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ABSTRACT
In recent years, the efficiency and even the feasibility of traditional

load-balancing policies are challenged by the rapid growth of cloud

infrastructure with increasing levels of server heterogeneity and

increasing size of cloud services and applications. In such many-

software-load-balancers heterogeneous systems, traditional solu-

tions, such as JSQ , incur an increasing communication overhead,

whereas low-communication alternatives, such as JSQ(d) and the

recently proposed J IQ scheme are either unstable or provide poor

performance.

We argue that a better low-communication load balancing scheme

can be established by allowing each dispatcher to have a different

view of the system and keep using JSQ , rather than greedily try-

ing to avoid starvation on a per-decision basis. Accordingly, we

introduce the Loosely-Shortest-Queue family of load balancing al-

gorithms. Roughly speaking, in Loosely-Shortest-Queue , each dis-

patcher keeps a different approximation of the server queue lengths

and routes jobs to the shortest among them. Communication is used

only to update the approximations and make sure that they are not

too far from the real queue lengths in expectation. We formally estab-

lish the strong stability of any Loosely-Shortest-Queue policy and

provide an easy-to-verify sufficient condition for verifying that a

policy is Loosely-Shortest-Queue . We further demonstrate that the

Loosely-Shortest-Queue approach allows constructing throughput

optimal policies with an arbitrarily low communication budget.

Finally, using extensive simulations that consider homogeneous,

heterogeneous and highly skewed heterogeneous systems in scenar-

ios with a single dispatcher as well as with multiple dispatchers, we

show that the examined Loosely-Shortest-Queue example policies

are always stable as dictated by theory. Moreover, it exhibits an

appealing performance and significantly outperforms well-known

low-communication policies, such as JSQ(d) and J IQ , while using

a similar communication budget.

1 INTRODUCTION
Background. In recent years, due to the rapidly increasing size

and heterogeneity of cloud services and applications [4, 8, 13, 20],

the design of load balancing algorithms for parallel server systems

has become extremely challenging. The goal of these algorithms

is to efficiently load-balance incoming jobs to a large number of

servers, even though these servers display large heterogeneity be-

cause of two reasons: First, current large-scale systems increasingly

contain, in addition to multiple generations of CPUs (central pro-

cessing units) [12], various types of accelerated devices such as

GPUs (graphics processing units), FPGAs (field-programmable gate

arrays) and ASICs (application-specific integrated circuit), with sig-

nificantly higher processing speeds. Second, VMs (virtual machines)

and/or containers are commonly used to deploy different services

that share resources on the same servers, potentially leading to

significant and unpredictable heterogeneity.

In a traditional server farm, a centralized load-balancer (dis-

patcher) can rely on a full-state-information policy with strong

theoretical guarantees for heterogeneous servers, such as join-the-

shortest-queue (JSQ), which routes emerging jobs to the server

with the shortest queue [5, 6, 13, 29, 30]. This is because in such

single-centralized-dispatcher scenarios, the dispatcher forms a sin-

gle access point to the servers. Therefore, by merely receiving a

notification from each server upon the completion of each job, it can

track all queue lengths, because it knows the exact arrival and de-

parture patterns of each queue (neglecting propagation times) [15].

The communication overhead between the servers and the dis-

patcher is at most a single message per job, which is appealing and

does not increase with the number of servers.

However, in current clouds, which keep growing in size and thus

have to rely on multiple dispatchers [10], implementing a policy

like JSQ may involve a prohibitive implementation overhead as the

numberm of dispatchers increases [15]. This is because each server

needs to keep allm dispatchers updated as jobs arrive and complete,

leading to up to O(m) communication messages per job. This large

communication overhead makes scaling the number of dispatchers

difficult, and forces cloud dispatchers to rely on heuristics that do

not provide any service guarantees with heterogeneous servers. For

instance, in L7 load-balancers, multi-dispatcher services are essen-

tially decomposed into several fully-independent single-dispatcher

services, where each dispatcher applies either round-robin or JSQ
reduced to its own jobs only [1, 21, 25]. Unfortunately, such an ap-

proach suffers from lack of predictable guarantees, lack of a global

view of the system, and communication bursts with potential incast

issues.

Related work. Despite their increasing importance, scalable poli-

cies for heterogeneous systems with multiple dispatchers have re-

ceived little attention in the literature. In fact, as we later discuss, the

only suggested scalable policies that address the many-dispatcher

scenario in an heterogeneous setting are based on join-the-idle-

queue (J IQ), and none of them is stable [32].

In the JSQ(d) (power-of-choice) policy, to make a routing deci-

sion, a dispatcher samples d ≥ 2 queues uniformly at random and

chooses the shortest among them [2, 3, 9, 18, 31]. JSQ(d) is stable in
systems with homogeneous servers. However, with heterogeneous

servers, JSQ(d) leads to poor performance and even to instability,

both with a single and multiple dispatchers [7].

In the JSQ(d,m) (power-of-memory) policy, the dispatcher sam-

ples them shortest queues from the previous decision in addition

to d ≥ m ≥ 1 new queues chosen uniformly-at-random [17, 22].

The job is then routed to the shortest among these d +m queues.

JSQ(d,m) has been shown to be stable in the case of a single dis-

patcher, even with heterogeneous servers. However, it offers poor

performance, and has not been considered with multiple dispatch-

ers.



A recent work [32] proposes a class of policies that are both

throughput optimal and heavy-traffic delay optimal. However, their

assumptions are not aligned with our system model and motivation,

due to several reasons: (1) For heterogeneous servers, they require

the knowledge of the server service rates, which may not be achiev-

able in practice. (2) They assume that the number of jobs a server

may complete in a time slot and that may arrive at a dispatcher

in a time slot are deterministically upper-bounded, which rules

out important modeling options with unbounded support, such as

geometric services or Poisson arrivals. (3) Most importantly, they

consider only a single dispatcher, and it is unclear whether their

analysis and performance guarantees can be extended to multiple

dispatchers.

In addition, to address the communication overhead in systems

with multiple dispatchers, the J IQ policy has been proposed [15,

16, 23, 24, 27]. Roughly speaking, in J IQ , each dispatcher routes

jobs to an idle server, if it is aware of any, and to a random server

otherwise. Servers may only notify dispatchers when they become

idle. J IQ achieves low communication overhead of at most a single

message per job, irrespective of the number of dispatchers, and

good performance at low and moderate loads when servers are

homogeneous [15]. However, for heterogeneous servers, J IQ is not

stable, i.e., it fails to achieve 100% throughput [32].

Finally, a recent manuscript on low-communication load balanc-

ing [14] proposes to use local memory not just to remember the

lastm shortest sampled queues as done by JSQ(d,m), but also to

maintain the last known size of all servers. As we later show, this

policy is in fact a special case of Loosely-Shortest-Queue .1 How-
ever, the manuscript [14] only considers a single dispatcher with

homogeneous servers, while we allow for multiple dispatchers and

heterogeneous servers, as well as for a general communication

policy between servers and dispatchers.

Contributions. This paper makes the following contributions:

Loosely-Shortest-Queue (LSQ). We introduce Loosely-Shortest-
Queue , a stable low-communication family of load balancing al-

gorithms for large-scale heterogeneous systems with multiple dis-

patchers. As Figure 1 illustrates, in Loosely-Shortest-Queue , each
dispatcher keeps a different approximation of the server queue

lengths, and routes jobs to the shortest among them. It relies on

communication with the servers to keep a bounded expected dif-

ference between the approximated server queue lengths and the

real ones.

Stability proof. Using a multi-stage argument, we prove that

all Loosely-Shortest-Queue policies are strongly stable, i.e., keep
bounded expected queue lengths. The main difficulty in the proof

arises from the fact that the decisions taken by an Loosely-Shortest-
Queue policy depend on the local view of each dispatcher, hence on a
potentially long history of system states. To address this challenge,

we introduce two additional stable policies into our analysis: (1) JSQ
and (2) Weighted-Random (WR). Broadly speaking, we show that

our policy is sufficiently similar to JSQ which, in turn, is better

1
In addition, [28] mentions that a preprint [26] introduces another similar low-

communication load-balancing, which also seems to be a special case of Loosely-
Shor test -Queue , as we later discuss. However, the preprint [26] did not seem to be

available online.

thanWR. We complete the proof by using the fact that inWR, the
routing decisions do not depend on the system state (unlike JSQ).

Sufficient stability condition. It can be challenging to prove that

a policy is Loosely-Shortest-Queue , i.e., that in expectation, the

local dispatcher views are not too far from the real queue lengths.

Therefore, we develop a simple sufficiency condition to prove that a

policy belongs to the Loosely-Shortest-Queue family, and exemplify

its use. Intuitively, the condition states that there is a non-zero

probability that a server updates a dispatcher at each time-slot.

Example Loosely-Shortest-Queue policies. Since Loosely-Shortest-
Queue is not restricted to work with either push (i.e., dispatchers
sample the servers) or pull (i.e., servers update the dispatchers)

based communication, we aim to achieve the same communication

overhead as the lowest-overhead/best-known examples in each

class. Accordingly, we show how two of the newest existing low

communication policies are in fact Loosely-Shortest-Queue and

how to construct new Loosely-Shortest-Queue policies with com-

munication patterns similar to that of other low-communication

policies such as the push-based JSQ(2) and the pull-based J IQ , but

with significantly stronger theoretical guarantees and empirical

performance.

Extensive simulations. Using extensive simulations considering ho-

mogeneous, heterogeneous, and highly-skewed heterogeneous sys-

tems, in scenarios of a single as well as multiple dispatchers, we

show how simple Loosely-Shortest-Queue policies are always sta-
ble in practice, present appealing performance, and significantly

outperform other low-communication policies using an equivalent

communication budget.

2 SYSTEM MODEL
We consider a system with a setM = {1, 2, . . . ,m} of dispatchers
load-balancing incoming jobs among a set N = {1, 2, . . . ,n} of
possibly-heterogeneous work-conserving servers.

Time slots.We assume a time slotted system with the following

order of events within each time slot: (1) jobs arrive at each dis-

patcher; (2) a routing decision is taken by each dispatcher and it

immediately forwards its jobs to one of the servers; (3) each server

performs its service for this time-slot.

Dispatchers. As mentioned, each of them dispatchers does not

store incoming jobs, and instead immediately forwards them to one

of the n servers. We denote by aj (t) the number of exogenous job

arrivals at dispatcher j at the beginning of time slot t . We make the

following assumption:a(t) =
m∑
j=1

aj (t)


∞

t=0

is an i .i .d . process (1)

E[a(0)] = λ(1) (2)

E
[(
a(0)

)
2
]
= λ(2) (3)

That is, we only assume that the total job arrival process to the

system is i .i .d . over time slots and admits finite first and second

moments. The division of arriving jobs among the dispatchers is

assumed to follow any arbitrary policy that does not depend on

the system state (i.e., queue lengths). We only assume that there is
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Figure 1: JSQ vs. Loosely-Shortest-Queue. (a) JSQ requires instant knowledge of all server queues by all dispatchers, resulting
in substantial communication overhead. (b) At each dispatcher, Loosely-Shortest-Queue relies on limited current and past infor-
mation from the servers to build an approximated local view of all the server queue sizes. For instance, dispatcher 1 believes
that the queue length at server 3 is 1, while it is 2. It then sends jobs to the shortest queue as dictated by its view (here, to
server 3 rather than server n) . Communication is used only to update the local views of the dispatchers, i.e., to improve their
approximations.

a positive probability of job arrivals at all dispatchers. That is, we

assume that there exists a strictly positive constant ϵ0 such that

P(aj (t) > 0) > ϵ0 ∀(j, t) ∈ M × N. (4)

This, for example, covers complex scenarios with time-varying

arrival rates to the different dispatchers that are not necessarily

independent. We are not aware of previous work covering such

scenarios.

We further denote a
j
i (t) as the number of jobs forwarded by

dispatcher j to server i at the beginning of time slot t . Let

ai (t) =
m∑
j=1

a
j
i (t)

be the total number of jobs forwarded to server i at time slot t by
all dispatchers.

Servers. Each server has a FIFO queue for storing incoming jobs.

Let Qi (t) be the queue length of server i at the beginning of time

slot t (before any job arrivals and departures at time slot t ). We

denote by si (t) the potential service offered to queue i at time slot t .
That is, si (t) is the maximum number of jobs that can be completed

by server i at time slot t . We assume that, for all i ∈ N ,

{si (t)}
∞
t=0

is i .i .d . over time slots (5)

E[si (0)] = µ
(1)

i (6)

E
[(
si (0)

)
2
]
= µ
(2)

i (7)

Namely, we assume that the service process of each server is i .i .d .
over time slots and admits finite first and second moments. We also

assume that all service processes are mutually independent across

the different servers and also independent of the arrival processes.

3 Loosely-Shortest-Queue LOAD BALANCING
In this section we formally introduce the Loosely-Shortest-Queue
family of load balancing policies and then prove that any Loosely-
Shortest-Queue policy is stable.

3.1 The Loosely-Shortest-Queue Family
We assume that at each time slot t , each dispatcher j ∈ M holds a

local-view estimation of each server’s i ∈ N queue length, denoted

by Q̃
j
i (t). We begin by introducing the two following assumptions

on these estimations and the dispatchers way of operation that de-

fine the Loosely-Shortest-Queue family of load balancing policies.

Assumption 1 (Local view proximity). There exists a constant
C > 0 such that at the beginning of each time slot (before any arrivals
and departures), it holds that

E
[��Qi (t) − Q̃

j
i (t)

��] ≤ C ∀ (i, j, t) ∈ N ×M × N. (8)

As we later show, this assumption provides some appealing

flexibility when designing a load balancing policy.

Assumption 2 (Local view based routing). At each time slot,
each dispatcher j follows the JSQ policy based on its local view of the
queue lengths, i.e., {Q̃ j

i (t)}
n
i=1

. That is, dispatcher j forwards all its
incoming jobs at time slot t to server i∗ where i∗ ∈ arдmini {Q̃

j
i (t)}

n
i=1

(ties are broken randomly).

Finally, we term a load balancing policy as an Loosely-Shortest-
Queue (Local Shortest Queue) policy if it respects Assumptions 1

and 2.

3.2 Stability of Loosely-Shortest-Queue
We now prove that any Loosely-Shortest-Queue load balancing

policy is stable. We begin by formally stating our considered form

of stability.

Definition 1 (Strong stability). We say that the system is
strongly stable iff there exists a constant K ≥ 0 such that

lim sup

T→∞

1

T

T−1∑
t=0

n∑
i=1

E
[
Qi (t)

]
≤ K .

That is, the system is strongly stable when the expected time averaged
sum of queue lengths admits a constant upper bound.
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Strong stability is a strong form of stability that implies finite av-

erage backlog and (by Little’s theorem) finite average delay. Further-

more, under mild conditions, it implies other commonly considered

forms of stability, such as steady state stability, rate stability, mean

rate stability and more (see [19]). Note that strong stability has been

widely used in queueing systems (see [11] and references therein)

whose state does not necessarily admit an irreducible and aperiodic

Markov chain representation (therefore positive-recurrence may

not be considered).

Theorem 1. Assume the system is sub-critical, i.e., assume that
there exists ϵ > 0 such that

n∑
i=1

µ
(1)

i − λ
(1) = ϵ . (9)

Then, any Loosely-Shortest-Queue policy is strongly stable.

Proof. A server can work on a job immediately upon its arrival.

Therefore, the queue dynamics at server i are given by

Qi (t + 1) = [Qi (t) + ai (t) − si (t)]
+, (10)

where [·]+ ≡ max {·, 0}. Squaring both sides of (10) yields(
Qi (t + 1)

)
2

≤

(
Qi (t)

)
2

+
(
ai (t)

)
2

+
(
si (t)

)
2

+ 2ai (t)Qi (t) − 2si (t)Qi (t) − 2si (t)ai (t).
(11)

Rearranging (11) and omitting the last term yields(
Qi (t + 1)

)
2

−

(
Qi (t)

)
2

≤(
ai (t)

)
2

+
(
si (t)

)
2

− 2Qi (t)
(
si (t) − ai (t)

)
.

(12)

Summing over the servers yields

n∑
i=1

(
Qi (t + 1)

)
2

−

n∑
i=1

(
Qi (t)

)
2

≤

B(t) − 2

n∑
i=1

Qi (t)
(
si (t) − ai (t)

)
,

(13)

where

B(t) =
n∑
i=1

(
ai (t)

)
2

+

n∑
i=1

(
si (t)

)
2

. (14)

We would like to proceed in our analysis by taking the expectation

of (13). However, first we need to analyze the term

n∑
i=1

Qi (t)
(
si (t) − ai (t)

)
,

since {Qi (t)}
n
i=1

and {ai (t)}
n
i=1

are dependent.

Our plan is to use the following recipe. We will introduce two

additional policies into our analysis: (1) JSQ and (2) Weighted-

Random (WR). Roughly speaking, we will show that the routing

decision that is taken by our policy at each dispatcher and each

time slot t is sufficiently similar to the decision that would have

been made by JSQ given the same system state, which, in turn,

is no worse than the decision thatWR would make at that time

slot. Since inWR the routing decisions taken at time slot t do not

depend on the system state at time slot t , we will obtain the desired

independence, which allows us to continue with the analysis. We

start by introducing the corresponding JSQ andWR notations.

Let

a
JSQ
i (t) =

m∑
j=1

a
j, JSQ
i (t)

be the number of jobs that will be routed to server i at time slot

t when using JSQ at time slot t . That is, each dispatcher forwards

its incoming jobs to the server with the shortest queue (ties are

broken randomly). Formally, let i∗ ∈ arдmini {Qi (t)}, then ∀j ∈ M

a
j, JSQ
i (t) =

{
aj (t), i = i∗

0, i , i∗.
(15)

Let

aWR
i (t) =

m∑
j=1

a
j,WR
i (t)

be the number of jobs that will be routed to server i at time slot

t when usingWR at time slot t . That is, each dispatcher forwards

its incoming jobs to a single randomly-chosen server, where the

probability of choosing server i is
µ (1)i∑n
i=1

µ (1)i
. Formally, ∀j ∈ M , i = i∗

with probability

µ (1)i∑n
i=1

µ (1)i
and

a
j,WR
i (t) =

{
aj (t), i = i∗

0, i , i∗
(16)

With these notations at hand, we continue our analysis by adding

and subtracting the term 2

∑n
i=1

a
JSQ
i (t)Qi (t) from the right hand

side of (13). This yields

n∑
i=1

(
Qi (t + 1)

)
2

−

n∑
i=1

(
Qi (t)

)
2

≤

B(t) − 2

n∑
i=1

Qi (t)
(
si (t) − a

JSQ
i (t)

)
+

2

n∑
i=1

Qi (t)
(
ai (t) − a

JSQ
i (t)

)
.

(17)

We would like to take the expectation of (17). However, as men-

tioned, since the actual queue lengths and the local views of the

dispatchers and the routing decisions that are made both by our pol-

icy and JSQ are dependent, we shall rely on theWR policy and the

expected distance of the local views from the actual queue lengths

to evaluate the expected values. To that end, we now introduce the

following lemmas.

Lemma 1. For all time slots t , it holds that
n∑
i=1

a
JSQ
i (t)Qi (t) ≤

n∑
i=1

aWR
i (t)Qi (t).

Proof. See Section 7.1. □

Lemma 2. For all servers i ∈ N and all time slots t , it holds that
n∑
i=1

Qi (t)
(
ai (t) − a

JSQ
i (t)

)
≤

n∑
i=1

m∑
j=1

a(t)
���Qi (t) − Q̃

j
i (t)

���.
Proof. See Section 7.2. □
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Using Lemmas 1 and 2 in (17) yields

n∑
i=1

(
Qi (t + 1)

)
2

−

n∑
i=1

(
Qi (t)

)
2

≤

B(t) − 2

n∑
i=1

Qi (t)
(
si (t) − a

WR
i (t)

)
+ 2

n∑
i=1

m∑
j=1

a(t)
���Qi (t) − Q̃

j
i (t)

���.
(18)

Taking the expectation of (18) yields

E
[ n∑
i=1

(
Qi (t + 1)

)
2
]
− E

[ n∑
i=1

(
Qi (t)

)
2
]
≤

E
[
B(t)

]
− 2E

[ n∑
i=1

Qi (t)
(
si (t) − a

WR
i (t)

)]
+ 2E

[ n∑
i=1

m∑
j=1

a(t)
���Qi (t) − Q̃

j
i (t)

���] .
(19)

We now observe that both a(t) (according to (1)) and

{
aWR
i (t)

}n
i=1

(according to the definition of theWR policy) are independent of

{Qi (t)}
n
i=1

and

{
Q̃
j
i (t)

��� (i, j) ∈ N ×M}
. Applying this observation

to (19) and using the linearity of expectation yields

E
[ n∑
i=1

(
Qi (t + 1)

)
2
]
− E

[ n∑
i=1

(
Qi (t)

)
2
]
≤

E
[
B(t)

]
− 2

n∑
i=1

E
[
Qi (t)

]
E

[(
si (t) − a

WR
i (t)

)]
+ 2

n∑
i=1

m∑
j=1

E
[
a(t)

]
E

[���Qi (t) − Q̃
j
i (t)

���] .
(20)

Next, since for any non-negative {x1,x2, . . . ,xn } such that

x = x1 + x2 + . . . + xn

it always holds that x2 ≥
∑n
i=1

x2

i , using (5)-(7), the linearity of

expectation and (1)-(3), we obtain

E
[
B(t)

]
= E

[ n∑
i=1

(
ai (t)

)
2
]
+ E

[ n∑
i=1

(
si (t)

)
2
]
≤

E
[(
a(t)

)
2
]
+

n∑
i=1

E
[(
si (t)

)
2
]
= λ(2) +

n∑
i=1

µ
(2)

i .

(21)

Additionally, using (1), (2) and (8) yields

n∑
i=1

m∑
j=1

E
[
a(t)

]
E

[���Qi (t) − Q̃
j
i (t)

���] ≤
n∑
i=1

m∑
j=1

λ(1)C =mnλ(1)C .

(22)

Finally, since the decisions taken by theWR policy are independent

of the system state, we can introduce the following lemma.

Lemma 3. For all i ∈ N and t it holds that

E
[
si (t) − a

WR
i (t)

]
=

ϵµ
(1)

i∑n
i=1

µ
(1)

i

. (23)

Proof. See Section 7.3. □

Using (21), (22) and Lemma 3 in (20) yields

E
[ n∑
i=1

(
Qi (t + 1)

)
2
]
− E

[ n∑
i=1

(
Qi (t)

)
2
]
≤

λ(2) +
n∑
i=1

µ
(2)

i + 2mnλ(1)C − 2

n∑
i=1

ϵµ
(1)

i∑n
i=1

µ
(1)

i

E
[
Qi (t)

]
.

(24)

For ease of exposition, denote the constants

D = λ(2) +
n∑
i=1

µ
(2)

i + 2mnλ(1)C, (25)

and

δ = min

i

ϵµ
(1)

i∑n
i=1

µ
(1)

i

. (26)

Rearranging (24) and using (25) and (26) yields

2δ
n∑
i=1

E
[
Qi (t)

]
≤

D +

(
E

[ n∑
i=1

(
Qi (t)

)
2
]
− E

[ n∑
i=1

(
Qi (t + 1)

)
2
] )
.

(27)

Summing (27) over time slots [0, 1, . . . ,T−1], noticing the telescopic

series at the right hand side of the inequality and dividing by 2δT
yields

1

T

T−1∑
t=0

n∑
i=1

E
[
Qi (t)

]
≤

D

2δ
+

1

2δT

(
E

[ n∑
i=1

(
Qi (0)

)
2
]
− E

[ n∑
i=1

(
Qi (T )

)
2
] )
.

(28)

Taking limits of (28) and making the standard assumption that the

system starts its operation with finite queue lengths, i.e.,

E
[ n∑
i=1

(
Qi (0)

)
2
]
< ∞

yields

lim sup

T→∞

1

T

T−1∑
t=0

n∑
i=1

E
[
Qi (t)

]
≤

D

2δ
. (29)

This implies strong stability and concludes the proof. □

3.3 Sufficient stability condition
Asmentioned, in order to establish that a policy is Loosely-Shortest-
Queue , Assumption 1 has to hold. That is

E
[��Qi (t) − Q̃

j
i (t)

��] ≤ C ∀ (i, j, t) ∈ N ×M × N.
Generally, it may be challenging to establish that this condition

holds. To that end, we now develop a simplified sufficient condition.

As we later demonstrate, this simplified condition captures a broad

family of communication techniques among the servers and the dis-

patchers and allows for the design of stable policies with appealing

performance and extremely low communication budgets.
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Theorem 2. Let E
[��Qi (0) − Q̃

j
i (0)

��] ≤ C0 ∀ (i, j) ∈ N ×M, and
let 1ji (t) be an indicator function that obtains the value 1 iff server i
updates dispatcher j (via the push-based sampling or the pull-based
update message from the server) with its actual queue length at the
end of time slot t (after arrivals and departures at time slot t ). Assume
that there exists ϵ̄ > 0 such that

E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��] > ϵ̄ ∀(i, j, t) ∈ N ×M × N. (30)

Then, Assumption 1 holds.

Namely, we assume that there is a strictly positive probability of

an update at the end of time slot t , given any gap between the actual
queue lengths at the beginning of that time slot and the dispatcher

local views.

Proof. Fix server i and dispatcher j. Denote

Z (t) =
��Qi (t) − Q̃

j
i (t)

��.
Now, for all t it holds that

Z (t + 1) ≤
(
1 − 1

j
i (t)

)
·

(
Z (t) + ai (t) + si (t)

)
≤(

1 − 1
j
i (t)

)
· Z (t) + a(t) + si (t).

(31)

Taking expectation of (31) yields

E[Z (t + 1)] ≤ E[(1 − 1
j
i (t)

)
· Z (t)] + λ(1) + µ

(1)

i . (32)

Next, using the law of total expectation

E[(1 − 1
j
i (t)

)
· Z (t)] = E

[
E

[
(1 − 1

j
i (t)

)
· Z (t)

��Z (t)] ] =
E

[
Z (t) · E

[
(1 − 1

j
i (t)

) ��Z (t)] ] ≤ (1 − ϵ̄)E[Z (t)], (33)

where the last inequality follows from the linearity of expectation

and (30). Now, using (33) in (32) yields

E[Z (t + 1)] ≤ (1 − ϵ̄)E[Z (t)] + λ(1) + µ
(1)

i ≤

(1 − ϵ̄)E[Z (t)] + λ(1) +max

i

{
µ
(1)

i

}
.

(34)

With this result at hand, we can finish our proof by an inductive

claim. Fix

C∗ = max


λ(1) +maxi

{
µ
(1)

i

}
ϵ̄

,C0

 .
We now show that for all t it holds that E[Z (t)] ≤ C∗.
Basis. For t = 0 the claim trivially holds since E[Z (0)] ≤ C0 ≤ C∗.
Induction hypothesis. Assume that E[Z (t)] ≤ C∗.
Inductive step. Using the induction hypothesis in (34) yields

E[Z (t + 1)] ≤ (1 − ϵ̄)E[Z (t)] + λ(1) +max

i

{
µ
(1)

i

}
≤

(1 − ϵ̄)C∗ + λ(1) +max

i

{
µ
(1)

i

}
≤ C∗,

(35)

where we used the fact that by the definition of C∗ it holds that

λ(1) + maxi

{
µ
(1)

i

}
≤ ϵ̄C∗. Note that the obtained bound is not

dependent on (i, j, t). This concludes the proof. □

4 EXAMPLE Loosely-Shortest-Queue POLICIES
Since Loosely-Shortest-Queue is not restricted to work with either

pull- or push-based communications, in this section we provide

examples for both. In a push-based policy, the dispatchers sample

the servers for their queue length whereas in a pull-based policy

the servers may update the dispatchers with their queue length.

While empirically, we will see that the pull-based approach can

provide better performance in many scenarios, it may also incur

additional implementation overhead because it requires the servers

to actively update the dispatchers given some state conditions,

rather than passively answer sample queries. Therefore we are

inclined to consider both the push and pull frameworks.

In both frameworks we consider policies with low communica-

tion overhead that can be unstable even with a single dispatcher,

and provide an alternative Loosely-Shortest-Queue policy with sim-

ilar communication budget that is strongly stable for any number

of dispatchers.

4.1 Push based Loosely-Shortest-Queue example
The JSQ(d) policy forms a popular low-communication push-based

load balancing approach. As mentioned, JSQ(d) is not stable in

heterogeneous systems even for a single dispatcher.

Instead, we will now extend a push-based Loosely-Shortest-
Queue policy that uses exactly the same communication pattern be-

tween the servers and the dispatchers. Specifically, each dispatcher

holds a local array of the server queue length approximations and

sends jobs to the minimum one among them. The approximations

are updated as follows: (1) when a dispatcher sends jobs to a server,

these jobs are added to the respective local approximation; (2) at

each time slot, if new jobs arrive, the dispatcher randomly samples

d distinct queues and uses this information only to update the re-

spective d distinct entries in its local array to their actual value.

Algorithm 1 (termed Loosely-Shortest-Queue-Sample(d)) depicts
the actions taken by each dispatcher at each time slot.

Remark 1. Note that Loosely-Shortest-Queue-Sample(d) is not
a new policy but is considered for a single dispatcher and homogenous
servers in [14].

The simplicity of Loosely-Shortest-Queue-Sample(d)may be sur-

prising. For instance, there is no attempt to guess or estimate how

the other dispatchers send traffic or how the queue drains to get a

better estimate, i.e., our estimate is based only on the jobs that the

specific dispatcher sends and the last time it sampled a queue. We

also do not take the age of the information into account.

Furthermore, as we find below, the stability proof of Loosely-
Shortest-Queue-Sample(d) only relies on the sample messages and

not on the job increments.We empirically find that these increments

help improve the estimation quality and therefore the performance.

We now prove that using Loosely-Shortest-Queue-Sample(d) at
each dispatcher results in strong stability in multi-dispatcher het-

erogeneous systems. Remarkably, this result holds even for d = 1.

Proposition 1. Assume that the system is sub-critical and each
dispatcher uses Loosely-Shortest-Queue-Sample(d). Then, the sys-
tem is strongly stable.

Proof. Fix dispatcher j and server i . Consider time slot t . By
(4), with probability of at least ϵ0, dispatcher j samples d out of n

6



Algorithm 1: Loosely-Shortest-Queue-Sample(d) (push-based
Loosely-Shortest-Queue example)

Code for dispatcher j ∈ M ;

Route jobs:
foreach time slot t do

Forward jobs to server i∗ ∈ arдmini
{
Q̃ j
i (t )

}
;

Update Q̃ j
i∗ (t ) ← Q̃ j

i∗ (t ) + a
j (t );

end
end
Update local state:

foreach time slot t do
if new jobs arrive at time slot t then

Uniformly at random pick distinct i1, . . . , id ∈ N ;

For each i ∈ {i1, . . . , id } update Q̃
j
i (t ) ← Qi (t );

end
end

servers uniformly at random disregarding the system state at time

slot t . Therefore, we obtain

E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��] ≥ ϵ0 · d

n
.

This respects the simplified sufficiency condition and thus con-

cludes the proof. □

4.2 Pull based Loosely-Shortest-Queue example
J IQ is a popular, recently proposed, low-communication pull-based

load balancing policy. It offers a low communication overhead that

is upper-bounded by a single message per job [15]. However, as

mentioned, for heterogeneous systems, J IQ is not stable even for a

single dispatcher.

We now propose a different pull-based Loosely-Shortest-Queue
policy that conforms with the same communication upper bound,

namely a single message per job, and leverages the important idle-

ness signals from the servers. Specifically, each server, upon the

completion of one or several jobs at the end of a time slot, sends its

queue length to a dispatcher, which is chosen uniformly at random,

using the following rule: (1) if the server becomes idle, then the

message is sent with probability 1; (2) otherwise, the message is sent

with probability 0 < p ≤ 1 where p is a fixed parameter. Algorithm

2 (termed Loosely-Shortest-Queue-Update(p)) depicts the actions
taken by each dispatcher at each time slot.

The intuition behind this approach is to always leverage the

idleness signals in order to avoid immediate starvation as done

by J IQ ; yet, in contrast to J IQ , even when no servers are idle, we

want to make sure that the local views are not too far from the

approximations, which provides significant advantage at high loads.

Remark 2. Note that Loosely-Shortest-Queue-Update(p) is not
a new policy but, to the best of our knowledge, is similar to the policy
considered in [26] for a single dispatcher and homogeneous servers.

We now formally prove that using Loosely-Shortest-Queue-
Update(p) results in strong stability in multi-dispatcher hetero-

geneous systems. Remarkably, this result holds for any p > 0.

Algorithm 2: Loosely-Shortest-Queue-Update(p) (pull-based
Loosely-Shortest-Queue example)

Code for dispatcher j ∈ M ;

Route jobs:
foreach time slot t do

Forward jobs to server i∗ ∈ arдmini
{
Q̃ j
i (t )

}
;

Update Q̃ j
i∗ (t ) ← Q̃ j

i∗ (t ) + a
j (t );

end
end
Update local state:

foreach arrived message ⟨i, q ⟩ at time slot t do
Update Q̃ j

i (t ) ← q;
end

end
Code for server i ∈ N ;

Send update message:
foreach time slot t do

if completed jobs at time slot t then
Uniformly at random pick j ∈ M ;

if idle then
Send ⟨i, Qi (t )⟩ to dispatcher j ;

else
Send ⟨i, Qi (t )⟩ to dispatcher j w .p . p ;

end
end

end

Proposition 2. Assume that the system is sub-critical and each
dispatcher uses Loosely-Shortest-Queue-Update(p). Then, the sys-
tem is strongly stable.

Proof. Fix dispatcher j, server i and time slot t . Our goal is to
prove that (30) holds. To do so, we examine two possible events at

the beginning of time slot t : (1) Qi (t) = 0 and (2) Qi (t) > 0.

(1) Since Qi (t) = 0, the server updated at least one dispatcher in a

previous time slot, i.e., for at least one dispatcher j∗ we have that
Q̃
j∗
i (t) = 0. This must hold since there is a dispatcher that received

the update message after this queue got empty (that is, when a

server becomes idle, a message is sent w .p. 1). Now consider the

event A1 =
{
a
j∗
i (t) > 0 ∩ si (t) > 0

}
. Since the tie breaking rule is

random, by (1), (4), (2), (5) and (6), there exists ϵ̄i > 0 such that

P(A1) > ϵ̄i . Since a(t) and si (t) are not dependent on any system

information at the beginning of time slot t we obtain

E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��,Qi (t) = 0

]
≥ p · P(A1) > p · ϵ̄i . (36)

(2) Since Qi (t) > 0, there is a strictly positive probability that a

job would be completed at this time slot. That is, since si (t) is not
dependent on any system information at the beginning of time slot

t we obtain

E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��,Qi (t) > 0

]
≥p · P(si (t)>0)>p · ϵ̄i . (37)

Finally, since E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��]
is a convex combination

of the left hand sides of (36) and (37) we obtain that

E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��] > p · ϵ̄i .
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Now fix ϵ̄ = mini {ϵ̄i }. We have that

E
[
1
j
i (t)

��� ��Qi (t) − Q̃
j
i (t)

��] > p · ϵ̄ ∀(i, j, t) ∈ N ×M × N.
This concludes the proof. □

Table 1 summarizes the stability properties and the worst case
communication requirements of the evaluated load balancing tech-

niques as dictated by theory and verified by our evaluations.

4.3 Practical considerations
Before moving to simulations, we discuss several practical consid-

erations when considering different load balancing approaches.

Instantaneous routing. An appealing property of the Loosely-
Shortest-Queue policy, similarly to J IQ , is that a dispatcher can

immediately take routing decisions upon a job arrival. This is in

contrast to common push-based policies that have to wait for a

response from the sampled servers to be able to make a decision.

For example, when using the JSQ(2) policy, when a job arrives the

dispatcher cannot immediately send the job to a server but must pay

the additional delay of sampling two servers. Note that Assumption

1 trivially applies for any additional constant time delay in update

messages among the servers and the dispatchers.

Space requirements. To implement the Loosely-Shortest-Queue
policy, similarly to JSQ , each dispatcher has to hold an array of

size n with all server queue length estimations. It is important to

note that such a space requirement incurs negligible overhead on a

modern server. For example, nowadays, any commodity server has

tens to hundreds GB of DRAM. But even a hypothetical cluster with

10
6
servers requires only a few MB of the dispatcher’s memory,

which is negligible in comparison to the DRAM size.

Computational complexity. To implement the Loosely-Shortest-
Queue policy, similarly to JSQ , each dispatcher has to find the

minimum (approximated) queue length and route the incoming jobs

to it. At first glance, it might seem that this requiresO(n) operations
for each decision making, which is a disadvantage in comparison to

J IQ and JSQ(2) that require a constant number of operations per

decision, irrespective of the size of the system. However, by using a

priority queue (e.g.,min-heap), finding the minimum results in only

a single operation (i.e., simply looking at the head of the priority

queue). For a queue length update operation, O(logn) operations
are required in the worst case (e.g., decrease-key operation in a

min-heap). Even with n = 10
6
, just a few operations are required

in the worst case per queue length update. This results in a single

commodity core being able to perform tens to hundreds of millions

of such updates per second, hence resulting in negligible overhead,

especially for a low-communication policy in which queue length

updates are not too frequent.

5 EVALUATION
In this section we conduct an extensive evaluation of the Loosely-
Shortest-Queue approach, using both the Loosely-Shortest-Queue-
Sample(d) (with d = 1 and d = 2) and Loosely-Shortest-Queue-
Update(p) (with p = 1 and p = 0.01) families of Loosely-
Shortest-Queue algorithms. We compare them to the baseline full-

information JSQ (for JSQ only, dispatchers take decisions sequen-

tially to allow for a "water-filling" behaviour and avoid incast) and

to the low-communication JSQ(2) and J IQ . We consider heteroge-

neous systems with low and high skew, in small single-dispatcher

and larger-scale multi-dispatcher scenarios. For completeness, we

also present the results for homogeneous systems in Appendix A.

For each scenario and each policy, we measure the time-averaged

number of jobs in the system. This measure also translates to the

mean delay by Little’s Law, and reveals the stability region of each

policy. Additionally, even though we have theoretical guarantees

for the worst-case communication overhead incurred by each policy,

we also measure the total average communication overhead per

time slot.

5.1 Low heterogeneity
We start by considering a mix of weak and strong servers with a

ratio of 2 between their service rates, thus exhibiting a moderate

degree of heterogeneity.

In this subsection the job arrival process at a dispatcher is a

Poisson process with parameter λ and the server service processes

are geometrically distributed with a parameter 2p for a weak server

and a parameter p for a strong server. In a simulation with ns strong

servers, nw weak servers andm dispatchers we set p = ns+0.5nw
100m

and sweep 0 ≤ λ < 100.

5.1.1 Small scale scenario. In this evaluation, we consider a small

scale scenariowith a single dispatcher and 10 heterogeneous servers.

The results are depicted in Figure 2. As expected, Loosely-Shortest-
Queue-Update(1) performs identically to JSQ since in a single dis-

patcher scenario both are aware of all queue lengths at all times.

It is evident that, in all three scenarios, J IQ is not stable whereas

our LSQ-Update(0.01) is stable with a similar communication over-

head. Additionally, in all three scenarios, Loosely-Shortest-Queue-
Sample(2) performs better than JSQ(2), which appears to be stable

in this scenario (we tested up to a normalized load of 0.995).

5.1.2 Larger scale scenario. In this evaluation, we consider a larger

scale scenario with 10 dispatchers and 100 heterogeneous servers.

The results are depicted in Figure 3 and show similar trends. Loosely-
Shortest-Queue-Update(1) performs slightly worse than JSQ but

with a significantly lower communication budget (by an order of

magnitude). Similarly to the previous scenario, it is evident that, in

all three scenarios, J IQ is not stable again, and its stability region de-

creases as the proportion of weak servers decreases. In contrast, our

LSQ-Update(0.01) is always stable, with a similar communication

overhead. Again, in all three scenarios, Loosely-Shortest-Queue-
Sample(2) performs better then JSQ(2), which appears to be stable

in this scenario as well.

5.2 High heterogeneity
In this subsection, we consider systems with highly skewed hetero-

geneous servers. That is, we test the different approaches with a

mix of weak and strong servers, and assume a ratio of 10 between

their service rates.

Again, in this subsection the job arrival process at a dispatcher is

a Poisson process with parameter λ but the server service processes

are geometrically distributed with parameter 10p for a weak server

and a parameter p for a strong server. In a simulation with ns strong

8



Throughput optimality Comm. overhead

Homo-

geneous

Hetero-

geneous

Per time

slot

Per job

arrival

JSQ ✓ ✓ m · n m
JSQ(d) ✓ × d ·m d
J IQ ✓ × n 1

Loosely-Shortest-Queue-Sample(d) ✓ ✓ d ·m d
Loosely-Shortest-Queue-Update(p) ✓ ✓ n 1

Table 1: Comparing stability and worst case communication overhead of the evaluated load balancing techniques.
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Figure 2: Scenario with a single dispatcher and 10 heterogeneous servers.
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Figure 3: Scenario with 10 dispatchers and 100 heterogeneous servers.
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Figure 4: Scenario with a single dispatcher and 10 highly skewed heterogeneous servers.
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Figure 5: Scenario with 10 dispatchers and 100 highly skewed heterogeneous servers.

servers, nw weak servers andm dispatchers we set p = ns+0.1nw
100m

and sweep 0 ≤ λ < 100.

5.2.1 Small scale scenario. In this evaluation, we consider a small

scale scenario with a single dispatcher and 10 highly skewed het-

erogeneous servers. The results are depicted in Figure 4.

As expected, Loosely-Shortest-Queue-Update(1) performs iden-

tically to JSQ . Again, in all three scenarios, J IQ is not stable, and

its stability region has decreased dramatically for this larger skew

in server service rates. For example, for a mix of 5 strong and 5

weak servers, its stability region is only up to ≈78%. In contrast, our

LSQ-Update(0.01) is always stable with a similar communication

overhead. JSQ(2) is not stable as well with a dramatic degradation,

especially when the number of strong and weak servers is similar.

For example, in a scenario with 5 strong and 5 weak servers, the

stability region of JSQ(2) is only up to ≈44%. On the other hand,

Loosely-Shortest-Queue-Sample(2) is always stable with an identi-

cal communication overhead. Note that, as dictated by theory, even

Loosely-Shortest-Queue-Sample(1) is always stable with even less

communication overhead.

5.2.2 Larger scale scenario. In this evaluation, we consider a larger

scale scenario with 10 dispatchers and 100 highly skewed hetero-

geneous servers. The results are depicted in Figure 5. The results
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show a similar trend to the results in the small-scale simulation.

It is evident that the stability regions of both JSQ(2) and J IQ suf-

fer from a significant degradation that appears to be consistent

with an increasing number of dispatchers. On the other hand, all

LSQ approaches are stable and keep performing well using similar

communication overhead. It is evident that LSQ-Update(1) is only
slightly worse than JSQ but, again, with a significantly lower com-

munication overhead (approximately by an order of magnitude).

Again LSQ-Update(0.01) and LSQ-Sample(2) use similar communi-

cation budgets as J IQ and JSQ(2), respectively, but are stable with
good performance.

5.3 Evaluation takeaways
The Loosely-Shortest-Queue approach always guarantees stabil-

ity and it achieves this using the same communication bud-

get as other non-throughput-optimal low-communication tech-

niques. Additionally, the simulations indicate that, under identical

low-communication requirements, Loosely-Shortest-Queue consis-
tently exhibits good performance in different scenarios whereas

other low-communication techniques are either unstable or offer

poor performance.

Remark 3. Interestingly, by allowing different dispatchers to have
a different view of the system, Loosely-Shortest-Queue indirectly
appears to solve the incast problem JSQ may incur in a parallel multi-
dispatcher system.

Also, evaluation results present an interesting trade-off between

the push-based LSQ-Sample(d) and the pull-based LSQ-Update(p)
approaches for small d and p values (i.e., extremely low communica-

tion overhead). LSQ-Update(p) appears to be consistently better at

low loads (where servers keep getting idle frequently), whereas LSQ-

Sample(d) appears to be consistently better at high loads where

idleness becomes rare and the approximations of LSQ-Update(p)
are less effective than in the push approach.

6 ARBITRARILY LOW COMMUNICATION
We have shown, both formally and in simulations, that the Loosely-
Shortest-Queue approach offers strong theoretical guarantees and

appealing performance with low communication overhead. Interest-

ingly, by virtue of Theorem 2, we can construct various strongly sta-

ble Loosely-Shortest-Queue policies with any arbitrarily low com-

munication budget, disregarding whether the system uses pull or

push messages (or both). This, in fact, appears to generalize a result

from [26] to multiple dispatchers and heterogeneous servers.

LetM(t) be the number of queue length updates performed by all

dispatchers up to time t . Fix any arbitrary small r > 0. Suppose that

we want to achieve strong stability, such that the average message

rate is at most r , i.e., for all t we have that E[M(t)] ≤ rt . Then,
the two following per-time-slot dispatcher sampling rules trivially

achieve strong stability (by Theorem 2) and respect the desired

communication bound, i.e., E[M(t)] ≤ rt .

Example 1 (Push-based communication example.). Dispatcher
sampling rule upon job(s) arrival: (1) pick a server i ∈ N uniformly
at random; (2) sample server i with probability r

m .

Example 2 (Pull-based communication example.). Server mes-
saging rule upon job(s) completion: (1) pick a dispatcher j ∈ M uni-
formly at random; (2) update dispatcher j with probability r

n .

Theorem 2 also enables to design strongly stable Loosely-
Shortest-Queue policies with hybrid communication (e.g., push and
pull) that can attempt to maximize the benefits of both approaches

(for example, as we have seen, for extremely low communication

overhead requirements, at low loads LSQ-Update(p) appears to
be more effective whereas at high loads LSQ-Sample(d) appears
to be more effective). For example, the following policy leverages

both the advantages of J IQ (i.e., being immediately notified that a

server becomes idle) and JSQ(d) (i.e., random exploration of shallow

queues when no servers are idle).

Example 3 (Hybrid communication example.). Dispatcher
sampling rule: (1) pick a server i ∈ N uniformly at random; (2) sample
server i with probability r

m .
Server messaging rule: (1) if got idle, pick a dispatcher j ∈ M

uniformly at random and send it an update message.

The above three examples demonstrate the wide range of pos-

sibilities that the Loosely-Shortest-Queue approach offers to the

design of stable, scalable policies with low communication over-

head.

7 PROOFS OF LEMMAS
This section provides the proofs of the various lemmas that we

employed towards establishing our main theoretical result, i.e.,
Theorem 1.

7.1 Proof of Lemma 1
First, by definition

n∑
i=1

a
JSQ
i (t) =

n∑
i=1

aWR
i (t) = a(t).

Therefore, both

{
a
JSQ
i (t)

}n
i=1

and

{
aWR
i (t)

}n
i=1

are feasible solu-

tions to the optimization problem given by

minimize

x

n∑
i=1

xi (t)Qi (t)

subject to

n∑
i=1

xi (t) = a(t), xi (t) ≥ 0 ∀i ∈ N
(38)

The optimal solution to this problem is simply

a(t)min

i
{Qi (t)} ,

which is exactly the way JSQ policy operates. That is,

n∑
i=1

a
JSQ
i (t)Qi (t) = a(t)min

i
{Qi (t)} .

Clearly, any other feasible solution, e.g.,
{
aWR
i (t)

}n
i=1

, cannot be

better. This concludes the proof. □
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7.2 Proof of Lemma 2
Expanding the term

∑n
i=1

Qi (t)
(
ai (t) − a

JSQ
i (t)

)
yields

n∑
i=1

Qi (t )
(
ai (t ) − a

J SQ
i (t )

)
=

n∑
i=1

m∑
j=1

Qi (t )
(
a ji (t ) − a

j, J SQ
i (t )

)
. (39)

We now substitute Qi (t) by Qi (t) − Q̃
j
i (t) + Q̃

j
i (t). This yields

n∑
i=1

Qi (t)
(
ai (t) − a

JSQ
i (t)

)
=

n∑
i=1

m∑
j=1

(
Qi (t) − Q̃

j
i (t) + Q̃

j
i (t)

) (
a
j
i (t) − a

j, JSQ
i (t)

)
.

(40)

We now introduce the following lemma:

Lemma 4. For all t it holds that
n∑
i=1

m∑
j=1

Q̃
j
i (t)

(
a
j
i (t) − a

j, JSQ
i (t)

)
≤ 0.

Proof. See Section 7.4. □

Using Lemma 4 in (40) yields

n∑
i=1

Qi (t)
(
ai (t) − a

JSQ
i (t)

)
≤

n∑
i=1

m∑
j=1

(
Qi (t) − Q̃

j
i (t)

) (
a
j
i (t) − a

j, JSQ
i (t)

)
.

(41)

Now, using the fact that xy ≤ |x | |y | for all (x ,y) ∈ R2
on (41) yields

n∑
i=1

Qi (t)
(
ai (t) − a

JSQ
i (t)

)
≤

n∑
i=1

m∑
j=1

���Qi (t) − Q̃
j
i (t)

������aji (t) − aj, JSQi (t)
���. (42)

Finally, it trivially holds that

a(t) ≥
���aji (t) − aj, JSQi (t)

���. (43)

Using (43) in (42) concludes the proof. □

7.3 Proof of Lemma 3
Each dispatcher applies the WR policy independently. Therefore,

by applying (5), (6), (1) and (2) we have that the expected number

of jobs arriving at each server i is

E
[
aWR
i (t)

]
= E

[ m∑
j=1

a
j,WR
i (t)

]
=

µ
(1)

i∑n
i=1

µ
(1)

i

E
[ m∑
j=1

aj (t)
]
=

λ(1)µ
(1)

i∑n
i=1

µ
(1)

i

.

(44)

Using (5), (6), (9) and (44) yields

E
[
si (t) − a

WR
i (t)

]
= µ
(1)

i −
λ(1)µ

(1)

i∑n
i=1

µ
(1)

i

=

µ
(1)

i

∑n
i=1

µ
(1)

i − λ
(1)∑n

i=1
µ
(1)

i

=
ϵµ
(1)

i∑n
i=1

µ
(1)

i

.

(45)

This concludes the proof. □

7.4 Proof of Lemma 4
Fix j = j∗. It is sufficient to show that

n∑
i=1

Q̃
j∗
i (t)

(
a
j
i (t) − a

j∗, JSQ
i (t)

)
≤ 0. (46)

The proof now follows similar lines to the proof of Lemma 1. By

definition

n∑
i=1

a
j∗
i (t) =

n∑
i=1

a
j∗, JSQ
i (t) = aj

∗

(t).

Therefore, both

{
a
j∗
i (t)

}n
i=1

and

{
a
j∗, JSQ
i (t)

}n
i=1

are feasible solu-

tions to the optimization problem given by

minimize

x

n∑
i=1

xi (t)Q̃
j∗
i (t)

subject to

n∑
i=1

xi (t) = aj
∗

(t), xi (t) ≥ 0 ∀i ∈ N
(47)

The optimal solution to this problem is simply aj
∗

(t)mini

{
Q̃
j∗
i (t)

}
,

which is exactly the way our policy operates since it performs JSQ

considering

{
Q̃
j∗
i (t)

}
instead of {Qi (t)}. That is

n∑
i=1

a
j∗
i (t)Qi (t) = aj

∗

(t)min

i

{
Q̃
j∗
i (t)

}
.

Any other feasible solution including

{
a
JSQ
i (t)

}n
i=1

cannot be bet-

ter when considering

{
Q̃
j∗
i (t)

}
instead of {Qi (t)}. This proves the

inequality in (46) and thus concludes the proof. □

8 CONCLUSIONS
In this paper, we introduced the Loosely-Shortest-Queue family

of load balancing algorithms. We formally established that any

Loosely-Shortest-Queue policy is strongly stable and further devel-

oped a simplified sufficient condition for establishing that a policy

is Loosely-Shortest-Queue . We then demonstrated that the Loosely-
Shortest-Queue approach allows to construct stable policies with

arbitrary low communication budgets for system with multiple

dispatchers and heterogeneous servers.

Using extensive simulations that consider homogeneous, het-

erogeneous and highly skewed heterogeneous systems in small

single-dispatcher and larger-scale multi-dispatcher scenarios, we il-

lustrated how simple low-communication Loosely-Shortest-Queue
known policies are stable and at the same time exhibit appealing

performance. Our example policies significantly outperform well-

known low-communication policies such as JSQ(2) and J IQ , while

obeying the same constraints on the communication overhead.

Given the strength of the Loosely-Shortest-Queue approach in

large-scale multi-dispatcher heterogeneous systems, we believe

that it has the potential to open a new thread in the research of

scalable load balancing policies.
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A SIMULATION RESULTS FOR THE
HOMOGENEOUS CASE

We now consider systems with identical servers. In these simula-

tions, the job arrival process at a dispatcher is a Poisson process

with parameter λ, and the server service processes are geometri-

cally distributed with parameter p. In a simulation with n servers

andm dispatchers we set p = n
100m and sweep 0 ≤ λ < 100.

A.1 Small scale scenario
In this evaluation, we consider a small scale scenario with a single

dispatcher and 10 homogeneous servers. The results are depicted

in Figure 6. As dictated by theory, all tested approaches are stable

in this scenario. Our Loosely-Shortest-Queue-Update(1) achieves
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Figure 7: Scenariowith 10 dispatchers and 100 homogeneous
servers.

the best performance which is identical to the baseline, i.e., JSQ .
This is because in a single dispatcher scenario Loosely-Shortest-
Queue-Update(1) is always aware of the exact queue length of all

queues.

Loosely-Shortest-Queue-Update(0.01) offers better performance

than J IQ especially as the load increases. This is achieved with

similar average communication overhead. It is notable that J IQ
performs similarly to JSQ at low loads, but its performance quickly

degrades as the load increases. This complies with the latest theo-

retical results indicating that J IQ is asymptotically worse than JSQ
at high loads (i.e., J IQ is not heavy traffic delay optimal) [32].

Finally, Loosely-Shortest-Queue-Update(2) is always better than
its JSQ(2) counterpart using exactly the same communication over-

head. Loosely-Shortest-Queue-Update(1) is slightly worse in this

scenario but with a lesser communication overhead.

A.2 Larger scale scenario
In this evaluation, we consider a larger scale scenario with 10 dis-

patcher and 100 homogeneous servers. The results are depicted in

Figure 7. Similarly to the previous scenario, as dictated by theory,

it is evident that all tested approaches are stable in this scenario as

well. Our Loosely-Shortest-Queue-Update(1) achieves good perfor-
mance which is slightly worse than JSQ while using by an order of

magnitude less communication. The performance slightly degrades

since in this multiple dispatchers scenario Loosely-Shortest-Queue-
Update(1) cannot always be aware of the exact queue length of all

queues.

Again, Loosely-Shortest-Queue-Update(0.01) is always better

than J IQ with similar average communication overhead and

Loosely-Shortest-Queue-Update(2) is always better than its JSQ(2)
counterpart using exactly the same communication overhead.
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