I LOVE YOUR CHAIN MAIL!
MAKING KNIGHTS SMILE IN A FANTASY GAME WORLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Dialogue research tends to distinguish between chit-chat and goal-oriented tasks. While the former is arguably more naturalistic and has a wider use of language, the latter has clearer metrics and a more straightforward learning signal. Humans effortlessly combine the two, and engage in chit-chat for example with the goal of exchanging information or eliciting a specific response. Here, we bridge the divide between these two domains in the setting of a rich multi-player text-based fantasy environment where agents and humans engage in both actions and dialogue. Specifically, we train a goal-oriented model with reinforcement learning via self-play against an imitation-learned “chit-chat” model with two new approaches: the policy either learns to pick a topic or learns to pick an utterance given the top-K utterances. We show that both models outperform a strong inverse model baseline and can converse naturally with their dialogue partner in order to achieve goals.

1 INTRODUCTION

In the literature on artificial dialogue agents, a distinction is often made between “goal-oriented” dialogue, where an agent is tasked with filling slots or otherwise obtaining or disseminating specified information from the user to help complete a task, and “chit-chat”, where an agent should imitate human small talk. Modeling goal-oriented dialogue can have advantages over chit-chat imitation as it gives clearer metrics of success and perhaps more meaningful learning signals; but goal-oriented dialogue data is often more specialized, covering only a narrow slice of natural language. Current goal-oriented datasets study setting like booking restaurants or airline tickets, or obtaining weather information, as standalone tasks [Raux et al., 2005; Henderson et al., 2014; Bordes et al., 2017; El Asri et al., 2017; Budzianowski et al., 2018]. Chit-chat agents, by contrast, might focus on coarse statistical regularities of dialogue data without accurately modeling the underlying “meaning”; but the data often covers a much wider space of natural language. For example, Twitter or Reddit chit-chat tasks [Li et al., 2016a; Yang et al., 2018; Mazare et al., 2018] cover a huge spectrum of language and diverse topics. Chit-chat and goal-oriented dialogue are not mutually exclusive: when humans engage in chit-chat, their aim is to exchange information, or to elicit specific responses from their partners. Modeling such goals, however, is made difficult by the fact that it requires large amounts of world knowledge, and that goals in real life are implicit.

In this work, we study goal-oriented dialogue agents in the setting of a multi-player text-based fantasy environment [Urbanek et al., 2019]. The environment is built on top of a game engine that grounds actions and reference objects, and thus codifies a body of world-knowledge. Although the interactions between objects and characters are simulated, the choice and types of interactions, the text used to describe them, and the dialogues between characters, are “natural” and wide-ranging, having been collected from human crowdworkers. We define the general task of, given a particular character in a particular scenario (location, set of objects and other characters to interact with) to conduct open-ended dialogue such that a given action is executed in the future by their dialogue partner. The given action could be an emote action (smile, laugh, ponder, . . .), or a game action (wear chain mail, drink mead, put glass on table, . . .). The richness of the environment means that there are a huge set of possible tasks and scenarios in which to achieve a wide range of actions. Thus, this task is ideally suited for bridging the divide between goal-oriented and chit-chat dialogue, combining clearer metrics and learning signals on the one hand, with the richness and complexity of situated but open-domain natural language on the other.
Figure 1: Example episode from the LIGHT dataset, consisting of an environment (location setting, characters with given personas, objects), utterances and game actions. There are 10,777 such human-human gameplay episodes, and a rich world of 663 locations, 1755 characters and 3462 objects.

We train models to achieve these tasks using reinforcement learning (RL) and a type of self-play between two agents. The first agent, which we call the environment agent, is trained with imitation learning on human-human interactions (game actions, utterances and emotes) and subsequently kept fixed. The second agent, the RL agent, is trained to conduct dialogue given the goal, and the two agents interact within a given environment until the goal is either reached or a given number of turns has expired. At that point, rewards are given, and the RL agent is updated. We compare agents that have been trained to imitate human actions given a goal (an “inverse model”) to two different RL approaches: optimizing actions with latent discrete variables (topics), or via rewarding actions sampled from the model (via the top-K outputs). We show that both types of RL agent are able to learn effectively, outperforming the inverse model approach or a vanilla chit-chat imitation baseline, and can converse naturally with their dialogue partner to achieve goals.

2 Game Environment

We work in the LIGHT game environment ([Urbanek et al., 2019](https://light.recherche.ens.fr/)), which is a multi-user text-based game, involving many characters playing the game at once. Characters (either played by humans or run by models) can speak to each other via free text, send emote actions like `applaud`, `nod`, `pout` (22 emote types in total), and take actions to move to different locations and interact with objects (e.g. `get cutlery`, `put cutlery in drawer`, etc.), see Appendix [A](https://light.recherche.ens.fr/) for a full list of game actions.

LIGHT at its core has a game engine which can formally be defined as a graph, where each location, object and character is a node, and they are connected by labeled edges representing relationships, for example `contained-in`, `path-to` or `has-property`. Actions in the game result in changes in state of the graph. To a player (agent) a local view of the graph can be seen and this is expressed in text, as are the game actions and changes of state. This text then naturally interleaves with the dialogue utterances of the speakers as well to form an input context sequence from which a character can base their subsequent actions. See Fig. [1](https://light.recherche.ens.fr/) for an example.
To make the world and its textual descriptions, LIGHT consists of a large set of human-written
game locations, characters, and objects, all based within a fantasy medieval setting. Their names,
descriptions and properties were crowd-sourced, yielding a total of 663 locations, 1755 characters,
and 3462 objects. They range from beaches with crabs and seaweed to crypts with archaeologists
and coffins, yielding an extremely rich environment for agents to learn within.

An additional set of crowdworkers were then asked to play the role of characters (randomly picked
from the set of 1755) within the created world as rendered by the game engine. This involved
them making utterances, game actions and emotes, while interacting with each other (in pairs). The
resulting gameplay data consists of 10,777 episodes with an average of 18.3 actions each (game
actions, emotes and utterances) of rich human play. These are split into train (8538), validation
(500) and test (1739) portions, the latter being split into new episodes in existing settings (test
seen, 1000) and completely new settings (test unseen, 739). This gameplay data can be used for
training models using imitation learning, as well as for obtaining “common sense” knowledge about
how the world works, i.e., what kinds of things certain characters say; what actions they use with
certain objects; what they say and how they act in certain environments or while interacting with
certain other characters. The whole environment is thus intended as a proxy for learning about
the world within a rich simulation, while avoiding the complexities and bandwidth of rendering (3D)
computer graphics. While players were not given specific goals, but instead asked to play the role
convincingly of the character given, during play some of them effectively defined their own goals
during the interactions, see Fig. 1.

3 TASK

The tasks we consider in this work involve interaction between two agents in a given LIGHT sce-

nario. One of the agents, which we will call \(M_{\text{env}} \), together with the game engine, effectively
functions as an environment for the other agent, which we will call \(M_{\text{RL}} \). Because we will formu-
late our tasks as a reinforcement learning problem, we will also refer to \(M_{\text{env}} \) as the “environment
agent” and \(M_{\text{RL}} \) as the “RL agent”. We assume that the environment agent is fixed; in this work it
will be a model trained via behavioral cloning from human-human interaction data. The RL agent
must conduct open-ended dialogue such that a given goal action is executed in the future by the
environment agent.

Our task is formally defined as follows. The two agents \(M_{\text{env}} \) and \(M_{\text{RL}} \) are given their views of
the scenario (\(D_{\text{env}} \) and \(D_{\text{RL}} \)) respectively. These consist of the setting name, scenario description,
character names, and their own persona, all described as a sequence of text (see Fig 2). Note that
each agent can only access their own persona but not the persona of the partner with whom they are
conversing, but they do know the name of their partner. Denote by \(t \) the time-step of the environment,
\(U_{t}^{\text{RL}} \) and \(U_{t}^{\text{env}} \) the utterances of the agents \(M_{\text{RL}} \) and \(M_{\text{env}} \) respectively, and denote by \(A_{t}^{\text{env}} \) the
environment actions by \(M_{\text{env}} \). Hence the interaction sequence looks like

\[
S_{t} = [U_{0}^{\text{RL}}, (U_{0}^{\text{env}}, A_{0}^{\text{env}}), U_{1}^{\text{RL}}, (U_{1}^{\text{env}}, A_{1}^{\text{env}}), \ldots, U_{n}^{\text{RL}}, (U_{n}^{\text{env}}, A_{n}^{\text{env}})].
\]

Note that there is an inversion from the usual reinforcement literature language, as the “actions”
of the RL agent are its utterances \(U_{t}^{\text{RL}} \); the actions \(A_{t}^{\text{env}} \) of the environment agent should be considered
as internal mechanics of the environment. The agent \(M_{\text{RL}} \) is additionally given a goal \(g \) to achieve,
which consists of an action which must be executed by the other agent. That is, the objective of
\(M_{\text{RL}} \) is for \(M_{\text{env}} \) to take the action \(g \). An episode ends when \(A_{t}^{\text{env}} = g \) or when \(n \) becomes
larger than a set number of turns. The RL agent only speaks, but does not perform game or emote
actions. This was chosen for simplicity, but also to guarantee that the RL agent cannot help force
the goal to be reached by performing actions itself – it has to pick the appropriate utterances \(U_{t}^{\text{RL}} \)
such that \(M_{\text{env}} \) eventually takes the action \(g \).

Goals We experiment separately with two different types of goals: game actions and emote ac-
tions. We use the same train, valid, test (seen and unseen) split of the original human-human LIGHT
episodes, assign roles \(M_{\text{RL}} \) and \(M_{\text{env}} \) randomly, and randomly pick an action by \(M_{\text{env}} \) that occurs
in the episode as the goal. We can then present the corresponding setting to our agents in order to
form a new interaction, but within the same scenario and with a goal that was naturally desirable
and achievable within that setting.
Figure 2: Example interaction in the described task setup (single turn). Here the RL agent M_{RL} would receive a reward as the environment agent M_{env} took the desired action g.

Observations

The state observation $O_t = (D_{RL}, S_{t-1}, g)$ at time t given to an RL model consists of the RL agent’s setting description (D_{RL}), the utterance and action history up to that time step (S_{t-1}), and the agent’s goal (g). Our RL agent models consume O_t as a flattened sequence of tokens, and return a dialogue utterance U_{RL}^t. Each structured component is represented in the flattened sequenced separated by a special token denoting the types, e.g. names, settings, etc., see Fig. 2. Note that because the entire history and goal is given to the RL agent, the environment is Markovian.

Reward

We have a terminal reward of +1 only if the goal g is achieved and 0 otherwise, i.e. it is +1 if the environment agent takes the goal action g. The episode ends after n steps. In our experiments we consider $n = 1$ and $n = 3$.

4 Models

In this section we describe the models for M_{env} and M_{RL}. In this work these are retrieval models, using the LIGHT dialogue corpus as candidates. We leave generative models to future work.

Base Agent Architecture

For all our models we adopt the same base architecture, which is a 12-layer bidirectional transformer (Vaswani et al., 2017) pre-trained on a large dialogue corpus (Reddit, 174M examples), and then fine-tuned on our task. To score retrieval candidates, we use a bi-encoder as in (Humeau et al., 2019; Urbanek et al., 2019). That is, two transformers are used, one to encode the context, and another to encode a candidate dialogue, and a dot product between the first output vector of each scores the match. To produce a dialogue utterance one then takes the utterance with the largest output from the training set candidates (111k in this case). For emotes and actions, the same procedure is used, but with those candidate sets instead. For actions, the candidates are the set of admissible actions at that game state, which are provided by the game engine, for example get apple is only available in the candidate set if it is a valid action (an apple is present in the room). For emotes, all 22 candidates are always available. To train the model, a cross entropy loss is used. Similar to Mazaré et al. (2018), during training we consider the other elements of the batch as negatives.

Environment agent

The environment agent is the base agent described above, and stays fixed during episodes where the RL agent is trained. This helps guarantee that our RL models stick to using the semantics of natural language (English) rather than so-called language drift, of learning a new emergent language with the same tokens (Lee et al., 2019).

RL agents

We design two RL approaches for our tasks - learn to pick the right latent discrete variables (topics) that lead to the correct U_{RL}^t; and learn to pick the correct U_{RL}^t from the top K
candidates. These are described in more detail in Sections 4.2 and 4.3. We also discuss a baseline “inverse” model trained via behavioral cloning on the human-human data.

4.1 Inverse Model

We consider an inverse model, trained to imitate human actions given a goal, as both a baseline for comparing to RL models, and for producing weights form which we can fine-tune. The inverse model consists of a Bi-encoder, as described above, which takes as input an observation O_t, similar to our RL models, and outputs an utterance. We train it by extracting from the human-human game logs training set (which does not have goals) every instance where a game action occurs at time t in S_t, that is where $S_t = [(U^RL_1, A^RL_1), (U^env_1, A^env_1), \ldots, (U^RL_t, A^RL_t), (U^env_t, A^env_t)]$, and where A^env_i is not null (but A^RL_i for $0 < i \leq t$ or A^env_i for $0 < i < t$ might be null). We then construct a training example for the inverse model with observation $(D^RL, g = A^env_t, S_{t-1})$. i.e. setting the goal g to be A^env_t, and with the desired action to be taken by the agent as U^RL_t. Here we use the subscripts “RL” and “env” just to mark the relative positions in the sequence, as all actions and utterances come from the human logs. Note also that unlike the RL agents we train, the human in the RL agent “position” can take game actions.

We can thus train this model in a supervised manner using a cross entropy loss as described before. This model does not learn a policy interactively, and hence might not learn to plan or strategize optimally for goal completion. The data distribution it is trained on is different than the data distribution seen by the RL agents. Nevertheless, it can serve as a strong baseline. Further, when training our RL agents, we initialize their weights to the weights of this model, and then fine-tune from that point.

4.2 Latent Discrete Variable (Topic) Model

Optimizing all the parameters of a large transformer architecture by RL is both incredibly costly in data efficiency and computing time, and is also known to have the problem of language drift (Lee et al., 2019) – that is, there is no guarantee after training with self-chat that the models will output recognizable natural language utterances. A solution to both problems is to train most of the parameters of the model with human-human language data, and then to either disentangle or only optimize some of the parameters with model self-chat (Yarats & Lewis, 2017).

Here, we propose a straight-forward model for that purpose. We assume an RL agent that consists of two components.

The first component $F_c(O) = P(T_c(O))$ maps from an observation to a discrete variable with C possible values. It consists of a chain of two functions: a transformer T_s that takes in the observation, and outputs a state representation \tilde{s}, and a policy chooser $c = P(\tilde{s}) \in (1, \ldots, C)$ which takes in the state representation and outputs the value of the discrete latent variable.

The second component $T_u(O, c)$ is an additional transformer that takes as input the observation as well as the output of the first component, and outputs a dialogue utterance. That is, the entire model is the chain $u = T_u(O, P(T_s(O)))$. We make this explicit decomposition so that we can train only part of the model with RL; note that the “action” trained via RL is choosing c, not outputting the final utterance.

Initial topics We first pre-train the transformer T_s using the inverse model described in Section 4.1 which produces a vectorial representation of a given observation. We then run K-means over the vectorial representations of all observations from the training set to provide the mapping to one of C values, which represent dialogue topics, which we use as our initial function $P(\tilde{s})$. These two functions together give us our initialization of F_c. Table 1 shows the cluster ID and the topic denoted by that cluster along with the most representative sentences (closest to the center) for that cluster for 50 topics. As we can see, the clusters learnt can be coherent about a topic. We use these 50 topics as a set of actions A for our RL setup.

From c to A Given our initial choice of F_c, we can also pre-train T_u. We simply take our initial human-human training data, and for each observation append the topic computed by F_c to it. This
allows our model to be able to generate an action (utterance) conditional on both an input and a topic. We can now train a policy by RL that optimizes the topic at any given point in the episode.

Policy training We keep the pre-trained portions of the model T_u and T_s fixed and during fine-tuning only optimize P. The cluster chooser P is redefined (from the initial K-means) to be an MLP network consisting of 2 layers. A discrete action is sampled from a categorical probability distribution over the possible topics, given by $c_t \sim \text{Categorical}(h_2^t)$, where $h_2^t = \text{tanh}(W_2 \text{tanh}(W_1 s_t + b_1) + b_2)$.

The state vector s_t also encodes the goal g and hence, the policy is conditioned on the goal g of the agent. Hence, the policy can learn strategies that will result in picking actions at each time step t that will help the agent to achieve its goal g. As our RL agent can only choose topics, it cannot redefine easily the meaning of words to cause language drift.

<table>
<thead>
<tr>
<th>#C</th>
<th>Topic</th>
<th>Representative Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>animal sounds</td>
<td>‘Meow! Purr!’, ‘Bah-Buk! Tasty!’</td>
</tr>
<tr>
<td>12</td>
<td>find the cost</td>
<td>‘I would love some fruit. What are your prices?’</td>
</tr>
<tr>
<td>28</td>
<td>prayer, God</td>
<td>‘Then your poor life is a sign from God for you to join us in the church and serve him!’</td>
</tr>
<tr>
<td>45</td>
<td>ask favor</td>
<td>‘Yes but do you mind doing me a favor?’</td>
</tr>
</tbody>
</table>

Table 1: Clusters learnt over the dialogue utterances. ‘#C’ denotes the cluster ID.

4.3 Top-K Model

The Top-K model is another approach to keeping the number of trainable parameters small. It uses the inverse model to get a context embedding v_{context} from the observation, and a list of K candidate utterance embeddings $v_1, \ldots v_K$. These are the encodings by the inverse model of the K utterances it considers most likely given the context and goal. We then train a small (2-layer) transformer model that takes as input the set $\{v_{\text{context}}, v_1, \ldots v_K\}$. We use the attention above weights of v_{context} against the candidates at the last layer of the transformer as the distribution over the candidates for sampling an utterance. We use $K = 50$ in the experiments.

4.4 RL Training

We use the Advantage Actor-Critic implementation (A2C; Kostrikov 2018) to train the policy and the value function for both the latent-variable and top-K models.

5 Related Work

Chit-chat dialogue

There is an increasing body of work in the domain of chit-chat, where the primary approaches being currently tried are end-to-end neural approaches. They are typically large pre-trained and then fine-tuned transformers, either generative or retrieval, where currently retrieval models work best on a number of tasks (Zhang et al., 2018; Dinan et al., 2018; Li et al., 2019). Our work shares a commonality with these approaches in that the original LIGHT dialogue data we use has no specified goals, and humans chit-chat together (and act). Thus, the conversations cover a rich number of diverse topics. In Urbanek et al. (2019) models were trained in a similar fashion to chit-chat task models, and we adopt similar architectures here, but instead adapt them to learn to pursue goals.

Goal-oriented dialogue

Traditional goal-oriented dialogue has focused on narrow tasks that would typically be useful for a dialogue-based assistant, for example restaurant (Henderson et al., 2014), taxi, train, and hotel (Budzianowski et al., 2018) or trip (El Asri et al., 2017) booking. Hence,
each task typically focuses on a narrow slice of natural language and world knowledge for a specialized domain. Earlier work focused on labeled state representations, slot filling mechanisms and dialogue managers (Rieser & Lemon, 2011), and more recent work has shifted to an end-to-end approach (Bordes et al., 2017), in line with chit-chat models, but still the two sets of tasks are rarely considered together, or by using the same methods.

RL for dialogue The classical goal-oriented dialogue literature studies RL extensively (Singh et al., 2000). Typically, they used RL to improve dialogue managers, which manage transitions between dialogue states (Singh et al., 2002; Pietquin et al., 2011; Rieser & Lemon, 2011; Gasic et al., 2013; Fatemi et al., 2016). Recent works have focused more on end-to-end learning. Some works have focused on self-play type mechanisms for end-to-end reinforcement learning, where the reward is derived from goal. A related approach to ours is the negotiation tasks of Lewis et al. (2017); Yarats & Lewis (2017), which require two agents to swap 3 item types (hats, balls, books) where the value of the items is different for the two agents, and derives their personal reward. In contrast, our setup encompasses a rich world of settings and characters – with 3462 object types, and a corresponding large number of actions. This is reflected in the vocabulary size itself (∼32,000 versus ∼2,000 in the negotiation tasks). Other notable uses of RL in dialogue include within visual question answering (Das et al., 2017), in the domain of chit-chat where RL has been used to decrease repetitive and generic responses through the use of self-play (Li et al., 2016b), and through human-bot conversation (Sankar & Ravi, 2019).

RL for language and games RL is used extensively for learning to play games, one of the most well known examples being AlphaGo (Silver et al, 2016). Since then, language in games has started to be more deeply explored, for example in graphical games such as Minecraft (Oh et al., 2017), Real-time strategy war games (Hu et al., 2019), or in text adventure games (Narasimhan et al., 2015; Côté et al., 2018). The latter are related to our setting. However, those approaches use RL to optimize the set of actions given feedback in a single-player rather than multi-player game, so the text only refers to the environment, and there is no dialogue or actions from other agents. Our work focuses specifically on the latter.

6 Experiments

We compare our various models on the game action and emote action tasks. We experiment with differing number of steps \(n \) allowed to complete the goal, \(n = 1 \) and \(n = 3 \). Our main results for both seen and unseen test environments are given in Table 2. We report the average reward and for \(n = 3 \) the average number of turns before completion. The results show clear improvements for our topic RL (§4.2) and top-\(K\) RL (§4.3) compared to the inverse model baseline for all values of \(n \), and both types of actions (game actions and emotes).

We show the training curves for topic RL in Fig. 3, reporting rewards averaged over the batch (512 for \(n = 1 \), and 128 for \(n = 3 \)). They show relatively smooth improvements over time, with clear gains over the baseline. As a sanity check we also tried, after training, to replace the topic RL policy with random topic prediction, which yielded poor results, e.g. 0.217 reward for \(n = 1 \) test seen game actions. Our model is clearly learning appropriate topic acts. We show examples of successful utterances, achieving goal actions in Fig. 3 for a diverse range of scenarios, actions and language.

<table>
<thead>
<tr>
<th>Model</th>
<th>Goal Type</th>
<th>Test Seen</th>
<th>Test Unseen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((n = 1))</td>
<td>((n = 3))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reward</td>
<td>Reward</td>
<td>Turns</td>
</tr>
<tr>
<td>Inverse model</td>
<td>game act</td>
<td>0.223</td>
<td>0.414</td>
</tr>
<tr>
<td>Topic RL</td>
<td>game act</td>
<td>0.314</td>
<td>0.502</td>
</tr>
<tr>
<td>Top-(K) RL</td>
<td>game act</td>
<td>0.319</td>
<td>0.460</td>
</tr>
<tr>
<td>Inverse model</td>
<td>emote</td>
<td>0.089</td>
<td>0.262</td>
</tr>
<tr>
<td>Topic RL</td>
<td>emote</td>
<td>0.170</td>
<td>0.342</td>
</tr>
</tbody>
</table>

Table 2: Results on the test seen and unseen environments for our models.
Figure 3: Topic RL model training for $n = 1$ and $n = 3$ step action goals for game actions (left) and emotes (right), comparing to the inverse model baseline. Darker lines indicate smoothed plots.

<table>
<thead>
<tr>
<th>Self: guard</th>
<th>Partner: archer</th>
<th>Self: swimmer</th>
<th>Partner: turtles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persona:</td>
<td>I guard the castle. I guard the king.</td>
<td>I am a huge fan of deep sea exploration, but I take any chance I can get to go for a swim...</td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>The armory, Inside Tower. Where the watchers keep their eye...</td>
<td>Bank, Swamp It’s a plain field with some trees nearby along...</td>
<td></td>
</tr>
<tr>
<td>U_{t0}^g</td>
<td>This is the armory! The king keeps the best weapons here. Take a look -</td>
<td>U_{t0}^g Just keep taking good care of your beautiful little turtle family! Your species is quite unique and I love to see you about when I go for a swim.</td>
<td></td>
</tr>
<tr>
<td>U_{t0}^{sw}</td>
<td>Hello, I need to get into the palace to see the king. I think he might like to see these weapons.</td>
<td>U_{t0}^{sw} Well, thank you for that. Do you happen to know where my other turtle friend is? You haven’t captured any turtles have you?</td>
<td></td>
</tr>
<tr>
<td>A_{a0}^{sw}</td>
<td>get weapon</td>
<td>A_{a0}^{sw} hug swimmer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self: towns-person</th>
<th>Partner: villager</th>
<th>Self: songbird</th>
<th>Partner: wasp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persona:</td>
<td>We are the people who live in this town. We are common, and there are many...</td>
<td>I fly high and bring beautiful music to the people. I soar high and low going where the...</td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>The Lagoon, Lake The Lagoon is a dark and mysterious place during the night hours. A lot of moss and lily...</td>
<td>Meadow, Countryside Large clear outdoor meadow. Flowers of blue and white appearing in bunches here and there. The...</td>
<td></td>
</tr>
<tr>
<td>U_{t0}^b</td>
<td>It is cold up here. Would you like my coat</td>
<td>U_{t0}^b Get out of here, wasp!</td>
<td></td>
</tr>
<tr>
<td>U_{t0}^{sw}</td>
<td>Oh yes please if I may. My shoe has become sodden from running to the market I should love to dry it a bit.</td>
<td>U_{t0}^{sw} You? Fly away from me? You’re in my forest, bird. I control this land earlier.</td>
<td></td>
</tr>
<tr>
<td>A_{a0}^{sw}</td>
<td>remove Cloak</td>
<td>A_{a0}^{sw} hit a songbird</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Example 1-step episodes where after the Latent Discrete Variable (Topic) RL agent’s utterance U_{t0}^g the environment agent’s response action A_{env}^{sw} was equal to the RL agent’s goal g. Our RL agent both makes natural utterances given the situation, and that elicit the desired goal.

7 Conclusion

In this paper, we investigate agents that can interact (speak or act) and can achieve goals in a rich world with diverse language, bridging the gap between chit-chat and goal-oriented dialogue. We achieve this by defining a task for an agent, where the goal is for the other player to execute a particular action. We explore two reinforcement learning based approaches to solve this task: the policy either learns to pick a topic or learns to pick an utterance given the top K utterances, and compare them against a strong baseline trained to imitate chit-chat. We show that these approaches effectively learn dialogue strategies that lead to successful completion of goals, while producing natural chat. Future work should explore further RL algorithms for agents that can act and speak in natural language at scale in our proposed rich task environment, and we expect further advancements.
REFERENCES

A GAME ACTIONS WITHIN LIGHT

<table>
<thead>
<tr>
<th>Action</th>
<th>Constraints</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>get object</td>
<td>actor and object in same room object is gettable</td>
<td>actor is carrying object</td>
</tr>
<tr>
<td>drop object</td>
<td>actor is carrying object object is gettable</td>
<td>object is in room</td>
</tr>
<tr>
<td>get object1 from object2</td>
<td>Actor and object2 in same room object1 is gettable object2 is surface or container object2 is carrying object1</td>
<td>actor is carrying object1</td>
</tr>
<tr>
<td>put object1 in/on object2</td>
<td>Actor and object2 in same room object2 is container or surface actor is carrying object1</td>
<td>object2 is carrying object1</td>
</tr>
<tr>
<td>give object to agent</td>
<td>Actor and agent in same room object is a member of actor</td>
<td>agent is carrying object</td>
</tr>
<tr>
<td>steal object from agent</td>
<td>actor and agent in same room object is a member of agent</td>
<td>actor is carrying object</td>
</tr>
<tr>
<td>hit agent</td>
<td>Actor and agent in same room object is a member of agent</td>
<td>inform agent of attack</td>
</tr>
<tr>
<td>hug agent</td>
<td>Actor and agent in same room</td>
<td>inform agent of hug</td>
</tr>
<tr>
<td>drink object</td>
<td>actor is carrying object object is a drink</td>
<td>inform actor of drinking successfully</td>
</tr>
<tr>
<td>eat object</td>
<td>actor is carrying object object is a food</td>
<td>inform actor of eating successfully</td>
</tr>
<tr>
<td>wear object</td>
<td>actor is carrying object object is wearable</td>
<td>actor is wearing object</td>
</tr>
<tr>
<td>wield object</td>
<td>actor is carrying object object is a weapon</td>
<td>actor is wielding object</td>
</tr>
<tr>
<td>remove object</td>
<td>actor is wearing/wielding object object is wearable or a weapon</td>
<td>actor is carrying object</td>
</tr>
</tbody>
</table>

Table 4: LIGHT actions and constraints from Urbanek et al. (2019)

B GAME EMOTES WITHIN LIGHT

applaud, blush, cry, dance, frown, gasp, grin, groan, growl, laugh, nod, nudge, ponder, pout, scream, shrug, sigh, smile, stare, wave, wink, yawn

Figure 4: Emote actions within the LIGHT platform from Urbanek et al. (2019)