

p(x;y;d; zs; zp) = p(x)p(d)p(zsjx)p(zpjx)p(yjzs); (1)

we propose to maximize the following objective function:

L(�s; �p; �c; x;y;d) = �rI(x; z) + �cI(y; zs) + �d
�
I(d; zp)� I(d; zs)

�
; (2)

where p(x) and p(d) denote the underlying (true) data distribution and domain label distribution, respectively,
I(x; y) denotes the Mutual Information between the random variables x and y. �r; �c and �d denote
the hyper-parameters controlling the weights of the objective terms. The proposed objective function (2)
maximizes the three terms described below:

� I(x; z) : encourages the latent features (both shared and private) to preserve information about the
data samples (that can be used to reconstruct x from z).

� I(y; zs): enables to correctly predict the true class label of the samples out of their common shared
features.

� I(d; zp) � I(d; zs) : encourages the latent private features to preserve the information about the
domain label and penalizes the latent shared features to be domain informative. This not only reduces
the redundancy in the shared and private features, but also, penalizes the redundancy of different
private spaces, while preserving the shared information.

An additional term could be used to minimize the mutual information between the shared (zs) and private
(zp) features. However, computing the mutual information (even approximating it) is intractable due to the
highly complex joint distribution p(zs; zp). Since we want zs and zp features to encode different aspects of
x, we enforce such constraint by jointly maximizing the term: I(d; zp)� I(d; zs).

2.1 OPTIMIZATION

The following lower bound for mutual information is derived using the non-negativity of KL-divergence
(Barber & Agakov (2003)); i.e., �xp(xjz) ln p(xjz)

q(xjz) � 0 gives:

I(x; z) � H(x) + Ep(x;z)[ln q(xjz;�)] (3)

where H(x) denotes the Shanon Entropy (Lin (1991)) of the random variable x. q(xjz;�) is any arbitrary
distribution parameterized by �. We need a variational distribution q(xjz;�) because the posterior distribution
p(xjz) = p(zjx)p(x)=p(z) is intractable since the true data distribution p(x) is assumed to be unknown.
Similarly, we can derive lower bounds for I(d; zp) � H(d) + Ep(d;zp)[ln q(djzp; )] and I(d; zs) �
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Figure 2: MDTA-ITA: The encoder Es(x) captures the feature representations (zs) for a given input sample x that are
shared among domains. Ep(x) captures domain–specific private features (zp) using the shared private encoder. The
shared decoder F (zp; zs) learns to reconstruct the input sample by using both the private and shared features. The domain
classifier D learns to correctly predict the domain labels of the actual samples from both their shared and private features
while the classifier C learns to correctly predict the class labels from the shared features.

H(d) + Ep(d;zs)[ln q(djzs; )], where q(djzp; ) is any arbitrary distribution parameterized by  .1 We
further drive lower bound for I(y; zs) as I(y; zs) � H(y) + Ep(y;zs)[ln q(yjzs; �c)], where q(yjzs; �c) is a
variational distribution parameterized by �c approximating p(yjzs).

Let next Es(x; �s) be a function parameterized by �s that maps a sample x to its corresponding shared
feature zs, and Ep(x; �p) be an analogous function which maps x to zp, the feature that is private to each
domain (fig. 2). We also define F (zs; zp;�) as a decoding function mapping the concatenation of the latent
features zs and zp to a sample reconstruction x̂, and D(z; ) as a decoding function mapping zs and zp to a
M -dimensional vector: the predictions of the domain label d̂. Finally, C(zs; �c) is a task-specific function
mapping zs to a K-dimensional probability vector of the class label ŷ.

We represent p(d); p(x); p(y) as the empirical distribution of a finite training set (e.g. p(d) =
1
N

PN
i=1 �(d � di)) as in the case of variational autoencoders (VAE) (Abbasnejad et al. (2017); Pu

et al. (2017)), p(zsjx); p(zpjx) as deterministic functions of x as p(zsjx) = �
�
zs � Es(x; �s)

�
and

p(zpjx) = �
�
zp � Ep(x; �p)

�
, and the variational distributions q(yjzs), q(xjz) and , q(djz) as

q(yjzs) = SoftMax(C(zs; �c)); q(djz) = SoftMax(D(z; )); q(xjz;�) / exp(kx� F (z;�)k1) (4)

where Softmax(�) denotes the softmax or normalized exponential function (Bridle (1990)), and k:k1 denotes
the L1 norm. Then, the optimization task can be posed as a minimax saddle point problem, where we use
adversarial training to maximize (2) w.r.t. the parameters (�s; �p; �c), and to minimize (2) w.r.t. the parameters
(�, ), using Stochastic Gradient Descent (SGD).

Optimizing the parameters � of the decoder F

�̂ = arg min
�

LF =
�r
N

NX
i=1

kxi � F
�
Es(xi); Ep(xi)

�
k1: (5)

The decoder F (zs; zp;�) is trained in such a way so as to minimize the difference between original input x
and its decoding from corresponding shared and private features via the decoder F .

1Note that, for simplicity, we shared the parameters  between the approximate posterior distributions q(djzs;  ) and
q(djzp; ).
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Optimizing the parameters  of the domain classi�er D

 ̂ = arg min
 

L D = �
� d

N

NX

i =1

d>
i ln D

�
Es(x i )

�
�

� d

N

NX

i =1

d>
i ln D

�
Ep(x i )

�
: (6)

D (z;  ) can be considered as a classi�er whose task is to distinguish between the shared/private features of
the different domains. More precisely, the two terms in Eq. 6 encourageD to correctly predict the domain
labels from the shared and private features, respectively.

Optimizing the parameters � c of the label classi�er C

�̂ c = arg min
� c

�
� H (y ) � Ep(y ;z s )

�
ln q(y jzs)

�	
: (7)

Since we have access to the source labels,H (y ) is a constant for source samples. we can approximateH [y ]
for the target samples using the output of the classi�erC, leading to the following optimization problem:

�̂ c = arg min
� c

L C = �
1
N

N sX

i =1

y T
i ln C

�
Es(x i )

�
�

� c

N � Ns

NX

i = N s +1

C
�
Es(x i )

� >
ln C

�
Es(x i )

�

+
� c

N � Ns

NX

i = N s +1

C
�
Es(x i )

� >
ln

�
1

N � Ns

NX

i = N s +1

C
�
Es(x i )

�
�

; (8)

whereNs denotes the number of source samples. Intuitively, we enforce the classi�erC to correctly predict
the class labels of the source samples by the �rst term in Eq. 8. We use the second term to minimize the
entropy ofq(y jzs) for the target samples; effectively, reducing the effects of "confusing" labels of target
samples, as given byp(y jzs) that leads to decision boundaries occur far away from target data-dense regions
in the feature space. The intuition behind the last term is that by minimizing only the entropy (second term),
we may arrive at a degenerate solution where every target pointx t is assigned to the same class. Hence, the
last term encourages the classi�erC to have balanced labeling for the target samples where it reaches its
minimum,ln K , when each class is selected with uniform probability.

Optimizing the parameter � p of the private encoderEp

^� p = arg min
� p

L P =
� r

N

NX

i =1

kx i � F
�
Es(x i ); Ep(x i )

�
k1 �

� d

N

NX

i =1

d>
i D

�
Ep(x i )

�
: (9)

The �rst term in Eq. 9 encourages the private encoderEp to preserve the recovery ability of the private
features. The second term enforces distinct private features be produced for each domain by penalizing
the representation redundancy in different private spaces. This, in turn, encourages moving this common
information from multiple domains to their shared space.

Optimizing the parameter � s of the shared encoderEs

�̂ s = arg min
� s

L S =
� r

N

NX

i =1

kx � F
�
Es(x i ); Ep(x i )

�
k1 �

� c

N

N sX

i =1

y T
i ln C

�
Es(x i )

�

�
� d

N

NX

i =1

d>
i ln D

�
Es(x i )

�
�

� c

N � Ns

NX

i = N s +1

C
�
Es(x i )

� >
ln C

�
Es(x i )

�

+
� c

N � Ns

NX

i = N s +1

C
�
Es(x i )

� >
ln

�
1

N � Ns

NX

i = N s +1

C
�
Es(x i )

�
�

: (10)

5



Under review as a conference paper at ICLR 2019

The �rst term in Eq. 10 encourages the shared encoderEs to preserve the recovery ability of the shared
features. The second term is the source domain classi�cation loss penalty that encouragesEs to produce
discriminative features for the labeled source samples. The third term simulates the adversarial training by
trying to fool the domain classi�erD when predicting the domain labelsd, given the shared featureszs. The
effect of this is two-fold: (i) the rendered shared features are more distinct from the corresponding private
features, (ii) the shared features of different domains are encouraged to be similar to each other. The last two
terms encourageEs to produce the shared features for target samples so that the classi�er is con�dent on the
unlabeled target data, driving the shared features away from the decision boundaries. To train our model, we
alternate between updating the shared encoderEs, the private encoderEp, the decoderF , the classi�erC,
and the domain classi�erD using the SGD algorithm (see Algorithm 1 in Appendix E for more details).

3 RELATED WORK

There has been extensive prior work on domain adaptation (Csurka (2017)). Recent papers have focused
on transferring deep neural network representations from a labeled source dataset to an unlabeled target
domain, where the main strategy is to �nd a feature space such that the confusion between source and target
distributions in that space is maximized ( Rebuf� et al. (2017); Benaim & Wolf (2017); Courty et al. (2017);
Motiian et al. (2017); Saito et al. (2017); Zhang et al. (2017); Yan et al. (2017); Bousmalis et al. (2017)). For
this, it is critical to �rst de�ne a measure of divergence between source and target distributions. For instance,
several methods have used the Maximum Mean Discrepancy (MMD ) loss for this purpose (Bousmalis et al.
(2017); Zellinger et al. (2017); Long et al. (2014)).MMD computes the norm of the difference between two
domain means in the reproducing Kernel Hilbert Space (RKHS) induced by a pre-speci�ed kernel. The Deep
Adaptation Network (DAN) (Long et al. (2015)) appliedMMD to layers embedded in aRKHS, effectively
matching higher order statistics of the two distributions. The deep Correlation Alignment (CORAL ) method
(Sun & Saenko (2016)) attempts to match the mean and covariance of the two distributions. Deep Transfer
Network (DTN) (Zhang et al. (2015)) achieved source/target distribution alignment via two types of network
layers based onMMD distance: the shared feature extraction layer, which learns a subspace that matches the
marginal distributions of the source and the target samples, and the discrimination layer, which matches the
conditional distributions by classi�er transduction.

Recently proposed unsupervisedDA methods (Rebuf� et al. (2017); Benaim & Wolf (2017); Courty et al.
(2017); Motiian et al. (2017); Saito et al. (2017); Zhang et al. (2017)) operate by training deep neural networks
using adversarial training, which allows the learning of feature representations that are simultaneously dis-
criminative of source labels, and indistinguishable between the source and target domain. For instance, Ganin
& Lempitsky (2015) proposed aDA mechanism called Domain-Adversarial Training of Neural Networks
(DANN), which enables the network to learn domain invariant representations in an adversarial way by
adding a domain classi�er and back-propagating inverse gradients. Adversarial Discriminative Domain
Adaptation (ADDA) (Tzeng et al. (2017)) learns a discriminative feature subspace using the source labels,
followed by a separate encoding of the target data to this subspace using an asymmetric mapping learned
through a domain-adversarial loss. Liu et al. (2017) makes a shared-latent space assumption and proposes an
unsupervised image-to-image translation (UNIT ) framework based on Coupled GANs (Liu & Tuzel (2016)).
Another example is the pixel-level domain adaptation models that perform the distribution alignment not
in the feature space but directly in raw pixel space.PixelDA (Bousmalis et al. (2017)) uses adversarial
approaches to adapt source-domain images as if drawn from the target domain while maintaining the original
content.

While these approaches have shown success inDA tasks with single source-target domains, they are not
designed to leverage information from multiple domains simultaneously. More recently, Zhao et al. (2017)
introduced an adversarial framework calledMDAN for multiple source single target domain adaptation where
a domain classi�er, induced by minimizing the H-divergence between multiple source and a target domain, is
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used to align their feature distributions in a shared space. Instead, in our approach we focus on multi-target
DA where we perform adaptation of multipleunlabelledtarget domains. Although both our model and
MDAN use the similar notion of the domain classi�er to minimize the domain mismatch in shared space, the
domain classi�er induced by our information-theoretic (IT) loss also acts to separate domains in the private
space (see Eqs. 6& 9 for more details), improving the essential reconstruction ability, similar to (Bousmalis
et al. (2016)). We provided how our model is related to IT representation learning approaches, and multiple
domain transfer networks in Appendices A and B respectively. In Appendix C, we also clearly contrasted
our model withDSN model which also uses the notion of auto-encoders to explicitly separate the feature
representations private to each source/target domain from those that are shared between the domains.

4 EXPERIMENTAL RESULTS

We compare the proposed method with state-of-the-art methods on standard benchmark datasets: a digit
classi�cation task that includes 4 datasets:MNIST (LeCun et al. (1998)),MNIST-M (Ganin et al. (2016)),
SVHN (Netzer et al. (2011)),USPS(Tzeng et al. (2017)),Multi-PIE expression recognition dataset2, and
PACSmulti-domain image recognition benchmark (Li et al. (2017)), a new dataset designed for the cross-
domain recognition problems (the details for this experiment is available in Appendix G). Fig. 3 illustrates
image samples from different datasets and domains. We evaluate the performance of all methods with
classi�cation accuracy metric. We repeated each experiment 5 times and report the average and the standard
deviation of the accuracy.

We used ADAM (Kingma & Ba (2015)) for training; the learning rate was set to0:0002and momentum
parameters to0:5 and0:999. We used batches of size16 from each domain, and the input images were mean-
centered/rescaled to[� 1; 1]. The hyper-parameters are empirically set as� r = 1 :0; � c = 0 :01; � d = 0 :20.
For the network architecture, our private/shared encoders consisted of three convolutional layers as the
front-end and four basic residual blocks as the back-end. The decoder consisted of four basic residual blocks
as the front-end and four transposed convolutional layers as the back-end. The discriminator and the classi�er
consisted of stacks of convolutional layers. We used ReLU for nonlinearity. Tanh function is used as the
activation function of the last layer in the decoderF for scaling the output pixels to[� 1; 1]. The details of the
networks are given in Appendix D.

The quantitative evaluation involves a comparison of the performance of our model to previous work and to
Source Onlyand1-NN baselines that do not use any domain adaptation. ForSource Onlybaseline, we train
our model only on the unaltered source training data and evaluate on the target test data. We compare the
proposed methodMTDA-ITA with several related methods designed for pair-wise source-target adaptation:
CORAL (Sun & Saenko (2016)),DANN (Ganin & Lempitsky (2015)),ADDA (Tzeng et al. (2017)),DTN
(Zhang et al. (2015)),UNIT (Liu et al. (2017)),PixelDA (Bousmalis et al. (2017)), andDSN (Bousmalis
et al. (2016)). We reported the results of two following baselines: (i) one is to combine all the target domains
into a single one and train it usingMTDA-ITA , which we denote as (c-MTDA-ITA ). (ii) the other one is to
train multipleMTDA-ITA separately, where each one corresponds to a source-target pair which we denote as
(s-MTDA-ITA ). For completeness, we reported the results of the competing methods by combining all the
target domains into a single one (denoted byc-DTN, c-ADDA, andc-DSN) as well. We also extendDSN to
multiple domains by (i) having one private encoder for all domains denoted by (1p-DSN), (ii) adding multiple
private encoders to it denoted by (mp-DSN) and contrast them with our model.

4.1 DIGITS DATASETS

We combine four popular digits datasets (MNIST , MNIST-M , SVHN, and USPS) to build the multi-
target domain dataset. All images were uniformly rescaled to32 � 32. We take each ofMNIST-M ,

2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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(a) Digit datasets (b) PACS dataset (c) Multi-PIE dataset
Figure 3: Exemplary images from different datasets. a) Digits datasets, b)PACS datatset (�rst row: Art-painting,
second row: Cartoon, Third row: Photo, last row: Sketch), c)Multi-PIE dataset (each row corresponds to a different
camera angle and each subject depicts an expression(normal, smile, surprise, squint, disgust, scream) at every camera
position).

SVHN, USPS, andMNIST as source domain in turn, and the rest as targets. We use all labeled source
images and all unlabeled target images, following the standard evaluation protocol for unsupervised domain
adaptation (Ganin et al. (2016); Long et al. (2016). We show the accuracy of different methods in Table 1.
Additional results are available in Appendix F. The results show that �rst of allcMTDA-ITA has worse
performance thansMTDA-ITA and MTDA-ITA . We have similar observations forADDA, DTN, and
DSN that demonstrates a naive combination of different target datasets can sometimes even decrease the
performance of the competing methods. Furthermore,MTDA-ITA outperforms the state-of-the-art methods
in most of domain transformations. The higher performance ofMTDA-ITA compared to other methods is
mainly attributed to the joint adaptation of related domains where each domain could bene�t of other related
domains. Furthermore, from the results obtained, we see that it is bene�cial to use information coming
from unlabeled target data (see Eq. 8 for updating the classi�erC) during the learning process, compared
to when no data from target domain is used (See the ablation study section for more information). Indeed,
using our scheme, we �nd a representation space in which embeds the knowledge from the target domain
into the learned classi�er. By contrast, the competing methods do not provide a principled way of sharing
information across all domains, leading to overall lower performance. The results also verify the superiority
of MTDA-ITA over bothmp-DSN, and1p-DSN. This can be due to (i) having multiple private encoders
increase the number of parameters that may lead tomp-DSN over�tting, (ii) superiority of theMTDA-ITA 's
domain adversarial loss over theDSN's MMD loss to separate the shared and private features, (iii) utilization
of the unlabeled target data to regularize the classi�er inMTDA-ITA .

4.2 MULTI -PIE DATASET

TheMulti-PIE dataset includes face images of337individuals captured from different expressions, views,
and illumination conditions (�g. 3(c)). For this experiment, we use5 different camera views (positions)C05,
C08, C09, C13, andC14as different domains (Fig. 3(c)) and the face expressions (normal, smile, surprise,
squint, disgust, scream) as labels. Each domain contains27120images of size64� 64� 3. We used each
view as the source domain, in turn, and the rest as targets. We expect the face inclination angle to re�ect
the complexity of transfer learning. Tab. 2 shows the classi�cation accuracy forC13 andC14 as source
domain (the results for viewsC05; C08andC09as source domain are available in Appendix F). As can be
seen,MTDA-ITA achieves the best performances as well as the best scores in most settings that veri�es the
effectiveness ofMTDA-ITA for multi-target domain adaptation. Clearly, with the increasing camera angle,
the image structure changes up to a certain extent (the views become heterogeneous). However, our method
produces better results even under such very challenging conditions.
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