
Under review as a conference paper at ICLR 2019

MEAN REPLACEMENT PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning units in a deep network can help speed up inference and training as well
as reduce the size of the model. We show that bias propagation is a pruning tech-
nique which consistently outperforms the common approach of merely removing
units, regardless of the architecture and the dataset. We also show how a sim-
ple adaptation of an existing scoring function allows us to select the best units
to prune. Finally, we show that the units selected by the best performing scoring
functions are somewhat consistent over the course of training, implying the dead
parts of the network appear during the early stages of training.

1 INTRODUCTION

Pruning is a successful method for reducing the size of a trained neural network and accelerating
inference. Pruning consists of deleting the parts of the network whose removal least affects the
network performance. Many pruning methods proposed in the literature differ in computational cost
and in effectiveness in ways that are hard to assess.

In an interesting recent work, Frankle & Carbin (2018) argue for the so called “winning ticket”
hypothesis. More precisely, they train a large network after saving the random initial value of each
parameter. After training, they prune the large network to produce a smaller network with one fifth
of the weights. Setting its weights to their saved initial values and retraining achieves a performance
close to that of the large trained network with a much reduced computational cost. This result opens
up a new frontier for pruning methods, where they are used to detect useless units early in the
training and therefore accelerating the inference.

This contribution studies the effect of pruning methods throughout the training process. We also
present mean replacement, a unit pruning method that extends the idea of bias propagation intro-
duced in (Ye et al., 2018) to the non-constrained training setting. The main observations of our work
can then be summarized as follows:

• Regardless of the scoring function used, bias propagation reduces the pruning penalty for
networks without batch normalization.

• Fine-tuning the pruned network with additional training iterations reduces the bias propa-
gation advantage but not very quickly.

• Absolute valued approximation of the pruning penalty provides superior performance over
the normal first order approximation. This finding confirms the observations made by
Molchanov et al. (2016).

• Units that are selected by the best performing scoring function seem to come from a small
subset of units. This finding confirms Frankle & Carbin (2018)’s comments on the lottery
ticket and Evci (2018)’s claims about dead units.

The rest of the paper is organized as follows. After reviewing the related work in Section 2. we define
our pruning methods and scoring functions in Section 3. Section 4 provides an empirical evaluation
comparing various combinations of scoring functions and methods under varying pruning fractions,
datasets, and models. We briefly provide some concluding remarks and discuss future work in
Section 5.

1

Under review as a conference paper at ICLR 2019

2 RELATED WORK

One simple and common technique to select what parts of a network to prune is to select small
magnitude parameters, similar to the technique of weight decay (Hanson & Pratt, 1989). LeCun
et al. (1990) and Hassibi & Stork (1993) proposed using second-order saliency measures to prune
trained networks with zero gradient. With the era of deep networks, redundancy in trained networks
became even more obvious and various works tackled this problem aiming to reduce the size of
the network. Han et al. (2015) applied magnitude based parameter pruning on deep networks and
reported around 30x compression combining various methods like weight quantization and Huffman
coding. Zhu & Gupta (2017) perform pruning during training and report similar compression rates.
Achterhold et al. (2018) focus on pruning Bayesian neural networks.

Evci (2018) claims that the removed parameters tend to gather around specific units, so directly
pruning full units might prove to be an efficient strategy. Further, pruning units also comes with
direct gains in terms of storage and speed since it meshes well with dense representations (Luo
et al., 2017; Wen et al., 2016). Wen et al. (2016) prune entire channels using the group lasso penalty.
Hu et al. (2016) observe high percentage of zero activations in deep networks with ReLU units and
propose Average Percentage of Zeros as a new saliency function. The work of Molchanov et al.
(2016) focuses on iterative pruning with single unit removals in the context of transfer learning.
They compare various scoring functions and propose the absolute-valued Taylor approximation as
the best performing one. However, one practical drawback of their investigation is that they prune
one unit at a time.

Once units have been selected for removal, there is still the question of how to minimize the impact
of the deletion. Most works, (Molchanov et al., 2016) for instance, focus on mere removal of the
units followed by retraining the network. While retraining the full network after pruning can greatly
minimize the loss in accuracy induced by the deletion, it can be computationally expensive.

Rather than recovering from the damage post-pruning, another line of research focuses on preemp-
tively mitigating the effects. Ye et al. (2018) propose penalizing the variance of the activations for
networks using batch normalization. They then propose replacing units with low variance with con-
stant values using bias propagation. Our work extends this idea of bias propagation to various other
pruning methods. Morcos et al. (2018) suggest ablating units (which mimics removal) by replacing
them with their mean activation; however, the authors report this yields inferior performance com-
pared to simply removing the units. Luo et al. (2017) propose using the l2-norm of unit activations
to iteratively prune convolutional layers for VGG-16 and ResNet. They also propose performing up-
dates on the outgoing weights that minimize the reconstruction loss on the next layer. Their method
relies on a matrix inversion rendering it impractical for large networks.

3 UNIT PRUNING AND MEAN REPLACEMENT IDEA

Even with a careful unit selection, pruning can significantly damage the performance of the net-
work. Fine-tuning the damaged network with retraining iterations may or may not recover the full
performance. Thus our goal is to minimize the damage as much as possible at pruning time. In this
section we introduce mean replacement, a simple pruning method that significantly reduces the loss
incurred by the ablation.

3.1 PRUNING UNITS AND NOTATION

For a given dataset D with samples (x(i),y(i)), output f(x(i);w) using parameters w, and loss
function l(f(x(i);w), y(i);w), the loss of the optimization problem is

L(w) =
∑
i∈D

l(f(x(i);w), y(i)) .

Pruning a network is often defined as setting some of its parameters to 0. Given w, our goal then
consists of finding the mask m ∈ {0, 1}d that minimizes

L(w �m) =
∑
i∈D

l(f(x(i);w �m), y(i)) .

2

Under review as a conference paper at ICLR 2019

The mask m must respect some constraints. First, even though the mask is defined at the parameter
level, i.e. it has as many components as the number of parameters in the model, we are pruning
units. Hence, all parameters corresponding to the same unit must have the same value in the mask.
Second, we are interested in pruning only a limited number of units, so the number of elements set
to 0 in m is constrained. Finally, we might also want to enforce the number of units pruned at each
layer, or simply prevent the pruning at some layers. Denoting as M the set of all masks satisfying
these constraints, the optimal pruning is given by

m∗ = arg min
m∈M

∑
i∈D

l(f(x(i);w �m), y(i)) . (1)

For the remainder of the paper, we shall assume that the number of units to remove is set for each
layer independently. This is without loss of generality and will allow us to focus on a single layer,
greatly simplifying the presentation.

The complexity of solving Eq. 1 increases exponentially with the number of units to prune. There-
fore, in practice, people rank all units using a per-unit scoring function s(w;D). Several examples
of such scoring functions will be discussed in Section 3.4. Units with the lowest score are then
pruned. This approach implicitly assumes that the scores of individual units are independent of each
other. In other words, pruning one unit is assumed to not affect the score of any other unit. Thus, a
good scoring function needs to have a small inter-unit correlation. Once a scoring function s(w;D)
has been chosen, we can define m through its elements mi:

mi =

{
0 if i belongs to a unit u where u ∈ B(s(w;D), k)
1 otherwise .

(2)

where B(x, k) is the set of k elements of x with the lowest value. In other words, we will set to 0
all the parameters belonging to units whose score is one of the k lowest, k being the number of units
we wish to remove in that layer.

Pruning a fraction of the units in a particular layer can have a big impact on the network and induce
a large loss penalty, that we call the pruning penalty:

PruningPenalty = L(w �m)− L(w) (3)

Retraining the network might reduce the pruning penalty at the cost of additional computation. We
shall now see how adjusting the biases of the following layer can reduce the pruning penalty with
low computational overhead. In order to show this, we need to depart from our earlier definition of
pruning as consisting of zeroeing a subset of the weights.

3.2 MEAN REPLACEMENT

We intend to remove k units from a layer of the network in a manner that has a reasonable impact
on the network performance. This is often done by replacing these units with zeroes. However,
zero is an arbitrary choice and any constant would work. This constant would be “propagated” by
multiplying it with the outgoing weights of the layer above, which is equivalent to updating the bias
of that layer with the resulting sum. Mean replacement consists of replacing the output of pruned
units by a constant that is equal to the mean of the unit outputs collected on the training samples
before pruning. A theoretical justification for that choice will be presented in Section 3.3.

We will first focus on the removal of a single unit. In a fully connected network, each unit is
associated with a single activation. However, in a convolutional layer, a unit is associated with a
set of outputs, one per location. In that case, each of these output will be replaced with the same
constant.

Let a(x, p) represent the unit output for training example x at location p ∈ P . Let us randomly
choose a subset1 Ds ⊂ D of examples from the training set. We first compute the mean unit output

ā =
1

|Ds|
∑
x∈Ds

1

|P|
∑
p∈P

a(x, p) .

1Usually smaller than the full training set, but big enough to get a good approximation.

3

Under review as a conference paper at ICLR 2019

b1 a1
w11

b1

a2

b1 = b1 + a1w11

an

bm

b1 0
a1w11

a
1 w

m1

b1

a2

an

bm

b1 0 b1

a2

an

bm bm = bm + a1wm1

(1) (2) (3)

w
m1

Figure 1: Mean Replacement illustrated in three steps. In step (1) the units to be pruned are selected
(highlighted in red). In step (2) mean activations are multiplied with outgoing weights. In step (3)
the product is added to the bias of corresponding units.

Mean replacement consists in replacing the pruned unit by the constant ā. This can be implemented
by removing the pruned unit in the normal way —which amounts to replace its output by a zero—
and folding the constant ā into the bias parameter of the downstream units.

b← b + āw , (4)

where b represents the vector of the biases of the downstream units and w represents the outgoing
weights of the pruned unit, that is the weights that were connecting the pruned unit to each of its
downstream units before the pruning operation. This process is illustrated in Figure 1.

We now justify our choice of constant by showing that, in the context of a quadratic loss, mean
replacement is the optimal strategy.

3.3 OPTIMAL BIAS UPDATE FOR LINEAR REGRESSION

Let us consider the linear regression setting with K samples (x(i), y(i)|i ∈ [1,K]) and parameters
θ and b where h(x(i)) = θTx(i) + b. Let us write down the optimal bias for the mean square loss
L = 1

2K

∑K
i=1(h(x(i))− y(i))2: b∗ = 1

K

∑K
i=1(y(i) − θTx(i)).

Let us consider the case where we prune the input dimension j and denote the pruned samples
with x(i)−j . Then we would have the objective L−j = 1

2K

∑K
i=1(h(x

(i)
−j) − y(i))2 where h(x

(i)
−j) =

h(x(i)) − θjx(i)j . The optimal bias value for this new setting is b∗−j = 1
K

∑K
i=1(y(i) − θTx(i) +

θjx
(i)
j).

The difference between these two optimal bias values would give us the optimal update value for
the bias of the next layer after pruning, which is indeed the mean values of the pruned dimension.

c = b∗−j − b∗ =
1

K

K∑
i=1

θjx
(i)
j

One can easily show that the optimal value is the sum of propagated inputs, if we prune more then
one input features.

Although motivating through linear regression might not seem relevant in the deep learning case,
the activations al at layer l can be viewed as the input of the linear regression. Each channel of the
the linear function h(al) can be thought as a separate linear regression. Using this observation, we
can minimize the l2-norm between activations before pruning and activations after pruning, namely
||h(al)−h(āl||), fixing the weights. Luo et al. (2017) take a very similar approach motivating their
pruning method. They find the optimal update without fixing the weights, requiring matrix inversion
of a matrix size |Ds|. What is the optimal update for the bias in next layer? As in the case of linear
regression, we can show that the optimal update is the Mean Replacement.

3.4 SCORING FUNCTIONS FOR UNIT PRUNING

Most practical pruning methods use scoring functions that assign scores to individual units. These
scoring functions attempt to assign a score to each unit such that units with small scores have the

4

Under review as a conference paper at ICLR 2019

smallest loss degradation (∆L) when pruned separately. In practice, however, scoring functions
that were designed for single unit removal are used to prune k units at once. This is valid as long as
there is no cross-correlation between the scores of individual units, but this is often not the case:
removing one unit usually changes the scoring distribution and possibly invalidates the previous
ordering among units.
Since we aim to do unit pruning with minimal overhead, the complexity of all the scoring functions
included in our experiments are linear with size of the layer or the cardinality of Ds. Throughout
our experiments we compare 6 scoring functions as summarized in (Table 1) and the features of
them explained below.

Type. There are 4 different types of scoring functions used in our experiments. Our base-
line is the random which samples scores uniformly from the range [0,1]. norm is the l2-norm of
the unit. One common phenomenon in training neural networks with a softmax is that the norm of
the parameters tend to increase over training (Raghu et al., 2017). We can thus expect units that
are not contributing much to the learning process to have smaller norms. abs taylor and taylor
are the Taylor approximation having the form Ei∼Ds

|∇aL(a) � ∆a| and Ei∼Ds
(∇aL(a) � ∆a)

respectively. In our experiments we use a subset Ds sampled from the training set of size 1000
(Cifar-10) and 10000 (Imagenet). taylor is the correct first order approximations for the change in
the loss. However, in practice, to our knowledge, they are not used without the absolute values. In
our experiments we confirm that they perform significantly worse compared to the other scoring
functions. We discuss the possible reasons and our observations in Section 4.3.
Approximated Penalty. Indicates the value that is being approximated. mean replacement
indicates the pruning penalty if mean replacement is used, whereas removal indicates the penalty
with regular pruning where the pruned units are just set to zero.
Mean Replaced?. This column indicates whether the pruning method itself has the bias
propagation step.

4 EMPIRICAL EVALUATION

We use the following experimental approach to compare various pruning strategies. At various
points during the network training, we make a copy of the network, prune a predefined fraction
of its units using the chosen criterion, and measure the pruning penalty by comparing the losses
measured before and after pruning. We then resume the training process using the original copy of
the network (prior to pruning). We repeat this experiment for different convolutional networks with
different sizes and depths on Cifar-10 (Krizhevsky, 2009) and Imagenet-2012 (Russakovsky et al.,
2015) initialized using various random seeds. In all of our experiments we calculate the pruning
penalty using subsets of sizes 1000(Cifar-10) and 10000(Imagenet) sampled from the training set.
Appendix 6.2 details the full set of experiments.

Table 1: Scoring Functions Compared

Type Approximated Penalty Mean Replaced? Referenced in Plot Tag

norm
-

7 Luo et al. (2017) norm
3 ours bp norm

random 7 - rand
3 - bp rand

abs taylor
mean replacement 7 ours abs mrs

3 ours bp abs mrs

removal 7 Molchanov et al. (2016) abs rs
3 ours bp abs rs

taylor
mean replacement 7 - mrs

3 - bp mrs

removal 7 - rs
3 - bp rs

5

Under review as a conference paper at ICLR 2019

5000 10000 15000 20000 25000 30000 35000

Iteration

0.0

0.5

1.0

1.5

2.0

∆
 L

o
ss

 a
ft

e
r

p
ru

n
in

g

Pruning Penalties for f=0.1
abs_mrs

bp_abs_mrs

abs_rs

bp_abs_rs

norm

bp_norm

rand

bp_rand

5000 10000 15000 20000 25000 30000 35000

Iteration

0.0

0.5

1.0

1.5

2.0

A
v
e
ra

g
e
 L

o
ss

val_loss

test_loss

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Loss and Accuracy
test_acc

val_acc

Figure 2: (left) Results from a single experiment, where MEDIUM CONV (a 5 layer convolutional
network) trained for 35k iterations with batch size 64. We calculate pruning penalties at every 250
iteration after pruning 10% of the units at each layer . All the measurements are made on a copied
model and the mean values over 8 runs reported with 80% confidence intervals. (right) We plot the
average loss on validation and test sets using the left axis and accuracies on the right.

4.1 MEAN REPLACEMENT REDUCES THE LOSS AFTER PRUNING

To assess the effectiveness of bias propagation across a wide variety of settings we trained various
networks using the same learning rate schedule but different pruning fractions. We pruned various
combinations of layers from pruning a single layer to all layers at once. A copy of the network
was pruned every 250 steps during training, and we report the pruning penalty at these points.
Figure 2 evaluates the performance of various pruning methods over the training of a five layer
convolutional network and demonstrates that bias propagation reduces the pruning penalty for all
pruning methods considered. Figure 3 aggregates all such measurements plotting (x,y) pairs from
each scoring function at every time step, where x-axis denotes the pruning penalty without bias
propagation used and y-axis denotes the penalty with the bias propagation. The cloud of points
under the y = x line shows that bias propagation decreases the pruning penalty in almost all cases
despite the variety of settings the points are sampled from (different pruning fractions, layers pruned,
models trained).

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

All Experiments
abs_mrs

norm

abs_rs

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

All Experiments with Imagenet
abs_mrs

norm

abs_rs

Figure 3: Scatter plots aggregating all measurements, where the two pruning penalties (with and
without bias propagation) for the same scoring function are plotted in the opposite axes.(left) Exper-
iments with Cifar-10 dataset: pruning penalties are calculated every 250 training iterations. (right)
Experiments with Imagenet-2012 dataset: pruning penalties are calculated every 10000 training
iterations.

6

Under review as a conference paper at ICLR 2019

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Fine tuning steps=10
abs_mrs

norm

abs_rs

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Fine tuning steps=100
abs_mrs

norm

abs_rs

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Fine tuning steps=500
abs_mrs

norm

abs_rs

Figure 4: Pruning penalties after retraining the network with batch size 64 and learning rate 1e-3
for N fine tuning steps. Pruning penalties are measured after fine tuning steps and aggregated in
a scatter plot. The data used originate from pruning experiments on Cifar-10 made after 25000
training steps (second half of the training). (left) N=10. (middle) N=100. (right) N=500

4.2 MEAN REPLACEMENT REDUCES THE LOSS AFTER PRUNING AND RETRAINING

One could argue that training the pruned network could quickly compensate for the damage caused
by zeroing the units without bias propagation. In other words, the networks pruned without mean
replacement might end up learning the correct bias quickly through fine tuning, achieving the same
loss as the network pruned with mean replacement after N fine tuning steps. To assess this claim,
we repeat our basic experiments but perform a specific number of retraining steps before measuring
the post-pruning loss. In order to eliminate the unstable effects observed during the early stages of
training, in this experiment we only consider the pruning-and-retraining penalties measured after at
least 25,000 training iterations on the Cifar-10 dataset. Most of the networks we train have near zero
losses by that time (see Figure 2 (right)). Figure 4 shows the scatter plots for 3 different values of
fine tuning iterations. Although the effect of Mean Replacement diminishes when we increase the
number of fine tuning steps, we can still see a difference after 500 fine tuning steps, which is almost
one full epoch. This observation supports our claim that the immediate improvement on pruning
penalty helps the future optimization.

In Appendix 6.5 we share the plots sampled from the other half of the results (networks pruned
before the training step 25k). And finally in Appendix 6.6 we perform some iterative pruning exper-
iments where we see the networks pruned with various methods converge almost to the same energy
level when trained long enough.

4.3 FIRST ORDER APPROXIMATIONS OF THE LOSS PENALTY ARE UNRELIABLE

In this section we compare the performance of different scoring functions under our methodology.
To summarize the results for all experiments without losing the distance information provided by a
time series plot like the one in Figure 2-(left), we use performance profiles (Dolan & Moré, 2001).
We include measurements from all Cifar-10 experiments to generate the performance profiles for all
the pruning methods considered in our work.

Let us denote measurement j with tuples d(j) = (d1, ..., d12) where di is the pruning penalty for
i’th pruning method. Then for each such tuple we set the threshold to be tj = min(d(j)) ∗ τ +

max(d(j))∗ (1−τ) for each data point j. Finally, probabilities (measured on the y-axis) for scoring
function i are calculated as

Pi =
1

N

N∑
j

I(d
(j)
i < tj) .

Changing τ on the x-axis helps us to understand how close each pruning method performs to the
best scoring one through the probabilistic information.

The performance profiles show several important effects:

7

Under review as a conference paper at ICLR 2019

0.0 0.2 0.4 0.6 0.8 1.0

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
(∆
L
os
s
<
t i
)

Performance Profile
abs_mrs

abs_rs

norm

rand

mrs

rs

bp_abs_mrs

bp_abs_rs

bp_norm

bp_rand

bp_mrs

bp_rs

Figure 5: Performance profiles of scoring functions calculated from all experiments we ran for
Cifar-10. The y-axis denotes the probability for a particular scoring function to have a pruning
penalty smaller than the threshold ti = min(∆Loss)i ∗ τ + max(∆Loss)i ∗ (1 − τ) where the
min and max are calculated separately among the scoring functions for each time step i. The x-axis
denotes the interpolation constant τ that determines the exact threshold ti used for specific pruning
measurements. Bias propagation improves the performance of every scoring function considered.

• Using Mean Replacement(lines without dashes) consistently improves performance. This
observation agrees with result in the previous section and results provided by Molchanov
et al. (2016).

• ABS MRS and ABS RS have very similar performance, with the former potentially provid-
ing a small improvement over the latter. We have observed a strong overlap between the
units selected for pruning by these two methods.
• The direct first order approximations of the pruning penalty, MRS and RS, perform worse

than random selection. This is very striking since it shows that the methods using pure first
order approximations can have large error terms and cause serious damage to the networks.

To gain insight into this last phenomenon, we plot the output histogram of units pruned with three of
our methods in Figure 6b. The corresponding pruning penalties are shown in Figure 6a. Figure 6b
reveals the units selected by the absolute valued Taylor approximation have smaller squared outputs

5000 10000 15000 20000 25000 30000 35000

Iteration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ru

n
in

g
 P

e
n
a
lt

y
 (

∆
L

)

Pruning Penalty for Single Layer
abs_mrs

bp_abs_mrs

mrs

bp_mrs

rand

bp_rand

(a) Pruning Penalties through Training

100 101 102 103 104 105 106

Squared Activations

0

500

1000

1500

2000

2500

C
o
u
n
t

Histogram of Squared Activations
rand

abs_mrs

mrs

(b) Histogram of Squared Activation’s

Figure 6: Figure 6a shows the pruning penalties for the specific experiment setting averaged over
8 seeds. We use MEDIUM CONV network and perform pruning experiments on the second convolu-
tional layer using a pruning fraction of 0.1. Figure 6b is the histogram of the squared activation’s
of the pruned units from the same experiment. The distribution for MRS is includes many samples
with high squared norm suggesting a high error term for the approximation.

8

Under review as a conference paper at ICLR 2019

5000 10000 15000 20000 25000 30000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
u
n
it

s

Fraction of Unit Selected

abs_mrs

abs_rs

mrs

norm

rand

rs

(a) from the start of the training

15000 20000 25000 30000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
u
n
it

s

Fraction of Unit Selected Over Training

abs_mrs

abs_rs

mrs

norm

rand

rs

(b) after 10k steps

Figure 7: Fraction of units selected at least once by the scoring algorithm accumulated throughout
the training. We use the same experimental setting as Figure 6 and show how many different units
the scoring algorithm selects throughout the training. Random scorer selects all units at least once
by the iteration number 15000. Successful scoring functions somehow stay consistent with their
choices and choose a small subset of units in the convolutional layer. In Figure 7b we repeat the
same plot discarding the measurements taken before step 10000. The set of units chosen by the
scoring function decreases later in the training.

and therefore they provide better approximations keeping the error term of the Taylor expansion
small(see Appendix 6.1 for further discussion).

4.4 ORDERING AMONG UNIT SALIENCIES DOESN’T CHANGE MUCH DURING TRAINING

We now use the same experimental setup as the Figure 6 but keep track of the accumulated set of
units pruned at different time steps during training. The curves shown in Figure 7a indicate which
fraction of the units of a specific layer have been pruned at least once before the number of iterations
specified on the horizontal axis. These curves quickly stop increasing, indicating that the scoring
functions quickly select a stable set of units for pruning.

The top curves we see in the performance profile (Figure 5) appear at the bottom in Figure 7. In other
words, our best performing pruning methods selects a small subset of units for pruning relatively
early during training and keep this set consistent afterwards. This is striking because it indicates that
the “winning ticket” discussed by Frankle & Carbin (2018) can be identified relatively early during
training.

5 DISCUSSION AND FUTURE WORK

This work presents an experimental comparison of unit pruning strategies throughout the training
process. We introduce the mean replacement approach and show that it substantially reduces the
impact of the unit removal on the loss function. We also show that fine-tuning the pruned networks
does not reduce the mean replacement advantage very quickly. We argue that direct first order
approximation of the pruning penalty are poor predictors of the pruning penalty incurred by the
simultaneous removal of multiple units because the neglected high order terms can become signifi-
cant. In contrast the absolute value versions of these approximations achieve the best performance.
Finally we provide some evidence showing that our best pruning methods identify a stable set of
prunable units relatively early in the training process.

This last observation begs for future work. Can we combine pruning and training in a manner that
reduces the computational training cost to a quantity comparable to training the ”winning ticket”
network?

9

Under review as a conference paper at ICLR 2019

REFERENCES

Jan Achterhold, Jan Mathias Koehler, Anke Schmeink, and Tim Genewein. Variational Network
Quantization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ry-TW-WAb.

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. CoRR, cs.MS/0102001, 2001. URL http://arxiv.org/abs/cs.MS/0102001.

Utku Evci. Detecting Dead Weights and Units in Neural Networks. 2018. doi: 10.13140/RG.2.2.
32517.24804. URL http://arxiv.org/abs/1806.06068.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights and Connections
for Efficient Neural Networks. pp. 1–9, 2015. ISSN 01406736. doi: 10.1016/S0140-6736(95)
92525-2. URL http://arxiv.org/abs/1506.02626.

Stephen José Hanson and Lorien Pratt. Comparing Biases for Minimal Network Construction with
Back-Propagation. Advances in neural information processing systems 1, (May):177–185, 1989.
URL http://portal.acm.org/citation.cfm?id=89851.89872.

. Hassibi and D. Stork. Second order derivaties for network prunning: Optimal brain surgeon.
Advances in NIPS5, pp. 164–171, 1993.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. CoRR, abs/1607.03250, 2016.
URL http://arxiv.org/abs/1607.03250.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. . . . Science
Department, University of Toronto, Tech. . . . , pp. 1–60, 2009. ISSN 1098-6596. doi:
10.1.1.222.9220. URL http://scholar.google.com/scholar?hl=en{&}btnG=
Search{&}q=intitle:Learning+Multiple+Layers+of+Features+from+
Tiny+Images{#}0.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. Advances in Neural
Information Processing Systems, 2(1):598–605, 1990. ISSN 1098-6596. doi: 10.1.1.32.7223.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neu-
ral network compression. CoRR, abs/1707.06342, 2017. URL http://arxiv.org/abs/
1707.06342.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference. (2015):1–17, 2016. ISSN 0004-6361. doi:
10.1051/0004-6361/201527329. URL http://arxiv.org/abs/1611.06440.

Ari S Morcos, David G T Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the importance
of single directions for generalization. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1iuQjxCZ.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 2847–2854, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/raghu17a.html.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning Structured Sparsity
in Deep Neural Networks. 2016. ISSN 10495258. doi: 10.1109/HPCA.2015.7056066. URL
http://arxiv.org/abs/1608.03665.

10

https://openreview.net/forum?id=ry-TW-WAb
https://openreview.net/forum?id=ry-TW-WAb
http://arxiv.org/abs/cs.MS/0102001
http://arxiv.org/abs/1806.06068
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1506.02626
http://portal.acm.org/citation.cfm?id=89851.89872
http://arxiv.org/abs/1607.03250
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Learning+Multiple+Layers+of+Features+from+Tiny+Images{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Learning+Multiple+Layers+of+Features+from+Tiny+Images{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Learning+Multiple+Layers+of+Features+from+Tiny+Images{#}0
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1611.06440
https://openreview.net/forum?id=r1iuQjxCZ
http://proceedings.mlr.press/v70/raghu17a.html
http://arxiv.org/abs/1608.03665

Under review as a conference paper at ICLR 2019

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the Smaller-Norm-Less-Informative
Assumption in Channel Pruning of Convolution Layers. (2017):1–11, 2018. doi: 10.1146/
annurev.publheath.23.100901.140546. URL http://arxiv.org/abs/1802.00124.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. 2017. URL http://arxiv.org/abs/1710.01878.

Table 2: Experiments for Cifar-10

hParam Values

Pruning Factor [1%, 5%, 10%, 20%, 50%, 1 unit]
Seed [0, 1, 2, 3, 4, 5, 6, 7]
Model Architecture [small conv, medium conv, vgg 11]
Layers Pruned [all, firstconv, midconv, lastconv, firstdense]
Total:1440

Table 3: Experiments for Imagenet-2012

hParam Values

pruningfactor(if float) or pruningcount(if int) [0.05, 0.1, 0.3, 1]
seed [0, 1, 2]
Model Architecture [alexnet, vgg11]
Layers Pruned [all, firstconv, midconv, firstdense]
Total:96

6 APPENDIX

6.1 MEAN REPLACEMENT SALIENCY AND ABSOLUTE VALUED APPROXIMATIONS

If we decided that we will be using Mean Replacement as our pruning method, we can define a
new scoring function, i.e. the first order Taylor approximation of the pruning penalty after mean
replacement. We name this new saliency function as Mean Replacement Saliency (MRS) Let us
parameterize the loss as a function with activations and write down the first order approximation of
the absolute change in the loss.

MRS := |L(āl)− L(al)| = |∆al �∇alL(al)|+O(||āl||2) (5)

where
∆ai = (āl

i − al
i) (6)

If we were interested in the average change in the loss we can write down the Equation 5 without
the absolute values. In other words approximations on absolute change penalizes both directions,
emphasizing the change in the neural network itself rather then the loss function.

6.2 EXPERIMENTAL DETAILS

Pruning can be done at any part of the training. Since we want to make our results as general as
possible we perform experiments during the training every 250 or 10000 steps for Cifar-10 and
Imagenet-2012 respectively and measure the pruning penalties. Different settings we use in our
experiments summarized in Table 2. We perform pruning for different sets of constraints. First we
select which layers to prune. This can be a single layer or all layers at once. For pruning single layers
we select the first, middle and last convolutional layers and the first dense layer of each network.
We use a fraction or count to decide how many units we will be pruning at each measurement step.
If we are pruning all layers, we use the same fraction/count for all layers. To be able to compare

11

http://arxiv.org/abs/1802.00124
http://arxiv.org/abs/1710.01878

Under review as a conference paper at ICLR 2019

our results with Molchanov et al. (2016), we also perform single unit removals. To be able generate
confidence intervals, we perform 8 experiments with each setting.

For each combination of settings in Table 2, we pause the training every 250 iteration and perform
pruning measurements on the copied model. These measurements include calculation of scoring
functions, pruning selected units, optionally doing the bias propagation and finally measuring the
pruning penalty. We perform pruning measurements for all scoring functions during the same run
creating an exact copy of the model separately with and without mean propagation. This brings us
12 pruning penalty curves for each experiment.

For each experiment we independently sample a fixed validation subset of size 1000 (cifar10) and
10000 (imagenet) from training set. This validation set is used to calculate scoring functions, mean
replacement, pruning penalty, and training loss. We set our batch size to 64 for both datasets and
perform training for 60 epochs with a learning drop of factor 10 at epoch 45.

6.3 MODELS USED

ALEXNET
2DConv, out channels=96, filter size=[11, 11], strides=(4, 4)
MaxPooling, pooling size=3, stride=2
2DConv, out channels=256, filter size=[5, 5],
MaxPooling, pooling size=3, stride=2
2DConv, out channels=384, filter size=[3, 3],
2DConv, out channels=384, filter size=[3, 3],
2DConv, out channels=256, filter size=[3, 3],
Flatten
Dense, out features=4096
Dense, out features=4096

VGG 11
2DConv, out channels=64, filter size=3, padding=same
MaxPooling, pooling size=2, stride=2
2DConv, out channels=128, filter size=3, padding=same
MaxPooling, pooling size=2, stride=2
2DConv, out channels=256, filter size=3, padding=same
2DConv, out channels=256, filter size=3, padding=same
MaxPooling, pooling size=2, stride=2
2DConv, out channels=512, filter size=3, padding=same
2DConv, out channels=512, filter size=3, padding=same
MaxPooling, pooling size=2, stride=2
2DConv, out channels=512, filter size=3, padding=same
2DConv, out channels=512, filter size=3, padding=same
MaxPooling, pooling size=2, stride=2
Flatten
Dense, out features=512
Dense, out features=512

SMALL CONV
2DConv, out channels=32, filter size=5,
MaxPooling, pooling size=2, stride=2
2DConv, out channels=64, filter size=3,
MaxPooling, pooling size=2, stride=2
2DConv, out channels=128, filter size=3,
MaxPooling, pooling size=2, stride=2
Flatten
Dense, out features=512
Dense, out features=128

MEDIUM CONV
2DConv, out channels=64, filter size=5,

12

Under review as a conference paper at ICLR 2019

MaxPooling, pooling size=2, stride=2
2DConv, out channels=128, filter size=3,
MaxPooling, pooling size=2, stride=2
2DConv, out channels=256, filter size=3,
MaxPooling, pooling size=2, stride=2
Flatten
Dense, out features=1024
Dense, out features=256

6.4 SCATTER PLOTS FOR DISJOINT SUBSETS OF THE CIFAR10 EXPERIMENTS

One down side of having a single plot aggregating all experiments is that anomalies in some small
subset of the experiments might get shadowed by the rest of the experiments. Even though it is
not feasible to share every single plot without any aggregation, in this section we like to split our
experiments into 5 disjoint subsets and plot them separately. Figure 8 shows these 5 disjoint subset
of experiments. Pruning single layers (Figure 8 b-d), we observe that the gains seem like more
prominent(greater decrease in pruning penalty) compare to the other layers.

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Pruned Layer: all
abs_mrs

norm

abs_rs

(a) all layers

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Pruned Layer: firstconv
abs_mrs

norm

abs_rs

(b) first convolution

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Pruned Layer: midconv
abs_mrs

norm

abs_rs

(c) middle convolution

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Pruned Layer: lastconv
abs_mrs

norm

abs_rs

(d) last convolution

0.1 0.0 0.1 0.2 0.3 0.4

Pruning Penalty without BP

0.1

0.0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Pruned Layer: firstdense
abs_mrs

norm

abs_rs

(e) first dense

Figure 8: Scatter plots generated similar to the ones in Section 4.1. However the entire set of results
are partitioned according to the layer/s pruned.

6.5 ADDITIONAL SCATTER PLOTS WITH FINE-TUNING STEPS

In Section 4.2 we argued that the mean replacement helps optimization by reducing the gap between
loss before and after pruning. Particularly, we focused on the measurements done in the second half
of the training. In this section we like to share complimentary data, where instead of the second
half of the training (where the networks are mostly converged), we plot the first half in Figure 9.
As expected we see more points in the negative regime, where the final loss is smaller than the loss
before pruning due to the fine-tuning steps taken after pruning.

13

Under review as a conference paper at ICLR 2019

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5

Pruning Penalty without BP

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Fine tuning steps=10
abs_mrs

norm

abs_rs

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5

Pruning Penalty without BP

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Fine tuning steps=100
abs_mrs

norm

abs_rs

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5

Pruning Penalty without BP

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

P
ru

n
in

g
 P

e
n
a
lt

y
 w

it
h
 B

P

Fine tuning steps=500
abs_mrs

norm

abs_rs

Figure 9: Pruning penalties measured after N fine tuning steps. For fine tuning steps a batch size
of 64 and a learning rate of 1e-3 are used. The data is gathered from the first half of Cifar-10
experiments.

The effectiveness of our method diminishes with increased number of fine tuning steps compare to
the plots shared in Section 4.2. However we think that this comparison might not tell us a lot, due
to the ongoing optimization problem and its inference with the effect of mean replacement.

6.6 ITERATIVE PRUNING EXPERIMENTS

As our work and experiments focus on minimizing the immediate damage on the network , many
practical applications allow computational budget required for iterative pruning and fine-tuning.
Results we got in Section 4.2 and Appendix 6.5 suggests that, a network with the same sparsity
but slightly worst starting point (no bias propagation) would possibly catch up the one with better
starting point (mean replaced version). In this section, we like to extend our investigation one step
further and perform iterative pruning experiments with extended number of fine-tuning steps to
answer whether this two starting points have different optimization paths leading to two different
end points.
As number of units pruned in one pass approaches to the total number of units, all pruning methods
approaches to the random scoring function. To minimize this effect we employ iterative pruning
strategy, where we prune 1% of a layer at a time and perform 100 fine tuning steps in between until
the target pruning fraction is reached. We prune all layers in the MEDIUM CONV together starting
from iteration 60000. We perform 93750 iterations(120 epoch) in total and report the average values
for training loss, test loss and test accuracy over 8 different runs with 80% confidence intervals in
Figure 10. To our surprise, results in Figure 10 suggests various pruning methods perform slightly

0.0 0.2 0.4 0.6 0.8

Pruned Fraction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
ra

in
in

g
 L

o
ss

Start: 60000, Finetune: 100
bp_abs_mrs

abs_rs

norm

rand

0.0 0.2 0.4 0.6 0.8

Pruned Fraction

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
e
st

 L
o
ss

Start: 60000, Finetune: 100
bp_abs_mrs

abs_rs

norm

rand

0.0 0.2 0.4 0.6 0.8

Pruned Fraction

0.4

0.5

0.6

0.7

0.8

Fi
n
a
l
T
e
st

 A
cc

u
ra

cy

Start: 60000, Finetune: 100
bp_abs_mrs

abs_rs

norm

rand

Figure 10: Performance of various pruning methods in iterative pruning setting. Networks are
pruned iteratively starting from epoch 60000. We prune 1% of each layer and fine-tune with learning
rate of 1e-3 for 100 iterations in between, until pruning targets are reached.

better than random in our experimental setting. We can also see the regularization effect of the
pruning (test loss increases much slower than the training loss with increased target sparsity). To

14

Under review as a conference paper at ICLR 2019

investigate these results further we repeat the same experiment with VGG 11 network, 10 fine-tuning
steps between pruning iterations and a starting iteration of 10000 (changing one at a time, total 7 new
set of experiments). Results from these experiments confirm the picture in Figure 10 and sometimes
we observe, curves running even closer to each other.

As a sanity check we use the data from Figure 4 and group the pruning penalties to compare different
pruning methods. We make 2 comparisons in one plot by changing the axis that represents our best
performing method bp abs mrs keeping the two cloud of points on different sides of the diagonal.
By generating these 1-1 comparisons for increasing number of fine-tuning steps, we observe how
the comparisons evolve. If all methods would perform exactly the same, we would expect all points
to converge to the diagonal and indeed, we observe such a movement in Figure 11 when we increase
the number of fine tuning steps. Blue cloud of points become almost perfectly diagonal, whereas
the orange cloud(comparison against random scoring function) employs a rather slower movement
supporting the picture we observe in Figure 10, particularly the difference between random and other
methdods.

0.5 0.0 0.5 1.0 1.5

Pruning Penalty (Right)

0.5

0.0

0.5

1.0

1.5

P
ru

n
in

g
 P

e
n
a
lt

y
 (

Le
ft

)

Fine tuning steps=10
bp_abs_mrs VS abs_rs

rand VS bp_abs_mrs

0.5 0.0 0.5 1.0 1.5

Pruning Penalty (Right)

0.5

0.0

0.5

1.0

1.5

P
ru

n
in

g
 P

e
n
a
lt

y
 (

Le
ft

)

Fine tuning steps=100
bp_abs_mrs VS abs_rs

rand VS bp_abs_mrs

0.5 0.0 0.5 1.0 1.5

Pruning Penalty (Right)

0.5

0.0

0.5

1.0

1.5

P
ru

n
in

g
 P

e
n
a
lt

y
 (

Le
ft

)

Fine tuning steps=500
bp_abs_mrs VS abs_rs

rand VS bp_abs_mrs

Figure 11: Pruning penalties from the experiments in Section 4.2 grouped by various pruning meth-
ods. We do 2 comparisons in 1 graph by using different colours. For a label ‘Y VS X‘ x-axis repre-
sents pruning penalties when pruning method X is used and y-axis represents the pruning penalties
when the method Y is used. Difference among different pruning methods diminishes with increased
number of fine tuning steps.

In a future work, we plan to continue investigating the discrepancy between our findings in this
section with experiments made by Molchanov et al. (2016) and Luo et al. (2017). We suspect that
the exact pruning strategy used, along with the hyper-parameters like learning-rate may have an
import effect on the performance of pruning methods and explain the different results we observed.

15

	Introduction
	Related Work
	Unit Pruning and Mean Replacement Idea
	Pruning Units and Notation
	Mean Replacement
	Optimal Bias Update for Linear Regression
	Scoring Functions for Unit Pruning

	Empirical Evaluation
	Mean Replacement Reduces the Loss After Pruning
	Mean Replacement Reduces the Loss After Pruning And Retraining
	First Order Approximations of the Loss Penalty are Unreliable
	Ordering among unit saliencies doesn't change much during training

	Discussion and Future Work
	Appendix
	Mean Replacement Saliency and Absolute Valued Approximations
	Experimental Details
	Models Used
	Scatter Plots for Disjoint Subsets of the Cifar10 Experiments
	Additional Scatter Plots with Fine-tuning Steps
	Iterative Pruning Experiments

