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Abstract
Normative modeling has recently been introduced as a promising approach for modeling variation
of neuroimaging measures across individuals in order to derive biomarkers of psychiatric disorders.
Current implementations rely on Gaussian process regression, which provides coherent estimates of
uncertainty needed for the method but also suffers from drawbacks including poor scaling to large
datasets and a reliance on fixed parametric kernels. In this paper, we propose a deep normative
modeling framework based on neural processes (NPs) to solve these problems. To achieve this,
we define a stochastic process formulation for mixed-effect models and show how NPs can be
adopted for spatially structured mixed-effect modeling of neuroimaging data. This enables us to
learn optimal feature representations and covariance structure for the random-effect and noise via
global latent variables. In this scheme, predictive uncertainty can be approximated by sampling
from the distribution of these global latent variables. On a publicly available clinical fMRI dataset,
we compare the novelty detection performance of multivariate normative models estimated by the
proposed NP approach to a baseline multi-task Gaussian process regression approach and show
substantial improvements for certain diagnostic problems.
Keywords: Neural Processes, Mixed-Effect Modeling, Deep Learning, Neuroimaging.

1. Introduction

Recently, there has been great interest in applying machine learning to neuroimaging in order to find
structural or functional biomarkers for brain disorders (Bzdok and Meyer-Lindenberg, 2018). Such
biomarkers can potentially be used for diagnosis or predicting treatment outcome in the spirit of
precision medicine (Mirnezami et al., 2012). In psychiatry, this is very challenging because clinical
groups are highly heterogeneous in terms of symptoms and underlying biology (Kapur et al., 2012).
However, most common analysis approaches ignore such heterogeneity and, in a case-control set-
ting consider groups as distinct entities (Foulkes and Blakemore, 2018), where subjects are simply
labeled as ‘patients’ or ‘controls’. Supervised machine learning methods have been widely used in
such settings but their accuracy is limited by the heterogeneity within each disorder (Wolfers et al.,
2015).

Normative modeling (Marquand et al., 2016) is an emerging approach to address this challenge
that has shown significant promise in multiple clinical settings (Wolfers et al., 2018; Zabihi et al.,
2018; Wolfers et al., 2019). Normative modeling involves estimating variation across the population
in terms of mappings between clinically relevant covariates (e.g., age, cognitive scores) and biology
(e.g., neuroimages). This is analogous to the use of ‘growth charts’ in pediatric medicine to map
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variation in height or weight as a function of age. Currently, this is implemented using probabilistic
regression methods that provide estimates of predictive uncertainty which map variation across
the population. Deviations from the resulting normative model can then be interpreted as subject-
specific biomarkers for brain disorders. For example, these can be used in a novelty detection setting
for predicting diagnosis in an unsupervised fashion (Kia and Marquand, 2018; Kia et al., 2018).

Accurate quantification of uncertainty is crucial for normative modeling. In the original frame-
work (Marquand et al., 2016), Gaussian process regression (Williams and Rasmussen, 1996) (GPR)
was the central tool used to regress neuroimaging measures from clinical covariates. GPR is appeal-
ing because it estimates a distribution over functions, providing coherent estimates of uncertainty
to map population variation. However GPR also has limitations: it is computationally prohibitive
for large datasets and relies on predefined kernels with restricted functional form. Moreover, in the
original implementation, brain measures were regressed independently (i.e., in a mass-univariate
manner), which does not capitalize on the rich spatial structure of neuroimaging data. This last prob-
lem can be addressed by using multi-task GPR (MT-GPR) (Bonilla et al., 2008) to jointly predict
multiple brain measurements. However, applying MT-GPR to neuroimaging data is very computa-
tionally demanding because of the need to invert large covariance matrices across both space and
subjects. Recently, a combination of low-rank approximations and Kronecker algebra was proposed
to scale MT-GPR to whole brain neuroimaging data (Kia and Marquand, 2018; Kia et al., 2018),
which reduces the computational complexity with respect to the number of tasks by one order of
magnitude. However, this comes with restrictive assumptions that the spatial structures of the signal
and noise can be expressed by sets of orthogonal basis functions. Furthermore, its times complexity
still remains cubic with the number of samples which is not appropriate for applications on large
clinical cohorts.

Neural processes (NP) (Garnelo et al., 2018a,b) are latent variable models that bring all the
advantages of deep learning (e.g., representation learning and computationally efficient training
and prediction) to the stochastic process framework and can address the problems described above.
In the NP framework, a distribution over functions is modeled by learning an approximation to a
stochastic process. Here, we present an application of NP to multivariate normative modeling of
clinical neuroimaging data. This provides three advantages: i) like GPR, NP provides the necessary
estimates of predictive uncertainty at test time; ii) similar to MT-GPR, it provides the possibility
of learning structured variation; and iii) unlike alternatives, it is computationally scalable without
restrictive assumptions on the orthogonality of lower dimensional representations of data. To this
end, we make four contributions: i) in a tensor Gaussian predictive process (TGPP) framework (Kia
et al., 2018), we formally define mixed-effect models of neuroimaging data (Friston et al., 1999) as
stochastic processes; ii) we show how NP can be employed for mixed-effect modeling; iii) we use
the resulting NP-based mixed-effect model to estimate a normative model of a clinical functional
magnetic resonance imaging (fMRI) dataset; iv) we provide an example application of the proposed
deep normative modeling for detecting psychiatric disorders in a novelty detection setting. Our
experimental results show that the proposed method more accurately identifies ADHD patients from
healthy individuals compared to the GP-based normative modeling.

2. Methods

In this text, we use respectively calligraphic capital letters, A , boldface capital letters, A, and capital
letters, A, to denote tensors, matrices, and scalars. We use ×1 to denote 1st-mode tensor product.
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We denote the vertical vector which results from collapsing the entries of a tensor A into a vector
with vec(A ). Notation |.| is accordingly used to represents the determinant of a matrix or the size
of a set.

2.1. Mixed-Effect Modeling of MRIs in the TGPP Framework

Consider a neuroimaging study with N subjects and let X ∈ RN×D denote the design matrix of D
covariates of interest for N subjects. Let Y ∈ RN×T1×T2×T3 represent a 4-order tensor of MRI data
for corresponding N subjects with respectively T1, T2, and T3 voxels in x, y, and z axes. In the
normative modeling setting, we are interested in finding the function f : X→ Y . Adopting the
tensor Gaussian predictive process (TGPP) (Kia et al., 2018) for structured multi-way mixed-effect
modeling of MRI data, we have:

Y = f (X) = X×1 A +Z +E , (1)

where A ∈ RD×T1×T2×T3 represents the fixed-effect across subjects that contains regression coeffi-
cients estimated by solving the following linear equations:

Ŷ [:, i, j,k] = XA [:, i, j,k], f or i = 1, . . . ,T1; j = 1, . . . ,T2; k = 1, . . . ,T3. (2)

In Equation (1), Z ∈RN×T1×T2×T3 is the random-effect that characterizes the spatially structured
joint variations from the fixed-effect across individuals in different dimensions of MRIs; and E ∈
RN×T1×T2×T3 is heteroscedastic noise. Assuming a tensor-variate normal distribution for Y and a
zero-mean tensor-variate normal distribution for Z +E , we have:

p(X,Y ) = T N (Ŷ ,S) =
exp(−1

2 vec(Y − Ŷ )>S−1vec(Y − Ŷ ))√
(2π)NT |S|NT

, (3)

where S∈RNT×NT (T = T1×T2×T3) is the covariance matrix of Z +E . Intuitively, the distribution
of the mixed-effect in the joint hypercubic space of clinical covariates and neuroimaging measures
can be described as a multi-dimensional Gaussian distribution with vec(Ŷ ) and S respectively serv-
ing as its mean and covariance.

2.2. Mixed-Effect Models of MRI Data as Stochastic Processes

The primary aim of this section is to formally define the structured mixed-effect model in Equa-
tion (1) as stochastic process. This will provide the ingredients to employ NP for learning charac-
teristics of the covariance matrix of the random-effect and noise in Equation (3), i.e., S.

Let (Ω,Φ,ρ) represent a complete probability space (see Oksendal (2003) or Appendix B for
definitions) where Ω is a set of clinical covariates and their corresponding neuroimaging measures
pairs for N subjects (i.e., |Ω|= N) and Φ is a σ -algebra on Ω that contains all possible subsets of Ω.
Here, ρ : Φ→ [0,1] represents a probability measure that quantifies the probability of occurrence
for any entry in Φ. In this setting, each mixed-effect function fi estimated on the ith entry of Φ is
a random variable, i.e., a Φ-measurable function from Ω to a Borel set in RN×T1×T2×T3 . Therefore,
parametrizing fi on different subsets of Ω; and considering the exchangeability and consistency
properties of mixed-effect models (McCullagh, 2005; Nie and Yang, 2005), Yi = fi(Xi) ||Φ|i=1 can
be defined as stochastic processes (Garnelo et al., 2018b). As a corollary, for the ith entry in Φ,
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φi = (Xi,Yi)⊂Ω with |φi|= Ni < N, the joint distribution p(Xi,Yi) can be considered as a marginal
for a higher-dimensional joint distribution in Equation (3). We exploit this property to frame the
problem of mixed-effect modeling in the neural processes framework (Garnelo et al., 2018b). To
this end, given a particular realization of the mixed-effect stochastic process fi, the joint distribution
in Equation (3) can be rewritten as:

p(X,Y ) =
|Φ|

∑
i=1

p( fi)T N (Y | fi,S). (4)

In an NP paradigm (see Appendix A.1 for background information on NP), we parametrize the inte-
gration over all fi(X) on a lower dimensional (Q << T ) Gaussian distributed global latent variable
Z ∈ RN×Q ∼N (µ,Σ) where f (X) = g(X,Z), resulting the following generative model:

p(Z,Y | X) = p(Z)T N (Y | g(X,Z),S) , (5)

where g(X,Z) is a deep neural network that learns the behavior of the mixed-effect model in
an amortized variational inference regime (Kingma and Welling, 2013; Gershman and Goodman,
2014). To this end, following the procedure proposed by Garnelo et al. (2018b) the first challenge is
to induce stochasticity, for which we need to define ‘context’ and ‘target’ points. While target points
refer to full available information (e.g., all pixels in an image), the context points are intended to
represent some partial information about the target function (e.g., a subset of pixels in an image).
In this work, in order to adapt the NP for the mixed-effect modeling, we advance the concepts of
context/target points (Garnelo et al., 2018b) to context/target functions (see Section 5.2 for discus-
sion). The idea is to reduce the difference between the distribution of random context functions
from the target function by minimizing their Kullback-Leibler (KL) divergence in the latent space.
In our application in order to learn the distribution of the mixed-effect model in Equation (1), i.e.,
target function, we propose to use the estimated ŶC ∈ RN×M×T1×T2×T3 (using Equation (2)) on M
randomly drawn subsets of the training set as context functions. Then, using the actual correspond-
ing neuroimaging training samples as target functions, the following evidence lower-bound should
be optimized:

log p(Y | X, ŶC)≥ Eq(Z|X,Y )

[
log p(Y | Z,X)+ log

q(Z | X, ŶC)

q(Z | X,Y )

]
, (6)

where q(Z | X,Y ) is the variational posterior of the global latent variable that is parametrized on an
encoder h(X, ŶC). In fact in this setting, each context function is a linear component of the target
function that roughly approximates a stochastic process fi. Having enough samples of context func-
tions, large enough M, we expect the distribution of context functions to get rich enough to explain
non-linear characteristics of the target function (i.e., the mixed-effect fi). Figure 1 shows a simpli-
fied illustration of this scenario in a 2D space where fitting enough linear models on subsets of noisy
observations provides an estimation of the distribution of a non-linear target function. Furthermore,
by minimizing the KL term in Equation (6), it is expected that the global latent variable Z will learn
characteristics of the variance structure of the random-effect and noise terms (the diagonal elements
of S) from the difference between the context and target functions (recall that Y − Ŷ = Z +E ).
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Figure 1: A schematic illustration on approximating the distribution of a non-linear target function
(red curve), e.g., a mixed-effect, from the distribution of linear context functions (blue
lines), e.g., fixed-effects, which are fitted on M random subsets of noisy observations
(circles).

2.3. Deep Normative Modeling using Neural Processes

Using NP in the TGPP framework brings all the advantages of deep learning methods (e.g., repre-
sentation learning from structured data and computational efficiency) for modeling the multi-way
structured variation in neuroimaging data. It has been shown that modeling such structured vari-
ation provides the possibility of accurate unsupervised stratification of psychiatric patients in the
normative modeling paradigm (Kia and Marquand, 2018; Kia et al., 2018). To this end, here we in-
troduce deep normative modeling, which utilizes an NP-based mixed-effect modeling and involves
following three steps:

1. Encoding phase: where an encoder h(X, ŶC) is learned to transfer the covariates, X, and
the estimated fixed-effects on M randomly drawn samples from the training set, ŶC, to the
parameters of the global latent variable Z. Here, to preserve the 3D MRIs structure in the
TGPP framework, we propose to use 3D-convolutional neural network (3D-CNN) layers to
first transfer the ŶC to a lower dimensional representation of neuroimages RŶ ∈R

N×T ′ . Note
that using a CNN architecture in NP complicates fusing X with ŶC in the encoder. When us-
ing fully-connected layers in the encoder (for example in Garnelo et al. (2018b)), this fusion is
simply performed by concatenation. However, considering inherent structural differences be-
tween X and ŶC the concatenation is impossible when using a CNN architecture. Therefore,
this concatenation is performed in the latent output space RŶ (see Section 5.3 for discussion
on its advantages). Then, fully connected (FC) layers can be used to derive a latent rep-
resentation in the joint space of clinical covariates (X) and neuroimages, R ∈ RN×T ′′ . It is
worthwhile to emphasize that in this architecture, the aggregation across M context functions
is implicitly done by the 3D-CNN layers as they are considered as M input channels to the
CNN. Finally, two separate FC layers are used to transfer R to the means (µZ ∈ RN×Q) and
standard deviations (σZ ∈ RN×Q) of Z.

2. Decoding phase: where a decoder g(X,Z) is learned to transfer back the joint covariates-
latent space to the neuroimaging data Y . Fully connected and 3D inverse CNN (3D-ICNN)
layers can be accordingly used to reconstruct MRIs in the original space.
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Figure 2: An example NP architecture for mixed-effect modeling of MRIs.

3. Normative modeling: let Y ∗ ∈ RN∗×T1×T2×T3 to represent the reconstructed neuroimaging
data by the decoder g(X∗,Z) on N∗ test samples. Following Marquand et al. (2016) (see Ap-
pendix A.2 for details), we then compute statistical maps describing the deviation for each in-
dividual subject from the normative model, referred to as normative probability maps (NPMs),
denoted by N ∈RN∗×T1×T2×T3 where N = (Y −Y ∗)/

√
S . Here, S represents the sum of

epistemic and aleatoric uncertainties, which respectively describe uncertainty about the true
model parameters and inherent variation in the data (Kendall and Gal, 2017). To be able to
calculate the epistemic uncertainty in our NP model, we keep the dropout layers active at test
time (Gal and Ghahramani, 2016). In the context of mixed-effect modeling of neuroimaging
data (in Equation (1)), the aleatoric uncertainty is the byproduct of two factors: i) the across-
subject variability which is captured via the covariance of the random-effect Z ; and ii) noise
in the data which is captured via covariance of E . In the proposed NP framework, these two
sources of uncertainties are learned from data and are summarized in the distribution of the
global latent variable Z. Therefore, given a test example of clinical covariates x∗ ∈ X∗, we
calculate the associated aleatoric uncertainty by sampling from the distribution of Z.

3. Experimental Materials and Setup

In our experiments, we use the response inhibition (i.e., ‘stop signal’) task from the UCLA Con-
sortium for Neuropsychiatric Phenomics dataset (Poldrack et al., 2016). Specifically, we use the
‘Go’ contrast volumes derived from the pipeline in Gorgolewski et al. (2017)).1 The data consist of

1. Available at https://openfmri.org/dataset/ds000030/.
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119 healthy subjects; and 49, 39, and 48 individuals with schizophrenia (SCHZ), attention deficit
hyperactivity disorder (ADHD), and bipolar disorder (BIPL), respectively. We cropped the volumes
to the minimal bounding-box of 49× 61× 40 voxels (T1 = 49,T2 = 61,T3 = 40,T = 119560). In
order to accommodate the optimization scheme in Equation (6) for fMRI data, the values of voxels
are independently projected to the uniform [0,1] interval using a robust quantile transformation. For
clinical covariates, we use 11 factors of Barratt impulsiveness scores (Patton et al., 1995) (D= 11) as
impulsivity is a well-known feature for multiple psychiatric disorders and is implicated in response
inhibition (Moeller et al., 2001).

We use three layers of 3D-CNNs followed by an FC layer to project ŶC to RŶ . In each CNN
layer, we alternate a 3D-convolutional layer, a batch normalization layer (Ioffe and Szegedy, 2015),
an average pooling layer, and a leaky ReLU activation function (Xu et al., 2015) (with negative
slope of 0.01). Then, two FC layers are used to transfer the merged RŶ and X to the middle joint
representation R. A similar reverse architecture is used for the decoder g(X,Z) to transfer back the
Z to Y space. Figure 2 depicts a schematic of the employed NP architecture with detailed hyper-
parameter descriptions. Due to the small sample size and illustrative purpose of our experiments,
we did not optimize the architecture and its hyperparameters (e.g., number of layers, number and
the size of filters, number of neurons, etc.). The ADAM optimizer (Kingma and Ba, 2014) with
decreasing learning rate (from 10−2 to 10−5) is used for optimization in 100 epochs.

We compare the normative models derived by NP and scalable multi-task Gaussian process
tensor regression (sMT-GPTR) (Kia et al., 2018), in terms of their accuracy in detecting healthy
subjects from patients.2 In the sMT-GPTR case, we set the number of basis functions across xyz
dimensions of data 5,10 and 3,5 for the signal and noise, respectively (as they produced the best
results in the original study). We evaluate normative modeling accuracy in a novelty detection
scenario where we first train a model on a random subset of majority healthy subjects (75 healthy, 5
SCHZ, 5 ADHD, and 5 BIPL) and then calculate NPMs on a test set of remaining healthy subjects
and patients. ∼ 16% of cases are included in the training set in order to seemingly simulate the
average prevalence of general mental disorders in a cohort (Consortium, 2004). We emphasize that
the model has no access to the diagnostic labels during the training phase and thus our novelty
detection approach is completely unsupervised. As in Marquand et al. (2016), we use extreme
value statistics to provide a statistical model for the deviations (see Appendix A.3 for more details).
Specifically, we use a block-maximum approach on the top 1% values in NPMs and fit these to
a generalized extreme value distribution (GEVD) (Davison and Huser, 2015). Then for a given
test sample and given the shape parameter of GEVD, we compute the value of the cumulative
distribution function of GEVD as the probability of that sample being an abnormal sample (Roberts,
2000). Given these probabilities and actual labels, we evaluate the area under the receiver operating
characteristic curve (AUC) to measure the performance of the model. All steps (random sampling,
modeling, and evaluation) are repeated 10 times in order to estimate the fluctuations of models
trained on different training sets. In all these experiments, ordinary least squares are used to estimate
the fixed-effect (Equation (2)) on bootstrapped subsets of the training set.3

2. The implementation for sMT-GPTR is available at https://github.com/smkia/MTNorm.
3. The scripts for experiments are available at https://github.com/smkia/DNM.
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Figure 3: Comparison between novelty detection performances of normative models derived by
sMT-GPTR (with different number of bases for signal and noise) and NP (with different
M).

4. Results

Figure 3 compares the AUC of normative models derived by sMT-GPTR and NP. While sMT-GPTR
shows slightly better performance in detecting SCHZ patients, NP provides substantially higher ac-
curacy for ADHD cases. The methods perform similarly for BIPL. Considering the fact that these
differences in performance are consistent across different model parameters and repetitions, it can
be concluded that sMT-GPTR and NP are capturing different characteristics of the underlying biol-
ogy of impulsivity. Furthermore, the above chance-level detection rates of NP models in ADHD and
BIPL confirm a successful application of the proposed NP-based mixed-effect modeling in unsuper-
vised diagnostic prediction. The significance of these results are even more pronounced considering
the difficulty of the problem where a supervised support vector machine classifier provides only a
chance-level performance in ADHD and BIPL cases (SCHZ= 0.67± 0.07, ADHD= 0.46± 0.03,
BIPL= 0.47± 0.06).4 Another important observation in NP models is the ascending trend of the
detection performance as the number of samples from the fixed-effect (M) increases. This is com-
patible with the consistency property of mixed-effects as stochastic processes.

Figure 4(a) depicts the average difference in NPMs of patient groups from the healthy popula-
tion for NP(20) model (see Appendix C for supplementary results). Different patterns of deviations
from one diagnosis to another shed light on their different underlying biological causes. For ex-
ample, the sign of deviations changes from SCHZ to ADHD patients in many regions. To further
explore the link between these deviations and the level of impulsivity, we computed the coefficient
of determination (R2) between the average NPMs in 9 anatomical brain areas and the first princi-
pal component of covariates across different diagnostic groups (see Figure 4(b)). The results show
significantly (Bonferroni corrected F-test p-values) greater association between impulsivity and de-
viations in temporal lobes in ADHD and SCHZ patients compared to healthy individuals. This
observation is compatible with previous research on the structural and functional engagement of
temporal lobes in SCHZ and ADHD (Suddath et al., 1989; Kobel et al., 2010).

4. See Kia et al. (2018) for training and evaluation configurations in the supervised setting.
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Figure 4: (a) The average difference between NPMs of healthy subjects and patients for NP(20).
(b) R2 between the impulsivity and deviation from the normative model across different
anatomical brain areas (∗∗ p < 0.01 and ∗ p < 0.1).

5. Discussion

5.1. Toward Multivariate Normative Modeling on Large Clinical Cohorts

Including spatial information in probabilistic modeling and extending the mass-univariate norma-
tive modeling to its multivariate alternative is computationally very expensive. For N samples and
T tasks, the time complexity of MT-GPR is cubic with respect to the number of samples and tasks,
O(N3T 3). Many efforts have been devoted in order to reduce the time complexity of MT-GPR
for large output spaces (i.e., large T ) low-rank approximation and properties of Kronecker prod-
uct (Alvarez and Lawrence, 2009; Stegle et al., 2011; Rakitsch et al., 2013; Kia and Marquand,
2018; Kia et al., 2018). However, for very large sample-size datasets (i.e., for large N and especially
when N >> T ), their time complexity still remains cubic with respect to N that limits their applica-
tions in normative modeling on recently available large clinical cohorts (Sudlow et al., 2015) (with
N ≈ 104−105). One possible remedy for this problem is to approximate the posterior distribution of
a probabilistic model with hidden variables in the stochastic variational inference framework (Hoff-
man et al., 2013). Alvarez et al. (2010) made the first effort in employing variational inference
in MT-GPR by introducing the variational inducing kernels that achieves a linear time complexity
with respect to N. Our proposed NP-based normative modeling also employs the variational infer-
ence scheme, therefore, its computational complexity remains linear with respect to the number of
samples in both training and inference phases (Garnelo et al., 2018b). Furthermore, since the spa-
tial information is incorporated using a CNN architecture, there is no need to compute the inverse
covariance matrix for the output space. These two properties make this method very suitable for
multivariate normative modeling on large clinical cohorts of high-dimensional neuroimaging data.

5.2. From Context/Target Points to Context/Target Functions

In order to learn the joint distribution in Equation (5) over random functions rather than a single
function, the evidence lower-bound in Equation (6) is optimized by minimizing the KL divergence
between variational posteriors over context and target points. In the original NP framework (Gar-
nelo et al., 2018b), the target points are defined as whole points in the full dataset, while the context
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points are defined as a subset of target points that represent a partial knowledge about the full dataset.
For example in the case of MNIST dataset, a random subset of pixels in an image can be used for
context points. The random selection of pixels in the context points provides the desired stochas-
ticity behavior in the NP framework. In this study, we advance the concepts of context/target points
to target/context functions where the idea is to learn the distribution of a non-linear mixed-effect
function, i.e., the target function, from a set of linear fixed-effect functions, i.e., context functions,
estimated on a random subset of subjects. This alternation is key to learning the characteristics of
the variance structure of random-effect and noise via the global latent variable and consequently it
is crucial for normative modeling.

5.3. Preserving Spatial Structures via Convolutional Neural Processes

In this study, CNN-based architectures are proposed for encoding and decoding operations in NP.
This results in two main advantages especially for the applications on neuroimaging data. First,
it provides the possibility of preserving spatially-structured information in MRI data. Second, the
parameter sharing gifted by CNN substantially reduces the computational costs in training and in-
ference when dealing with very high-dimensional neuroimaging data.

5.4. Related Work

Rad et al. (2018) used a convolutional autoencoder for unimodal deep normative modeling of hu-
man movements recorded by wearable sensors. They used dropout technique in order to evaluate
the parameter uncertainty of the model. Our proposed NP-based approach extends their effort in
applying deep architectures to normative modeling from two perspectives: i) it provides the possi-
bility of bimodal normative modeling. This is more appropriate for clinical usages where we are
generally interested in interpreting the association between clinical covariates and biological mea-
sures (Marquand et al., 2016); ii) using the fully probabilistic NP regime, we are also capable to
evaluate aleatoric uncertainties resulting from individual differences and noise in addition to the
epistemic parameter uncertainty.

6. Conclusions

In this paper, we proposed a principled approach for estimating spatially structured mixed-effects in
neuroimaging data using neural processes. We demonstrated normative modeling as a possible tar-
get application for NP-based mixed-effect modeling. Even though the main focus in this study was
on neuroimaging data, our contribution in framing the popular mixed-effect modeling as stochas-
tic processes is quite general and opens the door for a wide range of NP applications in different
research areas. Moreover, the presented application of NP for deep normative modeling of clinical
neuroimaging data brings the advantages of deep neural networks in representation learning to the
applications in precision psychiatry. Finally, the computational efficiency of NP in the training and
evaluation phases (provided by its reliance on the variational inference) overcomes the lack of com-
putational tractability of the GP-based normative modeling approaches especially when applied to
large cohorts of high-dimensional neuroimaging data. For a possible future direction, we consider
applying the proposed deep normative modeling approach to a large clinical neuroimaging cohort.
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Appendix A. Backgrounds

A.1. Neural Processes

A neural process (NP) (Garnelo et al., 2018b) provides a computational tool to learn the distribution
over a set of functions from distributions over a set of datasets Φ. Assuming the ith dataset in Φ

to contain a set of Ni input-output pairs (Xi,Yi) where Xi ∈ RNi×D and Yi ∈ RNi×T and we have
fi : Xi→ Yi. For sake of simplicity, we refer to all Xi and Yi in Φ as X and Y, respectively. The
goal of NP is to learn the distribution of fis from (X,Y) pairs in Φ via learning the distribution of a
global latent variable Z in the variational inference framework. For the generative model of an NP
we have:

p(Z,Y | X) = p(Z)p(Y | g(X,Z)) = N (Y | g(X,Z),S) , (7)

where g(X,Z) is the decoder function and parametrized by a neural network and S is the covari-
ance matrix in the output space. Intuitively, the latent variable Z is intended to learn the statistical
characteristics of the distribution of f : X→ Y. Then, the following approximation of variational
posterior distribution is used in order to perform the approximate inference in NP:

q(Z | X,Y) = N (m(]h(X,Y)),s(]h(X,Y))) , (8)

where, h(X,Y) is the encoder function that is parametrized on neural network, ] is the aggregator
operator (for example, mean), and m(.) and s(.) are neural networks that map the aggregated values
to the mean and standard deviation of Z. Using the approximate variational posterior distribution
in Equation (8), the evidence lower bound (ELBO) on the log marginal likelihood is derived as
follows:

log p(Y | X)≥ Eq(Z|X,Y)

[
log p(Y | Z,X)+ log

p(Z)
q(Z | X,Y)

]
. (9)

In the NP framework, in order to learn such a distribution over random functions rather than a single
function we need to create a context set of M datasets Λ⊂Φ each of which containing input-output
context pairs (XΛ,YΛ). These datasets are intended to represent some partial information about the
target function f : (X,Y). Thus, Equation (9) can be rewritten as:

log p(Y | X,XΛ,YΛ)≥ Eq(Z|X,Y)

[
log p(Y | Z,X)+ log

p(Z | XΛ,YΛ)

q(Z | X,Y)

]
, (10)

where the prior p(Z) is replaced by the conditional prior p(Z |XΛ,YΛ). Considering the intractabil-
ity of this conditional prior we can approximate it by q(Z | XΛ,YΛ). Therefore we optimize the
following lower-bound in order to learn the distribution of Z:

log p(Y | X,XΛ,YΛ)≥ Eq(Z|X,Y)

[
log p(Y | Z,X)+ log

q(Z | XΛ,YΛ)

q(Z | X,Y)

]
. (11)

A.2. Normative Modeling

Normative modeling provides a framework for statistical inference on how the biological brain
readouts of each individual subject deviate from the norm of a large population (Marquand et al.,
2016). Given X ∈ RN×D and Y ∈ RN×T respectively as matrix of D clinical covariates and T
biological brain measures for N subjects, normative modeling is performed in three steps:
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1. finding a mapping function f : X→ Y from clinical covariates to brain readouts. While a
wide range of linear and non-linear models can be used for this mapping. However, since
computing the normative probability maps (see the next step) is strongly depends on estimat-
ing the prediction uncertainties, Bayesian regression approaches are the best candidates for
normative modeling.

2. calculating ‘normative probability maps’ (NPMs), Z ∈ RN×T , as follows:

Z =
Y− Ŷ√

S
, (12)

where Ŷ and S are prediction mean and uncertainty, respectively. NPMs can be used to
localize brain-related abnormalities at the single subject level (Wolfers et al., 2018; Zabihi
et al., 2018; Wolfers et al., 2019). To ensure accurate estimation of the NPMs it is important
to model different sources of variation in data and model.

3. computing subject-level summary statistics using a block-maximum approach by averaging
top 1% values in NPM of each subject. These summary statistics across subjects can be used
as inputs to a novelty detection algorithm for diagnosis purposes (Kia and Marquand, 2018;
Kia et al., 2018; Rad et al., 2018).

A.3. Novelty Detection using Generalized Extreme Value Distribution

According to Marquand et al. (2016), we can fit a generalized extreme value distribution (GEVD)
on normative summary statistics across subjects in order to compute the abnormality index for
each subject. This abnormality index can be defined as the probability of each sample being an
abnormal sample by computing the cumulative distribution function of the fitted GEVD (Roberts,
2000). For a random variable a ∈R, the cumulative distribution function of the GEVD is defined as
below (Davison and Huser, 2015):

F(a) =
{

exp(−[1+ξ (a−µ)/σ ]−1/ξ ), ξ 6= 0
exp(−exp([−(a−µ)/σ ])), ξ = 0

, (13)

µ ∈R and σ > 0 are respectively the location and scale parameters and ξ ∈R is the shape parameter.
Depending on whether ξ < 0, ξ = 0, or ξ > 0 the GEVD follows the special cases of the Weibull,
Gumbel, Fréchet distributions, respectively.

Appendix B. Supplementary Definitions

Here are some complementary definitions from general probability theory to understand better the
concepts in Section 2.2. The definitions are restated from Oksendal (2003).

Definition 1 If Ω- is a given set, then a σ -algebra Φ on Ω is a family Φ of subsets of Ω- with the
following properties:

1. ∅ ∈Φ,

2. ∀φ ∈Φ⇒ φC ∈Φ, where φC is the complement set of φ in Ω,
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3. φ1,φ2, · · · ∈Φ⇒
⋃

∞
i=1 φi ∈Φ.

Then, the pair (Ω,Φ) is called a measurable space and the subsets of Ω that belong to Φ are called
Φ-measurable sets.

Definition 2 A probability measure ρ on a measurable space (Ω,Φ) is defined as a function ρ :
Φ→ [0,1] such that:

1. ρ(∅) = 0,ρ(Ω) = 1,

2. if φ1,φ2, · · · ∈Φ and ∀i,∀ j, i 6= j⇒ φi∩φ j =∅ then ρ(
⋃

∞
i=1 φi) = ∑

∞
i=1 ρ(φi).

The triple (Ω,Φ,ρ) is called a probability space.

Definition 3 A probability space (Ω,Φ,ρ) is called a complete probability space if Φ contains all
subsets Λ of Ω- with P-outer measure zero, i.e., ∀φ ∈Φ with ρ(φ) = 0 we have ∀λ ⊂ φ ⇒ λ ∈Φ.
Any probability space can be made complete simply by adding to Φ all sets of outer measure 0 and
by extending ρ accordingly.

Definition 4 A stochastic process is a parametrized collection of random variables defined on a
probability space (Ω,Φ,ρ) and assuming values in Rn.
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Appendix C. Supplementary Results

NP(1) NP(5)

NP(10) NP(15)

Figure 5: The average difference between NPMs of healthy subjects and patients for NP models
with different M.

sMT-GPTR(5,3) sMT-GPTR(10,5)

Figure 6: The average difference between NPMs of healthy subjects and patients for sMT-GPTR
models with different number of basis functions for the signal and noise.
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