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ABSTRACT

Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings
where there is a single, labeled, source and a single target domain. However, in many
real-world settings one seeks to adapt to multiple, but somewhat similar, target domains.
Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail
to leverage shared information among multiple domains. In this work, we propose an
information theoretic approach for domain adaptation in the novel context of multiple target
domains with unlabeled instances and one source domain with labeled instances. Our
model aims to find a shared latent space common to all domains, while simultaneously
accounting for the remaining private, domain-specific factors. Disentanglement of shared
and private information is accomplished using a unified information-theoretic approach,
which also serves to establish a stronger link between the latent representations and the
observed data. The resulting model, accompanied by an efficient optimization algorithm,
allows simultaneous adaptation from a single source to multiple target domains. We test
our approach on three challenging publicly-available datasets, showing that it outperforms
several popular domain adaptation methods.

1 INTRODUCTION

In real-world data, the training and test instances often do not come from the same underlying distribution
(Sun et al. (2016)). For example, in the task of object recognition/classification from image data, this may
be due to the image noise, changes in the object view, etc., which induce different biases in the observed
data sampled during the training and test stage. Consequently, assumptions made by traditional learning
algorithms are often violated, resulting in degradation of the algorithms’ performance during inference of test
data. Domain Adaptation (DA) approaches (Fernando et al. (2013); Gong et al. (2012); Kodirov et al. (2015);
Yoo et al. (2016)) aim to tackle this by transferring knowledge from a source domain (training data) to an
unlabeled target domain (test data) to reduce the discrepancy between the source and target data distributions,
typically by exploring domain-invariant data structures.

Existing DA methods tackle the adaptation problems in one of the two settings: (semi)supervised DA and
unsupervised DA (Csurka (2017)). The former assume that in addition to the labeled data of the source
domain, some labeled data from the target domain are also available for training/adapting the classifiers. In
contrast, the latter does not require any labels from the target domain but rather explores the similarity in the
data distributions of the two domains. In this work, we focus on the unsupervised DA (uDA) scenario, which
is more challenging due to the lack of correspondences in source and target labels.

Most works on uDA today focus on a single-source-single-target-domain scenario. However, in many
real-world applications, unlabeled data may come from different domains, thus, with different statistical
properties but with common task-related content. For instance, we may have access to images of the same
class of objects (e.g., cars) recorded by various types of cameras, and/or under different camera views and
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Figure 1: Illustration of domains with common (a) and pairwise-shared spaces (b). We tackle the domain adaptation
task when all domains share a common task/space, which is then leveraged to transfer knowledge across multiple target
domains.

at different times, rendering multiple different domains (e.g., datasets). Likewise, facial expressions of
emotions, such as joy and surprise, shown by different people and recorded under different views, result
in multiple domains with varying data distributions. In most cases, these domains have similar underlying
data distributions, which can be leveraged to build more effective and robust classifiers for tasks such as
the object or emotion recognition across multiple datasets/domains. To this end, traditional uDA methods
focus on the single-source-single-target DA scenario. However, in the presence of multiple domains, as
typically encountered in real-world settings, this pair-wise adaptation approach may be suboptimal as it
fails to leverage simultaneously the knowledge shared across multiple task-related domains. Recently, Zhao
et al. (2017) showed that by having access to multiple source domains can facilitate better adaptation to
a single target domain, when compared to the pair-wise DA approach. While this is intuitive due to the
access to multiple labelled source domains, offering more adaptation flexibility for the target domain (i.e.,
by efficiently exploring the data labels across multiple source domains that are most related to the target
domain), it comes at the expense of the data labelling in multiple source domains, which can be costly and
time-consuming. In either case, a single source domain or readily available multiple source domains, to
the best of our knowledge, a simultaneous adaptation to multiple and unlabelled target domains remains
an unexplored DA scenario. However, this DA scenario is important as we usually have access to multiple
unlabeled domains; yet, the adaptation process is also more challenging due to the lack of supervision in the
target domains. Still, multi-target DA can have advantages over a single-target DA when: (i) there is direct
knowledge sharing between the source and multiple target domains (fig. 1a), and (ii) the source and a target
domain are related through another target domain (fig. 1b). While this seems intuitive, it is critical how the
data from multiple unlabelled target domains are leveraged within the multi-target DA approach, in order to
improve its performance over the single target DA approaches and naive fusion of multiple target domains.

To this end, we propose a Multi-Target DA-Information-Theoretic-Approach (MTDA-ITA) for single-source-
multi-target DA. We exploit a single source domain and focus on multiple target domains to investigate
the effects of multi-target DA; however, the proposed approach can easily be extended to multiple source
domains. This approach leverages the data from multiple target domains to improve performance compared
to individually learning from pair-wise source-target domains. Specifically, we simultaneously factorize the
information from each available target domain and learn separate subspaces for modeling the shared (i.e.,
correlated across the domains) and private (i.e., independent between the domains) subspaces of the data
(Salzmann et al. (2010)). To this end, we employ deep learning to derive an information theoretic approach
where we jointly maximize the mutual information between the domain labels and private (domain-specific)
features, while minimizing the mutual information between the the domain labels and the shared (domain-
invariant) features. Consequently, the more robust feature representations are learned for each target domain
by exploiting dependencies between multiple target domains. We show on benchmark datasets for DA that
this approach leads to overall improved performance on each target domain, compared to independent DA for
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each pair of source-target domains, or the naive combination of multiple target domains, and state-of-the-art
models applicable to the target task.

2 THE PROPOSED METHOD

Without loss of generality, we consider a multi-class (K-class) classification problem as the running example.
Furthermore, let (X,Y,D) = {(xi,yi,di)}Ni=0 be a collection of M domains (a labeled source domain,
and M − 1 unlabeled target domains), where xi denotes the i-th sample, and yi = [y1i , y

2
i , ..., y

K
i ] and

di = [d1i , d
2
i , ..., d

M
i ] are the K-D and M -D encoding of the class and domain labels for xi, respectively.

Note that the class labels are only available for the source samples.

The latent space representation of the data point x is denoted as z = [zs, zp], where zs and zp are the
(latent) shared and private features of the data point x, respectively. By factorizing the joint distribution
p(x,y,d, zs, zp) as

p(x,y,d, zs, zp) = p(x)p(d)p(zs|x)p(zp|x)p(y|zs), (1)

we propose to maximize the following objective function:

L(θs, θp, θc;x,y,d) = λrI(x; z) + λcI(y; zs) + λd
(
I(d; zp)− I(d; zs)

)
, (2)

where p(x) and p(d) denote the underlying (true) data distribution and domain label distribution, respectively,
I(x;y) denotes the Mutual Information between the random variables x and y. λr, λc and λd denote
the hyper-parameters controlling the weights of the objective terms. The proposed objective function (2)
maximizes the three terms described below:

• I(x; z) : encourages the latent features (both shared and private) to preserve information about the
data samples (that can be used to reconstruct x from z).

• I(y; zs): enables to correctly predict the true class label of the samples out of their common shared
features.

• I(d; zp) − I(d; zs) : encourages the latent private features to preserve the information about the
domain label and penalizes the latent shared features to be domain informative. This not only reduces
the redundancy in the shared and private features, but also, penalizes the redundancy of different
private spaces, while preserving the shared information.

An additional term could be used to minimize the mutual information between the shared (zs) and private
(zp) features. However, computing the mutual information (even approximating it) is intractable due to the
highly complex joint distribution p(zs, zp). Since we want zs and zp features to encode different aspects of
x, we enforce such constraint by jointly maximizing the term: I(d; zp)− I(d; zs).

2.1 OPTIMIZATION

The following lower bound for mutual information is derived using the non-negativity of KL-divergence
(Barber & Agakov (2003)); i.e., Σxp(x|z) ln p(x|z)

q(x|z) ≥ 0 gives:

I(x; z) ≥ H(x) + Ep(x,z)[ln q(x|z;φ)] (3)

where H(x) denotes the Shanon Entropy (Lin (1991)) of the random variable x. q(x|z;φ) is any arbitrary
distribution parameterized by φ. We need a variational distribution q(x|z;φ) because the posterior distribution
p(x|z) = p(z|x)p(x)/p(z) is intractable since the true data distribution p(x) is assumed to be unknown.
Similarly, we can derive lower bounds for I(d; zp) ≥ H(d) + Ep(d,zp)[ln q(d|zp;ψ)] and I(d; zs) ≥
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Figure 2: MDTA-ITA: The encoder Es(x) captures the feature representations (zs) for a given input sample x that are
shared among domains. Ep(x) captures domain–specific private features (zp) using the shared private encoder. The
shared decoder F (zp, zs) learns to reconstruct the input sample by using both the private and shared features. The domain
classifier D learns to correctly predict the domain labels of the actual samples from both their shared and private features
while the classifier C learns to correctly predict the class labels from the shared features.

H(d) + Ep(d,zs)[ln q(d|zs;ψ)], where q(d|zp;ψ) is any arbitrary distribution parameterized by ψ.1 We
further drive lower bound for I(y; zs) as I(y; zs) ≥ H(y) + Ep(y,zs)[ln q(y|zs; θc)], where q(y|zs; θc) is a
variational distribution parameterized by θc approximating p(y|zs).

Let next Es(x; θs) be a function parameterized by θs that maps a sample x to its corresponding shared
feature zs, and Ep(x; θp) be an analogous function which maps x to zp, the feature that is private to each
domain (fig. 2). We also define F (zs, zp;φ) as a decoding function mapping the concatenation of the latent
features zs and zp to a sample reconstruction x̂, and D(z;ψ) as a decoding function mapping zs and zp to a
M -dimensional vector: the predictions of the domain label d̂. Finally, C(zs; θc) is a task-specific function
mapping zs to a K-dimensional probability vector of the class label ŷ.

We represent p(d), p(x), p(y) as the empirical distribution of a finite training set (e.g. p(d) =
1
N

∑N
i=1 δ(d − di)) as in the case of variational autoencoders (VAE) (Abbasnejad et al. (2017); Pu

et al. (2017)), p(zs|x), p(zp|x) as deterministic functions of x as p(zs|x) = δ
(
zs − Es(x; θs)

)
and

p(zp|x) = δ
(
zp − Ep(x; θp)

)
, and the variational distributions q(y|zs), q(x|z) and , q(d|z) as

q(y|zs) = SoftMax(C(zs; θc)), q(d|z) = SoftMax(D(z;ψ)), q(x|z;φ) ∝ exp(‖x− F (z;φ)‖1) (4)

where Softmax(·) denotes the softmax or normalized exponential function (Bridle (1990)), and ‖.‖1 denotes
the L1 norm. Then, the optimization task can be posed as a minimax saddle point problem, where we use
adversarial training to maximize (2) w.r.t. the parameters (θs, θp, θc), and to minimize (2) w.r.t. the parameters
(φ,ψ), using Stochastic Gradient Descent (SGD).

Optimizing the parameters φ of the decoder F

φ̂ = arg min
φ

LF =
λr
N

N∑
i=1

‖xi − F
(
Es(xi), Ep(xi)

)
‖1. (5)

The decoder F (zs, zp;φ) is trained in such a way so as to minimize the difference between original input x
and its decoding from corresponding shared and private features via the decoder F .

1Note that, for simplicity, we shared the parameters ψ between the approximate posterior distributions q(d|zs, ψ) and
q(d|zp;ψ).
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Optimizing the parameters ψ of the domain classifier D

ψ̂ = arg min
ψ

LD = −λd
N

N∑
i=1

d>i lnD
(
Es(xi)

)
− λd
N

N∑
i=1

d>i lnD
(
Ep(xi)

)
. (6)

D(z;ψ) can be considered as a classifier whose task is to distinguish between the shared/private features of
the different domains. More precisely, the two terms in Eq. 6 encourage D to correctly predict the domain
labels from the shared and private features, respectively.

Optimizing the parameters θc of the label classifier C

θ̂c = arg min
θc

{
−H(y)− Ep(y,zs)

[
ln q(y|zs)

]}
. (7)

Since we have access to the source labels, H(y) is a constant for source samples. we can approximate H[y]
for the target samples using the output of the classifier C, leading to the following optimization problem:

θ̂c = arg min
θc

LC =− 1

N

Ns∑
i=1

yTi lnC
(
Es(xi)

)
− λc
N −Ns

N∑
i=Ns+1

C
(
Es(xi)

)>
lnC

(
Es(xi)

)
+

λc
N −Ns

N∑
i=Ns+1

C
(
Es(xi)

)>
ln

(
1

N −Ns

N∑
i=Ns+1

C
(
Es(xi)

))
, (8)

where Ns denotes the number of source samples. Intuitively, we enforce the classifier C to correctly predict
the class labels of the source samples by the first term in Eq. 8. We use the second term to minimize the
entropy of q(y|zs) for the target samples; effectively, reducing the effects of "confusing" labels of target
samples, as given by p(y|zs) that leads to decision boundaries occur far away from target data-dense regions
in the feature space. The intuition behind the last term is that by minimizing only the entropy (second term),
we may arrive at a degenerate solution where every target point xt is assigned to the same class. Hence, the
last term encourages the classifier C to have balanced labeling for the target samples where it reaches its
minimum, lnK, when each class is selected with uniform probability.

Optimizing the parameter θp of the private encoder Ep

θ̂p = arg min
θp

LP =
λr
N

N∑
i=1

‖xi − F
(
Es(xi), Ep(xi)

)
‖1 −

λd
N

N∑
i=1

d>i D
(
Ep(xi)

)
. (9)

The first term in Eq. 9 encourages the private encoder Ep to preserve the recovery ability of the private
features. The second term enforces distinct private features be produced for each domain by penalizing
the representation redundancy in different private spaces. This, in turn, encourages moving this common
information from multiple domains to their shared space.

Optimizing the parameter θs of the shared encoder Es

θ̂s = arg min
θs

LS =
λr
N

N∑
i=1

‖x− F
(
Es(xi), Ep(xi)

)
‖1 −

λc
N

Ns∑
i=1

yTi lnC
(
Es(xi)

)
− λd
N

N∑
i=1

d>i lnD
(
Es(xi)

)
− λc
N −Ns

N∑
i=Ns+1

C
(
Es(xi)

)>
lnC

(
Es(xi)

)
+

λc
N −Ns

N∑
i=Ns+1

C
(
Es(xi)

)>
ln

(
1

N −Ns

N∑
i=Ns+1

C
(
Es(xi)

))
. (10)
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The first term in Eq. 10 encourages the shared encoder Es to preserve the recovery ability of the shared
features. The second term is the source domain classification loss penalty that encourages Es to produce
discriminative features for the labeled source samples. The third term simulates the adversarial training by
trying to fool the domain classifier D when predicting the domain labels d, given the shared features zs. The
effect of this is two-fold: (i) the rendered shared features are more distinct from the corresponding private
features, (ii) the shared features of different domains are encouraged to be similar to each other. The last two
terms encourage Es to produce the shared features for target samples so that the classifier is confident on the
unlabeled target data, driving the shared features away from the decision boundaries. To train our model, we
alternate between updating the shared encoder Es, the private encoder Ep, the decoder F , the classifier C,
and the domain classifier D using the SGD algorithm (see Algorithm 1 in Appendix E for more details).

3 RELATED WORK

There has been extensive prior work on domain adaptation (Csurka (2017)). Recent papers have focused
on transferring deep neural network representations from a labeled source dataset to an unlabeled target
domain, where the main strategy is to find a feature space such that the confusion between source and target
distributions in that space is maximized ( Rebuffi et al. (2017); Benaim & Wolf (2017); Courty et al. (2017);
Motiian et al. (2017); Saito et al. (2017); Zhang et al. (2017); Yan et al. (2017); Bousmalis et al. (2017)). For
this, it is critical to first define a measure of divergence between source and target distributions. For instance,
several methods have used the Maximum Mean Discrepancy (MMD) loss for this purpose (Bousmalis et al.
(2017); Zellinger et al. (2017); Long et al. (2014)). MMD computes the norm of the difference between two
domain means in the reproducing Kernel Hilbert Space (RKHS) induced by a pre-specified kernel. The Deep
Adaptation Network (DAN) (Long et al. (2015)) applied MMD to layers embedded in a RKHS, effectively
matching higher order statistics of the two distributions. The deep Correlation Alignment (CORAL) method
(Sun & Saenko (2016)) attempts to match the mean and covariance of the two distributions. Deep Transfer
Network (DTN) (Zhang et al. (2015)) achieved source/target distribution alignment via two types of network
layers based on MMD distance: the shared feature extraction layer, which learns a subspace that matches the
marginal distributions of the source and the target samples, and the discrimination layer, which matches the
conditional distributions by classifier transduction.

Recently proposed unsupervised DA methods (Rebuffi et al. (2017); Benaim & Wolf (2017); Courty et al.
(2017); Motiian et al. (2017); Saito et al. (2017); Zhang et al. (2017)) operate by training deep neural networks
using adversarial training, which allows the learning of feature representations that are simultaneously dis-
criminative of source labels, and indistinguishable between the source and target domain. For instance, Ganin
& Lempitsky (2015) proposed a DA mechanism called Domain-Adversarial Training of Neural Networks
(DANN), which enables the network to learn domain invariant representations in an adversarial way by
adding a domain classifier and back-propagating inverse gradients. Adversarial Discriminative Domain
Adaptation (ADDA) (Tzeng et al. (2017)) learns a discriminative feature subspace using the source labels,
followed by a separate encoding of the target data to this subspace using an asymmetric mapping learned
through a domain-adversarial loss. Liu et al. (2017) makes a shared-latent space assumption and proposes an
unsupervised image-to-image translation (UNIT) framework based on Coupled GANs (Liu & Tuzel (2016)).
Another example is the pixel-level domain adaptation models that perform the distribution alignment not
in the feature space but directly in raw pixel space. PixelDA (Bousmalis et al. (2017)) uses adversarial
approaches to adapt source-domain images as if drawn from the target domain while maintaining the original
content.

While these approaches have shown success in DA tasks with single source-target domains, they are not
designed to leverage information from multiple domains simultaneously. More recently, Zhao et al. (2017)
introduced an adversarial framework called MDAN for multiple source single target domain adaptation where
a domain classifier, induced by minimizing the H-divergence between multiple source and a target domain, is
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used to align their feature distributions in a shared space. Instead, in our approach we focus on multi-target
DA where we perform adaptation of multiple unlabelled target domains. Although both our model and
MDAN use the similar notion of the domain classifier to minimize the domain mismatch in shared space, the
domain classifier induced by our information-theoretic (IT) loss also acts to separate domains in the private
space (see Eqs. 6 & 9 for more details), improving the essential reconstruction ability, similar to (Bousmalis
et al. (2016)). We provided how our model is related to IT representation learning approaches, and multiple
domain transfer networks in Appendices A and B respectively. In Appendix C, we also clearly contrasted
our model with DSN model which also uses the notion of auto-encoders to explicitly separate the feature
representations private to each source/target domain from those that are shared between the domains.

4 EXPERIMENTAL RESULTS

We compare the proposed method with state-of-the-art methods on standard benchmark datasets: a digit
classification task that includes 4 datasets: MNIST (LeCun et al. (1998)), MNIST-M (Ganin et al. (2016)),
SVHN (Netzer et al. (2011)), USPS (Tzeng et al. (2017)), Multi-PIE expression recognition dataset2, and
PACS multi-domain image recognition benchmark (Li et al. (2017)), a new dataset designed for the cross-
domain recognition problems (the details for this experiment is available in Appendix G). Fig. 3 illustrates
image samples from different datasets and domains. We evaluate the performance of all methods with
classification accuracy metric. We repeated each experiment 5 times and report the average and the standard
deviation of the accuracy.

We used ADAM (Kingma & Ba (2015)) for training; the learning rate was set to 0.0002 and momentum
parameters to 0.5 and 0.999. We used batches of size 16 from each domain, and the input images were mean-
centered/rescaled to [−1, 1]. The hyper-parameters are empirically set as λr = 1.0, λc = 0.01, λd = 0.20.
For the network architecture, our private/shared encoders consisted of three convolutional layers as the
front-end and four basic residual blocks as the back-end. The decoder consisted of four basic residual blocks
as the front-end and four transposed convolutional layers as the back-end. The discriminator and the classifier
consisted of stacks of convolutional layers. We used ReLU for nonlinearity. Tanh function is used as the
activation function of the last layer in the decoder F for scaling the output pixels to [−1, 1]. The details of the
networks are given in Appendix D.

The quantitative evaluation involves a comparison of the performance of our model to previous work and to
Source Only and 1-NN baselines that do not use any domain adaptation. For Source Only baseline, we train
our model only on the unaltered source training data and evaluate on the target test data. We compare the
proposed method MTDA-ITA with several related methods designed for pair-wise source-target adaptation:
CORAL (Sun & Saenko (2016)), DANN (Ganin & Lempitsky (2015)), ADDA (Tzeng et al. (2017)), DTN
(Zhang et al. (2015)), UNIT (Liu et al. (2017)), PixelDA (Bousmalis et al. (2017)), and DSN (Bousmalis
et al. (2016)). We reported the results of two following baselines: (i) one is to combine all the target domains
into a single one and train it using MTDA-ITA, which we denote as (c-MTDA-ITA). (ii) the other one is to
train multiple MTDA-ITA separately, where each one corresponds to a source-target pair which we denote as
(s-MTDA-ITA). For completeness, we reported the results of the competing methods by combining all the
target domains into a single one (denoted by c-DTN, c-ADDA, and c-DSN) as well. We also extend DSN to
multiple domains by (i) having one private encoder for all domains denoted by (1p-DSN), (ii) adding multiple
private encoders to it denoted by (mp-DSN) and contrast them with our model.

4.1 DIGITS DATASETS

We combine four popular digits datasets (MNIST, MNIST-M, SVHN, and USPS) to build the multi-
target domain dataset. All images were uniformly rescaled to 32 × 32. We take each of MNIST-M,

2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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(a) Digit datasets (b) PACS dataset
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smile
Camera at 30

surprise disgust squint

scream
Overhead Camera at 30

disgust normal squint

disgust
Camera at 60

squint normal smile

(c) Multi-PIE dataset
Figure 3: Exemplary images from different datasets. a) Digits datasets, b) PACS datatset (first row: Art-painting,
second row: Cartoon, Third row: Photo, last row: Sketch), c) Multi-PIE dataset (each row corresponds to a different
camera angle and each subject depicts an expression(normal, smile, surprise, squint, disgust, scream) at every camera
position).

SVHN, USPS, and MNIST as source domain in turn, and the rest as targets. We use all labeled source
images and all unlabeled target images, following the standard evaluation protocol for unsupervised domain
adaptation (Ganin et al. (2016); Long et al. (2016). We show the accuracy of different methods in Table 1.
Additional results are available in Appendix F. The results show that first of all cMTDA-ITA has worse
performance than sMTDA-ITA and MTDA-ITA. We have similar observations for ADDA, DTN, and
DSN that demonstrates a naive combination of different target datasets can sometimes even decrease the
performance of the competing methods. Furthermore, MTDA-ITA outperforms the state-of-the-art methods
in most of domain transformations. The higher performance of MTDA-ITA compared to other methods is
mainly attributed to the joint adaptation of related domains where each domain could benefit of other related
domains. Furthermore, from the results obtained, we see that it is beneficial to use information coming
from unlabeled target data (see Eq. 8 for updating the classifier C) during the learning process, compared
to when no data from target domain is used (See the ablation study section for more information). Indeed,
using our scheme, we find a representation space in which embeds the knowledge from the target domain
into the learned classifier. By contrast, the competing methods do not provide a principled way of sharing
information across all domains, leading to overall lower performance. The results also verify the superiority
of MTDA-ITA over both mp-DSN, and 1p-DSN. This can be due to (i) having multiple private encoders
increase the number of parameters that may lead to mp-DSN overfitting, (ii) superiority of the MTDA-ITA’s
domain adversarial loss over the DSN’s MMD loss to separate the shared and private features, (iii) utilization
of the unlabeled target data to regularize the classifier in MTDA-ITA.

4.2 MULTI-PIE DATASET

The Multi-PIE dataset includes face images of 337 individuals captured from different expressions, views,
and illumination conditions (fig. 3(c)). For this experiment, we use 5 different camera views (positions) C05,
C08, C09, C13, and C14 as different domains (Fig. 3(c)) and the face expressions (normal, smile, surprise,
squint, disgust, scream) as labels. Each domain contains 27120 images of size 64× 64× 3. We used each
view as the source domain, in turn, and the rest as targets. We expect the face inclination angle to reflect
the complexity of transfer learning. Tab. 2 shows the classification accuracy for C13 and C14 as source
domain (the results for views C05, C08 and C09 as source domain are available in Appendix F). As can be
seen, MTDA-ITA achieves the best performances as well as the best scores in most settings that verifies the
effectiveness of MTDA-ITA for multi-target domain adaptation. Clearly, with the increasing camera angle,
the image structure changes up to a certain extent (the views become heterogeneous). However, our method
produces better results even under such very challenging conditions.
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method S→M S→MM S→ U M→ S M→MM M→ U Ave. ranking
Source Only 62.10 ± 0.60 40.43 ± 0.70 39.90 ± 0.60 30.29 ± 0.59 55.98 ± 0.48 78.30 ± 0.38 14.00

1-NN 35.86 18.21 29.31 28.01 12.58 41.22 15.00
CORAL (Sun & Saenko (2016)) 63.10 ± 0.61 54.37 ± 0.53 50.15 ± 0.63 33.40 ± 0.74 57.70 ± 0.69 81.05 ± 0.80 11.33

DANN (Ganin et al. (2016)) 73.80 ± 0.49 61.05 ± 0.80 62.54 ± 0.91 35.50 ± 0.65 77.40 ± 0.73 81.60 ± 0.60 8.75
ADDA (Tzeng et al. (2017)) 77.68 ± 0.92 64.23 ± 0.70 64.10 ± 0.79 30.04 ± 0.98 91.47 ± 1.0 90.51 ± 0.80 6.43

c-ADDA 80.10 ± 0.69 56.80 ± 0.79 64.80 ± 0.88 27.50 ± 0.86 83.30 ± 0.90 84.10 ± 0.98 8.95
DTN (Zhang et al. (2015)) 81.40 ± 0.42 63.70 ± 0.39 60.12 ± 0.52 40.40 ± 0.50 85.70 ± 0.39 85.80 ± 0.46 6.04

c-DTN 82.10 ± 0.62 59.30 ± 0.59 56.87 ± 0.65 38.32 ± 0.50 80.90 ± 0.80 79.31 ± 0.78 7.96
PixelDA (Bousmalis et al. (2017)) – – – – 98.10∗ 94.10∗ –

UNIT (Liu et al. (2017)) 90.6∗ – – – – 92.90 –
DSN (Bousmalis et al. (2016)) 82.70 ± 0.37 64.80 ± 0.40 65.30 ± 0.28 49.30 ± 0.30 83.20 ± 0.30 91.65 ± 0.40 2.85

c-DSN 83.10 ± 0.20 60.56 ± 0.36 60.35 ± 0.59 46.80 ± 0.45 80.49 ± 0.40 88.21 ± 0.38 4.84
1p-DSN 81.00 ± 0.47 58.22 ± 0.68 58.06 ± 0.48 45.11 ± 0.33 77.33 ± 0.52 85.16 ± 0.63 4.90
mp-DSN 83.40 ± 0.30 61.00 ± 0.50 58.10 ± 0.64 47.35 ± 0.40 79.30 ± 0.59 86.45 ± 0.71 5.33

s-MTDA-ITA 82.90 ± 0.13 63.10 ± 0.28 63.54 ± 0.30 49.60 ± 0.25 82.42 ± 0.19 89.21 ± 0.28 2.88
c-MTDA-ITA 79.20 ± 0.28 59.90 ± 0.30 63.70 ± 0.26 45.30 ± 0.30 77.12 ± 0.22 87.47 ± 0.25 4.25
MTDA-ITA 84.60 ± 0.24 65.30 ± 0.15 70.03 ± 0.20 52.01 ± 0.21 85.50 ± 0.18 94.20 ± 0.20 1.16

Table 1: Classification results on digit datasets. M: MNIST; MM: MNIST-M, S: SVHN, U: USPS. The best is shown
in red. c-X: combining all target domains into a single one and train it using X. s-MTDA-ITA: training multiple MTDA-
ITA where each one correspond to a source-target pair. 1p-DSN: extended DSN with single private encoder.mp-DSN:
extended DSN with multiple private encoder. Last column shows the average rank of each method over all adaptation
pairs.*UNIT trains with the extended SVHN (> 500K images vs ours 72K). *PixelDA uses (≈ 1, 000) of labeled target
domain data as a validation set for tuning the hyper-parameters.

method C13→ C05 C13→ C08 C13→ C09 C13→ C14 C14→ C05 C14→ C08 C14→ C09 C14→ C13 Ave. ranking
Source Only 50.79 ± 0.33 45.90 ± 0.50 40.04 ± 0.40 59.68 ± 0.29 60.03 ± 0.55 36.80 ± 0.61 40.11 ± 0.50 60.57 ± 0.36 16.08

1-NN 33.21 37.01 34.45 48.79 47.44 28.24 30.86 44.86 17.00
CORAL 54.89 ± 0.52 48.90 ± 0.48 40.30 ± 0.53 68.90 ± 0.35 59.98 ± 0.45 40.63 ± 0.55 40.80 ± 0.53 65.11 ± 0.45 11.95
DANN 57.86 ± 0.41 50.30 ± 0.43 45.30 ± 0.50 70.68 ± 0.35 57.20 ± 0.45 40.22 ± 0.55 40.77 ± 0.45 70.50 ± 0.55 9.92
ADDA 64.83 ± 0.69 63.20 ± 0.45 55.48 ± 0.65 74.25 ± 0.55 73.62 ± 0.75 43.56 ± 0.95 38.68 ± 0.95 72.84 ± 0.75 9.33

c-ADDA 59.20 ± 0.25 30.70 ± 0.63 53.20 ± 0.40 68.33 ± 0.35 65.88 ± 0.38 30.60 ± 0.61 45.34 ± 0.48 64.30 ± 0.40 11.50
DTN 63.78 ± 0.29 60.45 ± 0.35 60.55 ± 0.35 72.60 ± 0.25 70.67 ± 0.30 41.55 ± 0.65 41.45 ± 0.45 70.67 ± 0.45 8.75

c-DTN 57.53 ± 0.42 55.24 ± 0.45 57.14 ± 0.39 65.16 ± 0.35 63.80 ± 0.42 38.97 ± 0.71 39.80 ± 0.65 62.10 ± 0.45 10.92
PixelDA 45.68 ± 0.52 44.95 ± 0.42 44.45 ± 0.55 90.50 ± 0.25 46.28 ± 0.60 45.89 ± 0.61 44.45 ± 0.51 69.15 ± 0.45 9.95

UNIT 44.14 ± 0.10 44.47 ± 0.11 44.21 ± 0.12 44.47 ± 0.11 43.03 ± 0.1 44.44 ± 0.15 44.47 ± 0.15 44.47 ± 0.05 11.07
DSN 64.15 ± 0.30 57.70 ± 0.38 49.15 ± 0.45 80.75 ± 0.27 82.20 ± 0.28 38.75 ± 0.53 45.00 ± 0.25 80.50 ± 0.35 5.15

c-DSN 57.34 ± 0.45 31.63 ± 0.60 51.17 ± 0.40 74.52 ± 0.37 82.01 ± 0.35 34.25 ± 0.58 42.63 ± 0.55 79.42 ± 0.35 8.20
1p-DSN 55.84 ± 0.50 30.03 ± 0.50 49.06 ± 0.38 72.11 ± 0.50 81.22 ± 0.45 33.33 ± 0.58 42.03 ± 0.24 78.78± 0.57 8.63
mp-DSN 55.20 ± 0.46 30.40 ± 0.50 47.80 ± 0.35 75.30 ± 0.25 80.75 ± 0.20 30.20 ± 0.55 43.00 ± 0.35 79.02 ± 0.40 8.88

s-MTDA-ITA 70.10 ± 0.27 58.90 ± 0.25 58.10 ± 0.27 80.12 ± 0.15 82.05 ± 0.18 45.90 ± 0.30 52.67 ± 0.30 81.60 ± 0.24 3.65
c-MTDA-ITA 60.34 ± 0.17 55.67 ± 0.21 57.10 ± 0.23 73.50 ± 0.20 76.80 ± 0.10 43.10 ± 0.12 48.10 ± 0.14 80.90 ± 0.11 5.01
MTDA-ITA 78.40 ± 0.2 66.70 ± 0.17 70.30 ± 0.14 85.49 ± 0.11 87.20 ± 0.10 61.40 ± 0.14 60.05 ± 0.13 86.70 ± 0.10 1.20

Table 2: Classification results on Multi-PIE dataset. Last column shows the average rank of each method over all
adaptation pairs. The best is shown in red.

4.3 ABLATION STUDIES

We performed an ablation study on the proposed model measuring impact of various terms on the model’s
performance. To this end, we conducted additional experiments for the digit datasets with different components
ablation, i.e., training without the reconstruction loss (denoted as MTDA-woR) by setting λr = 0, training
without the classifier entropy loss (denoted as MTDA-woE) by setting λc = 0, training without the multi-
domain separation loss (denoted as MTDA-woD) by setting λd = 0.
As can be seen from fig. 4, disabling each of the above components leads to degraded performance. More
precisely, the average drop by disabling the classifier entropy loss is ≈ 3.5%. Similarly, by disabling
the reconstruction loss and the multi-domain separation loss, we have ≈ 4.5% and ≈ 22% average drop
in performance, respectively. Clearly, by disabling the multi-domain separation loss, the accuracy drops
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significantly due to the severe data distribution mismatch between different domains. The figure also
demonstrates that leveraging the unlabeled data from multiple target domains during training enhances the
generalization ability of the model that leads to higher performance. In addition, the performance drop caused
by removing the reconstruction loss , i.e., without the private encoder/decoder, indicates (i) the benefit of
modeling the latent features as the combination of shared and private features, (ii) the ability of the model’s
domain adversarial loss to effectively learn those features.
In order to examine the effect of the private features on the model’s classification performance, we took the
MTDA-ITA and trained it without the private encoder (denoted as MTDA-woP). As fig. 4 shows, without the
private features, the model performed consistently worse (≈ 2% average drop in performance) in all scenarios.
This demonstrates explicitly modeling what is unique to each domain can improve the model’s ability to
extract domain–invariant features. In summary, this ablation study showed that the individual components
bring complimentary information to achieve the best classification results.

4.4 FEATURE VISUALIZATION

We use t-SNE (Maaten & Hinton (2008)) on Digit dataset to visualize shared and private feature representations
from different domains. Fig. 6 shows shared and private features from source (SVHN) and target domains
before (a),(b) and after adaptation (c),(d). MTDA-ITA significantly reduces the domain mismatch for the
shared features (circle markers in fig. 6d, strong mixing of domain labels in this cluster, fig. 6c) and increases
it for the private features (triangle markers, pure and well-separated domain clusters in fig. 6c). This is
partially due to the proposed multi-domain separation loss through the use of the domain classifier D, which
penalizes the domain mismatch for the shared features and rewards the mismatch for the private features.
Moreover, as supported by the quantitative results in tab. 1, joint adaptation of related domains and the
classifier, accomplished through the model, leads to superior class separability, compared to original features.
This is depicted in fig. 6d, where the points in the shared space (large cluster) are grouped into class-specific
subgroups (color indicates class label), while they are mixed in private spaces (smaller clusters). This is in
contrast to fig. 6b, where original features show no class-specificity.

We also show the learned shared and private features for the models MTDA-woE, MTDA-woP, MTDA-
woR, and MTDA-woD, in figs. 6e to 6l. Note that since the private encoder Ep is disabled for MTDA-woR,
and MTDA-woP, no private features are depicted in figs. 6g to 6j. The class label separation in the shared
space for MTDA-woE, MTDA-woP, and MTDA-woR, figs. 6f, 6h and 6j, is still evident but not as strong
as in the full model, fig. 6d, corroborating the small loss in classification accuracy observed in fig. 4a. On
the other hand, MTDA-woD has significant mixing of class labels in the shared space, fig. 6l, more so than
MTDA-woE, MTDA-woR, and MTDA-woP, implying worse classification prediction in fig. 4a due to the
severe mismatch between different domains. Since our model uses one private encoder for all target domains,
we also contrasted the visualization of DSN model with one private encoder 1p-DSN in Appendix H.

5 CONCLUSION

This paper presented an information theoretic end-to-end approach to uDA in the context of a single source
and multiple target domains that share a common task or properties. The proposed method learns feature
representations invariant under multiple domain shifts and simultaneously discriminative for the learning task.
This is accomplished by explicitly separating representations private to each domain and shared between
source and target domains using a novel discrimination strategy. Our use of a single private domain encoder
results in a highly scalable model, easily optimized using established back-propagation approaches. Results
on three benchmark datasets for image classification show superiority of the proposed method compared to
the state-of-the-art methods for unsupervised domain adaptation of visual domain categories.
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A CONNECTION TO INFORMATION THEORETIC REPRESENTATION LEARNING

The idea of using information theoretic (IT) objectives for representation learning was originally introduced
in (Tishby & Zaslavsky (2015)). Since their approach for optimizing the IT objective functions relied on the
iterative Blahut Arimoto algorithm (Tishby & Zaslavsky (2015)), it is not feasible to apply to deep neural
network (DNN) frameworks. Similar to our approach, there have been some recent works (Mohamed &
Rezende (2015); Chalk et al. (2016); Alemi et al. (2018b; 2016; 2018a)) to approximate the MI by applying
variational bounds on MI, though not in the context of domain adaptation.

Mohamed & Rezende (2015) utilized the variational bounds on MI, and apply it to DNNs in the context of
reinforcement learning. Chalk et al. (2016) and Alemi et al. (2016), developed the same variational lower
bound In the context of Information Bottleneck (IB) principle (Tishby & Zaslavsky (2015)), where the former
applied it to sparse coding problems, and used the kernel trick to achieve nonlinear mappings, whereas the
latter applied it to DNNs to handle large datasets thanks to the SGD algorithm. Achille & Soatto (2018)
proposed a variational bound on the MI in the context of IB, from the perspective of variational dropout and
demonstrated its utility in learning disentangled representations for variational autoencoders.

The main difference between our method and the above methods is that these methods throw away the
information in the data not related to the task by minimizing the mutual information between the data points
and the latent representations that may lead to ignoring the individual characteristics (private features) of the
datasets in a multiple dataset regime, whereas our method explicitly models what is unique to each domain
(dataset) that improves the model’s ability to extract domain–invariant features.

In the unsupervised representation learning literature, our work is also related to the VAE-based models
(Bowman et al. (2015)). However, we propose to tackle the task using our IT approach using deterministic
mappings instead of the traditional evidence lower bound (ELBO) optimization with stochastic mappings.
In contrast to the unsupervised representation learning approaches, our setting also allows us to further
improve the latent representation using the labeled data in the source domain while leveraging the sharing of
dependencies across different target domains.

B CONNECTION TO MULTIPLE DOMAIN TRANSFER NETWORKS

Recent studies have shown remarkable success in multiple domain transfer (MDT) (Choi et al. (2017);
Anoosheh et al. (2017); Kameoka et al. (2018); Hao et al. (2018)) though not in the context of the image
classification, rather in the context of image generation. Choi et al. (2017) proposed StarGAN, a generative
adversarial network capable of learning mappings among multiple domains in the contest of image to image
translation framework. The goal of StarGAN is to train a single generator G though this requires passing in
a vector along with each input to the generator specifying the output domain desired, that learns mappings
among multiple domains. To achieve this, G is trained to translate an input image x into an output image x′

conditioned on the target domain label d, G(x,d)→ x′. Similar to our domain classifier module D, they
introduce an auxiliary classifier that allows a single discriminator to control multiple domains.

Anoosheh et al. (2017) introduced ComboGAN, which decouples the domains and networks from each
other. Similar to our encoder/decoder modules, ComboGAN’s generator networks contain encoder/decoders
assigning each encoder and decoder to a domain. They combine the encoders and decoders of the trained
model like building blocks, taking as input any domain and outputting any other. For example during
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inference, to transform an image x from an arbitrary domain X to x′ from domain X′, they simply perform
x′ = GX′,X(x) = DecoderX′(EncoderX(x)). The result of EncoderX(x) can even be cached when
translating to other domains as not to repeat computation.

The main differences between the MDT methods and ours is that, unlike our method which does domain
alignment in feature space, MDT methods adapt representations not in feature space but rather in raw pixel
space; translating samples from one domain to the “style” of a other domains. This works well for limited
domain shifts where the domains are similar in pixel-space, but can be too limiting for settings with larger
domain shifts that results in poor performance in significant structural change of the samples in different
domains.

C CONNECTION TO DOMAIN SEPARATION NETWORKS

The method closest to our work is Domain Separation Networks (DSN) (Bousmalis et al. (2016)), which use
the notion of auto-encoders to explicitly separate the feature representations private to each source/target
domain from those that are shared between the domains. Although extending DSN to multiple domains might
seem trivial, DSN requires an autoencoder per domain, making the model impractical in the case of more
than a couple of domains.

The overall loss of DSN consists of a reconstruction loss for each domain modeled by a shared decoder, a
similarity loss such as MMD, which encourages domain invariance modeled by a shared encoder, and a
dissimilarity loss modeled by two private encoders: one for the source domain and one for the target domain.
While one could attempt to generalize DSN to multiple target domains by having individual per-target domain
private encoders, doing so would prove problematic when the number of target domains is large — each
private encoder would require a large "private" dataset to learn the private parameters. Precisely, for multiple
(M) target domains, we could train a DSN model with one shared encoder, M + 1 private encoder (one for
each domain), and one shared decoder. This leads to M + 3 models to train that implies the number of models
increases linearly with the number of domains, as does the required training time. Second, DSN uses an
orthogonality constraint among the shared and the private representations which may not be strong enough to
remove redundancy and enforce disentangling among different private spaces. Precisely, DSN defines the loss
via a soft subspace orthogonality constraint between the private and shared representation of each domain.
However, it does not enforce the private representation of different domains to be different that may result in
redundancy of different private spaces.

In addition, DSN enforces separation of spaces using the notion of Euclidean orthogonality, e.g., ‖zs − zp‖2.
In case of multiple target domains, this would result in learning of all pairs of private spaces independently.
To address those deficiencies, we first explicitly couple different private encoders into a single private encoder
model,Eθp of fig. 2 , which allows us to generalize to an arbitrary number of target domains. To assure that the
information among the private and shared spaces is not shared (i.e., "orthogonal"), we define an information-
theoretic criteria enforced by a domain classifier,Dψ of fig. 2, which aims to segment the private space
into clusters that correspond to individual target domains. By using Dψ within the adversarial framework,
MTDA-ITA learns simultaneously the shared and private features from different domains (see fig. 6). We
showed in Sec. 4 that our model performs better than the trivial extension of DSNs to the multi-domain case.

D NETWORK ARCHITECTURE

The network architecture used for the experiments is given in tab. 3. We use the following abbreviation
for ease of presentation: N=Neurons, K=Kernel size, S=Stride size, D=Number of Domains, C=number of
Classes. The transposed convolutional layer is denoted by DCONV. The residual basic block is denoted as
RESBLK.
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Layer Encoders (shared, private)

1 CONV-(N16,K7,S1), ReLU
2 CONV-(N32,K3,S2), ReLU
3 CONV-(N64,K3,S2), ReLU
4 RESBLK-(N64,K3,S1)
5 RESBLK-(N64,K3,S1)
6 RESBLK-(N64,K3,S1)
7 RESBLK-(N64,K3,S1)

Layer Decoder

1 RESBLK-(N64,K3,S1)
2 RESBLK-(N64,K3,S1)
3 RESBLK-(N64,K3,S1)
4 RESBLK-(N64,K3,S1)
5 DCONV-(N32,K3,S2), ReLU
6 DCONV-(N16,K3,S2), ReLU
7 DCONV-(N1,K1,S1), Tanh

Layer Discriminator

1 CONV-(N4,K3,S1), ReLU
2 CONV-(N8,K3,S1), ReLU
3 CONV-(N16,K3,S1), ReLU
4 CONV-(N32,K3,S1), ReLU
5 CONV-(N1,K3,S1), ReLU
6 DENSE-(ND), Softmax

Layer Classifier

1 CONV-(N4,K3,S1), ReLU
2 CONV-(N8,K3,S1), ReLU
3 CONV-(N16,K3,S1), ReLU
4 CONV-(N32,K3,S1), ReLU
5 CONV-(N1,K3,S1), ReLU
6 DENSE-(NC), Softmax

Table 3: Network architecture for the experiments.

E PROPOSED MODEL’S ALGORITHM

The detailed optimization process of the proposed model is shown in Algorithm 1.

F ADDITIONAL EXPERIMENTS FOR DIGIT AND MULTI-PIE DATASETS

The additional experiments for Digit dataset where we set MNIST-M and USPS as source domain is available
in tab. 4. The additional experiments for Multi-PIE dataset where we set C05, C08 and C09 as source domain
is available in tabs. 5 & 6.

G PACS DATASET

This dataset contains 9991 images (227 × 227 × 3 dimension) across 7 categories (‘dog’, ‘elephant’,
‘giraffe’,‘guitar’, ‘house’, ‘horse’ and ‘person’) and 4 domains of different stylistic depictions (‘Photo’, ‘Art
painting’, ‘Cartoon’ and ‘Sketch’). The very diverse depiction styles provide a significant gap between
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(d) Source domain: USPS

Figure 4: Ablation of MTDA-ITA on Digit dataset. We show that each component of our method, Reconstruction loss,
Classifier entropy loss with separating shared/private features, contributes to the overall performance.

method MM→ S MM→M MM→ U U→ S U→M U→MM
Source Only 40.00 ± 0.61 84.46 ± 0.29 80.43 ± 0.50 23.41 ± 0.52 50.64 ± 0.37 41.45 ± 0.38

1-NN 21.45 82.13 36.90 15.34 38.45 18.54
CORAL (Sun & Saenko (2016)) 40.20 ± 0.60 84.90 ± 0.70 87.54 ± 0.44 38.90 ± 0.96 85.01 ± 0.61 60.45 ± 0.70

DANN (Ganin et al. (2016)) 51.80 ± 0.91 61.05 ± 0.71 85.34 ± 0.64 35.50 ± 0.84 77.40 ± 0.64 61.60 ± 0.64
ADDA (Tzeng et al. (2017)) 40.64 ± 0.86 92.82 ± 0.48 80.70 ± 0.48 41.23 ± 0.78 90.10 ± 0.58 56.21 ± 0.79

c-ADDA 35.43 ± 0.94 88.47 ± 0.61 74.19 ± 0.58 39.36 ± 0.99 84.67 ± 0.94 52.54 ± 0.88
DTN (Zhang et al. (2015)) 48.80 ± 0.66 88.80 ± 0.38 90.68 ± 0.35 42.43 ± 0.61 89.04 ± 0.36 55.78 ± 0.40

c-DTN 44.21 ± 0.61 83.60 ± 0.54 84.98 ± 0.41 39.75 ± 0.64 85.04 ± 0.45 48.86 ± 0.54
UNIT (Liu et al. (2017)) – – – 90.60 –

DSN (Bousmalis et al. (2016)) 51.50 ± 0.64 90.20 ± 0.31 89.95 ± 0.29 48.20 ± 0.59 91.40 ± 0.30 60.45 ± 0.35
c-DSN 47.10 ± 0.50 84.60 ± 0.40 84.80 ± 0.39 40.50 ± 0.61 86.05 ± 0.46 56.25 ± 0.50

1p-DSN 45.00 ± 0.60 81.96 ± 0.60 83.03 ± 0.49 39.30 ± 0.51 84.55 ± 0.56 55.03 ± 0.60
mp-DSN 47.15 ± 0.64 85.51 ± 0.54 83.24 ± 0.24 38.30 ± 0.74 87.40 ± 0.35 55.47 ± 0.44

s-MTDA-ITA 50.55 ± 0.18 94.82 ± 0.21 89.05 ± 0.28 40.13 ± 0.30 87.10 ± 0.25 61.01 ± 0.24
c-MTDA-ITA 47.32 ± 0.19 90.20 ± 0.30 90.01 ± 0.24 41.10 ± 0.35 85.35 ± 0.28 60.31 ± 0.34
MTDA-ITA 53.50 ± 0.22 98.20 ± 0.10 94.10 ± 0.11 46.00 ± 0.48 91.50 ± 0.23 67.30 ± 0.15

Table 4: Classification results on digit datasets. M: MNIST; MM: MNIST-M, S: SVHN, U: USPS. The best is shown in
red. c-X: combining all target domains into a single one and train it using X. s-MTDA-ITA: training multiple MTDA-ITA
where each one correspond to a source-target pair. mp-DSN: extended DSN with multiple private encoder. *UNIT trains
with the extended SVHN (> 500K images vs ours 72K). *PixelDA uses (≈ 1, 000) of labeled target domain data as a
validation set for tuning the hyper-parameters.

domains, coupled with the small number of data samples, making it extremely challenging for domain
adaptation. Consequently, the dataset was originally used for multi-source to single target domain adaptation
(Li et al. (2017)). Instead, we tackle a significantly more challenging problem of single-source to multiple
target adaptation. Tab. 7 shows the classification accuracy of various methods. MTDA-ITA consistently
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method C05→ C08 C05→ C09 C05→ C13 C05→ C14
Source Only 31.56 ± 0.40 40.67 ± 0.36 39.89 ± 0.22 54.70 ± 0.25

1-NN 27.28 31.22 33.66 47.04
CORAL (Sun & Saenko (2016)) 36.55 ± 0.66 38.60 ± 0.67 40.60 ± 0.58 55.29 ± 0.47
DANN (citeganin2016domain) 40.30 ± 0.60 41.20 ± 0.65 40.12 ± 0.60 58.90 ± 0.38

ADDA (Tzeng et al. (2017)) 33.21 ± 0.81 30.86 ± 0.90 52.44 ± 0.80 70.18 ± 0.60
c-ADDA 46.88 ± 0.65 36.38 ± 0.88 39.14 ± 0.85 65.41 ± 0.69

DTN (Zhang et al. (2015)) 38.50 ± 0.51 30.56 ± 0.46 55.78 ± 0.36 68.90 ± 0.31
c-DTN 41.70 ± 0.42 31.10 ± 0.48 50.19 ± 0.45 60.34 ± 0.35

PixelDA (Bousmalis et al. (2017)) 44.93 ± 0.42 44.75 ± 0.45 45.18 ± 0.45 46.88 ± 0.49
UNIT (Liu et al. (2017)) 44.47 ± 0.21 44.47 ± 0.21 44.47 ± 0.20 44.51 ± 0.28

DSN (Bousmalis et al. (2016)) 45.12 ± 0.46 44.35 ± 0.49 48.12 ± 0.53 75.00 ± 0.39
c-DSN 42.52 ± 0.48 38.54 ± 0.64 34.15 ± 0.64 69.45 ± 0.55

1p-DSN 41.64 ± 0.58 37.84 ± 0.63 34.65 ± 0.44 68.75 ± 0.85
mp-DSN 41.30 ± 0.28 35.14 ± 0.35 34.40 ± 0.35 65.70 ± 0.27

s-MTDA-ITA 44.40 ± 0.23 44.60 ± 0.25 47.65 ± 0.27 80.20 ± 0.13
c-MTDA-ITA 40.49 ± 0.25 40.70 ± 0.25 42.80 ± 0.25 71.60 ± 0.10
MTDA-ITA 49.01 ± 0.20 48.20 ± 0.27 53.13 ± 0.22 84.29 ± 0.10

Table 5: Classification results on Multi-PIE dataset. The best is shown in red.

Algorithm 1 MDTA-ITA Algorithm
Require: {X,Y,D}:M domain datasets.

λr, λc, λd: Model hyper-parameters.
Ensure: θs, θp, θc, φ, ψ: Model parameters.

1: Initialize θs, θp, θc, φ, ψ;
2: repeat
3: Sample a mini-batch from each of source/target domain datasets.
4: Update {θs} by minimizing Ls in Eq.(10) through the gradient descent: θs = θs − η ∂Ls∂θs

.

5: Update {θp} by minimizing Lp in Eq.(9) through the gradient descent:θp = θp − η ∂Lp∂θp
.

6: Update {θc} by minimizing Lc in Eq.(8) through the gradient descent:θc = θc − η ∂Lc∂θc
.

7: Update {φ} by minimizing Lφ in Eq.(6) through the gradient descent:φ = φ− η ∂Lφ∂φ .
8: Update {ψ} by minimizing Lψ in Eq.(5) through the gradient descent:ψ = ψ − η ∂Ls∂ψ .
9: until Convergence;

10: return {θs, θp, θc, φ, ψ}.

achieves the best performance for all transfer tasks. Evaluations were obtained by training all models (ADDA,
DSN, and ours) from scratch on the PACS dataset. Note that the overall performance figures are low due to
the extreme difficulty of the transfer task, induced by large differences among domains.

H ANALYSIS OF SHARED/PRIVATE SPACE EMBEDDING

In the experiments conducted, we showed that our approach is able to achieve better performance than the
competing methods including the extended DSN with one private encoder (1p-DSN) which is the most similar
method to ours.
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Figure 5: Feature visualization for embedding of digit datasets using t-SNE algorithm. The first and the second columns
show the domains and classes, respectively, with color indicating domain and class membership. (a),(b) Original features.
(c),(d) learned features for MTDA-ITA (triangle marker: private features, circle marker: shared features). Large clusters
in the right column represent points from the shared space, while the smaller ones are from the private spaces. (e),(f)
learned features for 1p-DSN.

Indeed, fig. 5 depicts the embedding of the MTDA-ITA learned private/shared features, those of 1p-DSN
and the original features from different domains for Digit datasets (SVHN is the source).

Notice that both MTDA-ITA and 1p-DSN reduces the domain mismatch for the shared features (circle
markers in fig. 5) and separate the shared features from private features. On the other hand, MTDA-ITA
increases the domain separation for the private features (triangle markers, pure and well-separated domain
clusters in fig. 5c) while 1p-DSN is unable to enforce the private representation of different domains to
be different (fig. 5e) that may result in redundancy of different private spaces. This is partially due to the
proposed multi-domain separation loss through the use of the domain classifierD, which penalizes the domain
mismatch for the shared features and rewards the mismatch for the private features, something the 1p-DSN
fails to account for. Moreover, as supported by the quantitative results in tab. 1, the class label separation in
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method C08→ C05 C08→ C09 C08→ C13 C08→ C14 C09→ C05 C09→ C08 C09→ C13 C09→ C14
Source Only 33.70 ± 0.33 50.10 ± 0.28 50.80 ± 0.32 40.13 ± 0.26 33.32 ± 0.44 48.24 ± 0.32 49.24 ± 0.30 36.19 ± 0.27

1-NN 28.75 35.39 39.79 32.13 26.82 35.30 34.26 28.41
CORAL (Sun & Saenko (2016)) 35.89 ± 0.44 55.79 ± 0.50 60.00 ± 0.29 40.67 ± 0.48 35.89 ± 0.40 51.56 ± 0.43 50.45 ± 0.41 40.67 ± 0.35

DANN (Ganin et al. (2016)) 40.20 ± 0.50 56.89 ± 0.39 55.83 ± 0.40 43.25 ± 0.41 50.63 ± 0.38 58.40 ± 0.51 55.81 ± 0.53 48.90 ± 0.43
ADDA (Tzeng et al. (2017)) 37.40 ± 0.68 58.40 ± 0.73 60.40 ± 0.83 42.10 ± 0.48 29.40 ± 0.70 53.30 ± 0.49 45.30 ± 0.53 38.30 ± 0.63

c-ADDA 41.60 ± 0.64 39.65 ± 0.70 50.00 ± 0.52 46.25 ± 0.52 45.01 ± 0.63 52.14 ± 0.53 37.43 ± 0.60 43.26 ± 0.58
DTN (Zhang et al. (2015)) 44.13 ± 0.41 57.42 ± 0.42 55.89 ± 0.48 45.76 ± 0.39 44.53 ± 0.49 57.34 ± 0.35 52.43 ± 0.38 51.55 ± 0.40

c-DTN 45.10 ± 0.44 49.78 ± 0.50 47.43 ± 0.46 45.79 ± 0.48 49.80 ± 0.40 55.69 ± 0.35 50.10 ± 0.38 52.31 ± 0.29
PixelDA (Bousmalis et al. (2017)) 46.45 ± 0.45 44.33 ± 0.38 44.87 ± 0.41 46.83 ± 0.29 45.63 ± 0.34 16.37 ± 0.27 45.43 ± 0.35 47.00 ± 0.49

UNIT (Liu et al. (2017)) 43.88 ± 0.18 43.99 ± 0.23 44.47 ± 0.19 44.47 ± 0.24 44.47 ± 0.17 43.95 ± 0.21 44.64 ± 0.22 44.47 ± 0.19
DSN (Bousmalis et al. (2016)) 46.25 ± 0.53 47.50 ± 0.60 62.15 ± 0.58 39.72 ± 0.55 45.85 ± 0.48 56.65 ± 0.50 56.5 ± 0.38 42.87 ± 0.43

c-DSN 45.82 ± 0.53 44.64 ± 0.42 45.60 ± 0.48 46.32 ± 0.52 45.18 ± 0.47 45.52 ± 0.55 44.79 ± 0.53 47.37 ± 0.48
1p-DSN 44.12 ± 0.73 44.14 ± 0.20 45.00 ± 0.38 45.62 ± 0.42 44.78 ± 0.47 45.02 ± 0.65 44.21 ± 0.48 46.97 ± 0.38
mp-DSN 42.19 ± 0.46 44.70 ± 0.53 42.47 ± 0.48 40.50 ± 0.39 45.00 ± 0.51 43.80 ± 0.50 45.79 ± 0.48 42.39 ± 0.49

s-MTDA-ITA 44.77 ± 0.19 45.61 ± 0.18 60.00 ± 0.27 46.70 ± 0.28 49.06 ± 0.24 55.33 ± 0.22 59.90 ± 0.30 50.64 ± 0.26
c-MTDA-ITA 44.35 ± 0.27 42.67 ± 0.24 58.90 ± 0.26 44.32 ± 0.26 46.74 ± 0.22 54.11 ± 0.21 56.89 ± 0.23 49.64 ± 0.19
MTDA-ITA 46.30 ± 0.25 60.60 ± 0.18 60.50 ± 0.19 50.40 ± 0.20 55.59 ± 0.25 57.80 ± 0.21 64.20 ± 0.18 56.34 ± 0.20

Table 6: Classification results on Multi-PIE dataset. The best (red).

method P→ A P→ C P→ S A→ P A→ C A→ S
1-NN 15.28 18.16 25.60 22.70 19.75 22.70

ADDA(Tzeng et al. (2017)) 24.35 ± 2.37 20.12 ± 2.50 22.45 ± 2.11 32.57 ± 2.70 17.68 ± 2.04 18.90 ± 2.48
DSN (Bousmalis et al. (2016)) 28.42 ± 2.12 21.14 ± 2.08 2.04 ± 1.90 29.54 ± 1.95 25.89 ± 1.88 24.69 ± 2.08

s-MTDA-ITA 28.02 ± 1.59 21.64 ± 1.24 26.24 ± 1.60 31.06 ± 1.50 25.09 ± 1.40 25.89 ± 1.03
c-MTDA-ITA 25.35 ± 1.80 20.24 ± 1.39 23.64 ± 1.60 26.54 ± 1.33 20.30 ± 1.29 22.38 ± 1.45
MTDA-ITA 31.40 ± 1.55 23.05 ± 1.04 28.24 ± 1.78 35.74 ± 1.50 27.00 ± 1.25 28.90 ± 1.60

Table 7: Classification results on PACS dataset classification. A:Art-painting, C:Cartoon, S:Sketch, P:Photo. The best
(red).

the shared space for 1p-DSN, fig. 5f, is still evident but not as strong as in the MTDA-ITA, fig. 5d. This can
be attributed to the lack of redundancy in the private space that helps MTDA-ITA to learn more disentangled
shared features and usage of the target samples during training, something the 1p-DSN fails to account for.
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Figure 6: Feature visualization for embedding of digit datasets using t-SNE algorithm. The first and the second columns
show the domains and classes, respectively, with color indicating domain and class membership. (a),(b) Original features.
(c),(d) learned features for MTDA-ITA (triangle marker: private features, circle marker: shared features). Large clusters
in the right column represent points from the shared space, while the smaller ones are from the private spaces. The
remaining figures depict the learned features without: (e),(f) the classifier entropy loss, MTDA-woE; (g),(h) the private
encoder, MTDA-woP; (i),(j) the reconstruction loss/decoder, MTDA-woR; and (k),(l) the multi-domain separation loss,
MTDA-woD.
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