
[Re] Tensor Monte Carlo: Particle Methods for the
GPU Era

Anonymous authors

1 Introduction

Variational autoencoders (VAE), first introduced in the works of (Kingma and Welling [2013]),
sparked a trend in designing generative models in order to approximate the intractable posterior
distribution. Many recent papers have provided ingenious schemes for improving upon VAE, among
some (Burda et al. [2015], Rezende and Mohamed [2015], Sønderby et al. [2016], Kingma and
Dhariwal [2018]), by achieving tighter log-likelihood bounds on the marginal likelihood (explained
in greater detail below). The original bottom-up and top-down architecture has been experimented
with (Sønderby et al. [2016]), as well as employing chains of transformations on an, in VAE, assumed
simplistic prior distribution (Rezende and Mohamed [2015], Kingma and Dhariwal [2018]). The
importance weighted variational autoencoder (IWAE) (Burda et al. [2015]) utilized averaging over
multiple samples, as opposed to VAE’s single-sample objective, to tighten the mentioned bound
while being able to model a richer latent space – in effect, this multi-sample scheme allows for
a more complex approximate posterior. In light of IWAE, tensor Monte-Carlo (Aitchison [2018];
TMC) was recently proposed as an attempt to improve upon IWAE by sampling exponentially
many importance samples. For each of the n latent variables in the TMC, K samples are drawn
yielding Kn marginal log-likelihood evaluations. Averaging over this large number of samples might
appear computationally impossible, but via clever tensor products computed in parallel, the TMC is
approximately as fast as the less importance sample exhausting IWAE.

In this work, we reproduce what we believe are the most important results presented in the Tensor
Monte Carlo (TMC) paper (Aitchison [2018]), where we also provide our reimplementation code.
The original results in the TMC paper was attained via a PyTorch (Paszke et al. [2017]) imple-
mentation1. In an attempt to ease understanding for those unfamiliar with PyTorch, we contribute
with a TensorFlow2 (Abadi et al. [2015]) implementation. Early on in our work, a connection was
established with the author in order to bring our reproducibility work to their attention, as well as
ensuring that we progress by clearing potential ambiguities. Due to resource and time constraints, we
chose to reproduce those results that, in our meaning, appeared most informative and fundamental
in the TMC paper. Additionally, as we found the TMC architecture non-trivial to understand, we
aim to ease understanding for future users by complementing the textual description of the model
with an algorithmic description in Alg. 1 and a depiction of the model in Fig. 4 (figure in Appendix
B). Furthermore, we supplement the original paper by visualizing the TMC’s reconstruction and
clustering capabilities (Appendix C and D, respectively), while contrasting them to the capabilities of
the baseline, IWAE.

2 Background in Variational Autoencoders

As in traditional variational inference (VI), the VAE specifies a proposal distribution qφ(z|x) for
approximating an intractable posterior distribution pθ(z|x). The VAE is comprised of two parts,
where the first part, qφ(z|x), is often referred to as the representation (recognition or encoder) model
(Kingma and Welling [2013], Aitchison [2018], Burda et al. [2015]), and it learns a mapping from the
input space X to the parameter set φ = {µ, σ2}. As the aim of generative modeling is to learn the

1Code is available at: https://github.com/anonymous-78913/tmc-anon.
2Code is available at: https://github.com/LinuNils/TMC_reproduced.

https://github.com/anonymous-78913/tmc-anon
https://github.com/LinuNils/TMC_reproduced

joint probability distribution, using the notation aligned with this paper, pθ(x, z) = pθ(z)pθ(x|z)
(Kingma and Welling [2013], Kingma and Dhariwal [2018], Kingma and Welling [2019]), the second
part, conveniently called the generative model, tries to achieve just this. In VAE, the two parameter
sets, φ and θ, are optimized in order to tighten the lower bound for the log-likelihood

logpθ(x) = logEqφ(z|x)
[
pθ(x, z)

qφ(z|x)

]
≥ Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
= LVAE(x), (1)

where the lower bound is achieved via Jensen’s Inequality (Kingma and Welling [2013]). Here, we
only consider one latent sample, z, per given data point x, i.e. LVAE is a single-sample objective.
Since we sample from the approximate posterior (proposal distribution) qφ, we want to choose
this distribution such that we can operate on in a convenient manner. Therefore, we often resort
to a Gaussian distribution (Burda et al. [2015], Kingma and Welling [2013, 2019]. Since this is a
somewhat strong assumption of the true distribution (Kingma and Dhariwal [2018], Rezende and
Mohamed [2015]) modern VAE’s try to make the model more expressive, tightening the bound in Eq.
(1).

One such modern VAE is IWAE (Burda et al. [2015]), which employs a multi-sampling objective

log pθ(x) = logEqφ(z1|x). . . qφ(zk|x)

[
1

k

∑
i

pθ(x, z
i)

qφ(zi|x)

]
≥ Eqφ(z1|x). . . qφ(zk|x)

[
log

1

k

∑
i

pθ(x, z
i)

qφ(zi|x)

]
= LkIWAE(x),

(2)

where k is the number of samples drawn per data point. In (Burda et al. [2015]), the authors state two
fundamental benefits of this approach:

• The authors prove that logpθ(x) ≥ Lk+1 ≥ Lk.
• When training using gradient descent, how to update the network parameters is based on

importance weighting between the k z’s marginal log-likelihoods. I.e. the learning rule puts
more emphasis on samples with larger marginal log-likelihoods.

3 Analysis of the Tensor Monte-Carlo Algorithm

In this section, we aim to provide a sufficient background of the TMC algorithm in order for the
reader to be able to follow the reproduced results. Additionally, we outline which aspects of the
algorithm and results we intend to reproduce. This to justify our narrowing down of explanations of
the work done in the TMC paper. For completeness, we next briefly touch upon most of the novelties
proposed by Aitchison.

In the TMC paper, Aitchison extends IWAE’s multi-sample objective by considering exponentially
many important samples, barely without increasing the computational cost compared to IWAE.
Aitchison in essence proposes two different models, one where the proposal distribution is factorised,
and the other one with non-factorised proposals. Furthermore, two existing variance reduction
techniques, STL (Roeder et al. [2017]) and DReGS (Tucker et al. [2018]), were employed, actually
worsening performance for the TMC, according to the author.

3.1 What we Reproduce

Although there are many potential results to be reproduced, due to time and resource constraints we
limit our work to reproducing the following

• For all tests we assume a non-factorized proposal distributions. This approach creates a
recognition model in the same manner as the baseline algorithm, IWAE, was originally
proposed.

• We omit the use of the variance reduction techniques STL and DReGS. The results in the
TMC paper were presented with and without these techniques, why our reproduced results
are still comparable. Given our trade-off between time and quantitative testing, we argue
that this approach is most informative if no prior knowledge of the techniques is assumed.

2

Additionally, the best performing models in the TMC paper did not include these variance
reduction techniques.

• The baseline, an IWAE model, has been reproduced from scratch in TensorFlow.

• An ablation study is provided, where we remove the intermediate layers in the recognition
and generative models, effectively attaining one of the originally proposed number of layers
for the IWAE (Burda et al. [2015]). Since the effects of TMC becomes apparent only when
we have intermediate layers (Aitchison [2018]), we expect the IWAE and TMC to produce
approximately the same results.

• We provide a non-exhaustive hyper-parameter search using grid-search over the number of
samples (k; particles) and the learning rate.

As stated above, we provide the complete reproducibility code publicly on GitHub.

3.2 Tensor Monte-Carlo

For reproducibility, we begin this section with providing an algorithmic description of the TMC, see
Alg. 1, which we next complement with some important details.

Algorithm 1: Non-factorised Tensor Monte-Carlo (TMC) algorithm. d here is the
dimension of a data point, b is the batch size, and the number of layers in the recognition
model is Lq .

Initialize θ
while Not converged do

x←− Randomly draw a data minibatch, z0, of size b
for l ∈ {1, ..., Lq} do

h
kl
l ←−MLP(zkl−1

l−1)

µ
kl
l ←− Linear(hkl

l)

ρ
kl
l ←− SoftPlus(Linear(hl))

ε
kl
l ←− N (0, 1) // Reparameterization trick, b×K × d-tensor of univariate

gaussians
z
kl
l ←− µl + ρlε

kl
l

for i ∈ {1, ...,K} do
for j ∈ {1, ...,K} do

Compute log qθ(z
j
l |z

i
l−1)←− log qθ(z

j
l |µ

i
l,ρ

i
l) ;

Store the log-likelihoods and the sampled latents

Compute and store log pθ(z
kLq
Lq

)

for zkl
l ∈ {z

kLq
Lq

, ..., zk2
2 } do

h
kl−1

l−1 ←−MLP(zkl
l)

µ
kl−1

l−1 ←− Linear(hkl−1

l−1)

ρ
kl−1

l−1 ←− SoftPlus(Linear(hkl−1

l−1))

for i ∈ {1, ...,K} do
for j ∈ {1, ...,K} do

compute log pθ(z
j
l+1|z

i
l)←− logN (zj

l+1|µ
i
l+1|µi

l+1(ρ
i
l+1))

Store the log-likelihoods

µk0
0 ←− Linear(MLP (zk1

1))

Compute and store log pθ(x|zk1)←− logB(x|µk0
0)

update θ using∇θLTMC(x)

As seen in Alg. 1, the TMC evaluates exponentially many importance samples as the IWAE (Aitchison
[2018], Burda et al. [2015]). Doing this, in turns, gives rise to a new objective function. In order to
average over all different combinations of marginal log-likelihoods, Aitchison (Aitchison [2018]),
defines the new marginal likelihood estimator as

3

PTMC =
1∏

i=1

Ki

∑
k1,k2,...,kLq

pθ(x|zk11)
∏
j pθ(z

kj
j |z

kj+1

j+1)∏
i

qθ(z
ki
i |z

ki−1

k−1)
, (3)

which yields the following multi-sample objective

log pθ(x) ≥ Eqθ [PTMC] = LTMC(x). (4)

Note that the estimator in Eq. (3) only applies when assuming a non-factorized proposal. Also note,
in contrast to the notations used when describing IWAE, kl here is a set with cardinality K and not
the number of samples per latent z. To compute the tensor inner-product in a numerically stable way,
the author provides a method referred to as logmmexp (Aitchison [2018]; see Appendix A).

4 Reproducibility

Please note, that in the above section we provided a list of what we aim to reproduce. Here, we go
through our experimental methodology in greater detail.

4.1 Dataset

The TMC paper uses the MNIST (LeCun et al. [1998]) handwritten digit database to evaluate the
performance of TMC compared to IWAE. Although the author of the TMC paper also conducts an
enlightening toy experiment where the true marginal likelihood is known, we restrain our work to
the MNIST dataset as these results are arguably most informative when comparing with existing
models in the literature. The dataset was downloaded and pre-processed via Keras (Chollet et al.
[2015]), while we normalized all pixels by division with 255. No explicit scheme of how the training
proceeded was presented, but the following was done, justified by discussion with the author: similar
to that presented in (Burda et al. [2015]), the model was exposed to all the training data, presented in
randomly drawn mini-batches. Next the same was done for all the test data, concluding an epoch.

Comments on reproducibility

• It seems crucial to know the exact training and test scheme, in order to reproduce the results.
Perhaps this is a standardized approach when training VAE’s, but we were unaware of such
a standard. We suggest that this should be added to the paper for clarity.

4.2 Implementation details

In order to make qualitative comparisons between the proposed TMC model and the benchmark
model, we implemented the algorithm together with its baselines, in TensorFlow. The instructions for
running our code are located in our git repository. Each model is self-contained in a individual file.

Considering only the non-factorized proposals evaluated on the MNIST dataset, the author employed
two models coined small and large. In common for both models in the TMC paper, is the number
of hidden layers and dimensionality of the smallest latent space (furthest from the data), i.e. 4
units. Inspired by the works in (Sønderby et al. [2016]), there are five stochastic layers in both the
representation and generative model. In between each stochastic layer is a two-layered perceptron
(deterministic layers) with varying numbers of hidden units. For the small model’s recognition model,
each stochastic layer, starting from the final layer, had 4, 8, 16, 32, and 64 stochastic units. The
two layers in the multi-layer perceptrons (MLPs) both had twice as many units as their preceding
stochastic layer. Here, the same architecture goes for the generative model.

Concerning the large recognition model, the two layers in the MLPs both had 8 times as many units
as their preceding stochastic layer, i.e. 32, 64, 128, 256 and 512 units respectively. Under the large
model, the generative model architecture remained the same as when using the small model. We used
leaky-relu non-linearities everywhere except when we calculated the standard deviation, for which
we used 0.01 + softplus(x) as proposed by Aitchison [2018].

In our ablation study, we utilized the single-stochastic layer architecture proposed in (Burda et al.
[2015]), i.e. the recognition and generative model have two deterministic layers each, with 200 units

4

per layer. This should indeed regress the TMC to the IWAE model (as should be clear from Alg. 1).
We kept the dimension of the latent space as 4.

For all the above experiments parameter optimization was computed via Adam (Kingma and Ba
[2014]) with parameters β1 = 0.9, β2 = 0.999 and ε = 10−4 and a mini-batch size of 128, all as used
in the TMC paper. Apart from evaluating K = 20, the only choice of number of samples in the TMC
paper for the MNIST dataset evaluation, we perform a hyper-parameter search over a small set of K’s
and learning rates. A deficit in our work is that we did not use weight normalization (Salimans and
Kingma [2016]), in contrast to the author. In the TMC paper, weight normalization is recommended
for numerical stability. We only encountered numerical overflow for some specific choices in our
hyper-parameter search (discussed in 5. Results). In the TMC model, we used float32 bit precision at
all points except for the tensor inner products where we used float64 precision, as it caused numerical
instability. We used the TensorFlow standard weight initialization, i.e. Glorot-uniform initialization
or Xavier-initialization (Glorot and Bengio [2010]). From what we gathered this also seems to be the
default in PyTorch which is what the TMC paper used.

Comments on reproducibility

• Despite the TMC paper being very well-written, when implementing the proposed models
we experienced difficulties in grasping the flow of latent variables, in the network. Especially
that, indeed, there is no sampling step subsequent the stochastic layers in the generative
model. We believe this confusion to have arisen as the notations for the latents do not clearly
express them being sampled from the recognition model, i.e. when used for marginal log-
likelihood evaluation in the generative model. Perhaps it is our small prior knowledge about
the IWAE algorithm that led up to this ambiguity, and this might not cause reproducibility
issues for others. Nevertheless, we contribute with an algorithmic description (Alg. 1) and a
transformation of the original textual description into a figure (Fig. 4).

• The plots presented in the TMC paper are informative in the context of comparison between
the baseline and the presented model. For reproducibility reasons, on the other hand, we
would reason that a table presenting the final negative log-likelihood scores would ease
comparison of results. Even plots with more tics on the objective value-axes might be
beneficial. We acknowledge that the results presented in the TMC paper has not been
averaged over multiple runs, and thus, due to the slight fluctuations in performance, the
final scores might not be representative. To express the usefulness of our suggestion, we
provide a table, Tab. 1, presenting scores averaged over the ultimate 50 epochs. Through
contact with the author, we attained the presented results, and may thus make more precise
comparisons with our results.

4.3 Reproducability cost

The MNIST dataset is a relatively small dataset, and K affects the training time for each epoch
depending on if it is able to store all computations in the graphical memory. One epoch with K = 20,
using the same number of units in the MLP units and stochastic units mentioned in implementation
details, took around 50-60 seconds on the different GPU’s Nvidia Geforce 1060 (6 GB ram), 1070
(8 GB ram), Tesla P4 (8 GB ram). If K = 50, and we use the same architecture and hardware, the
time increased to 70-80 seconds. When using a Nvidia Tesla P100 GPU and K = 20, then one epoch
using IWAE took 11 seconds and 14 seconds using TMC.

5 Results

As stated in Sec. 4.2, we ran two different models of IWAE and TMC, which we refer to as large and
small models, as well as conducted a hyper-parameter search for different values of K for various
learning rates. Additionally we performed a smaller ablation study. To evaluate the performance
of TMC for both the small and large models, we trained an IWAE over 1200 epochs. We trained
the TMC models in the same manner as the IWAE models. The results of these experiments are
presented as averages over three runs in Fig. 1, where the IWAE was evaluated on the IWAE
objective function and the TMC on its respective objective function, i.e. LTMC . In both cases,
the TMC outperforms the IWAE with the difference being most significant for the smaller model
case. Graphically displaying precise comparisons between the results we obtained to those in the

5

TMC paper was at first, as discussed in Sec. 4.2, slightly impracticable as there are no explicit
scores presented for the different models. Fortunately, we were kindly supplied with the author’s
results and may thus give comprehensible comparisons, as is done in Fig. 1. Concerning the small
models (Fig. 1, left), our results seem to align with those presented in the TMC paper in terms of
convergence rates and final scores. The author’s models outperforming the reproduced models, and
our speculative guess is that it might partially be explained by the use of weight normalization. It is
important to emphasize that our speculative guess stands unsupported. An ablation study, with and
without weight normalization, should be done in order to test the hypothesis. Apart from numerical
stability, which might explain the author’s less fluctuating curve, weight normalization speeds up
convergence (Salimans and Kingma [2016]). Considering the large models (Fig. 1, right), the author’s
TMC clearly outperform the reproduced TMC. The gap seems too large to be caused by weight
normalization. Instead we expect the gap to stem from the author not averaging over multiple runs.
As such we cannot expect our results to completely coincide with those from the TMC paper due
to the stochasticity when sampling, initializing weights etc. But, since, the purpose of the TMC
paper was to display the TMC’s superiority over the IWAE, and not state-of-the-art results, we did
not investigate this discrepancy further. Nonetheless, to get a sense of the final scores in our results,
we computed the mean and standard deviation of the last 50 epochs for each of our models, these
results are presented in Tab. 1. Clearly the averaged scores are larger than those perceived when
inspecting our curves in Fig. 1. Furthermore, we also examined the TMC paper’s claim of adding
negligible time when training an IWAE for each epoch, and found that our implementation of IWAE
takes roughly 11 s per epoch while our TMC implementation takes roughly 14 s per epoch, this seem
to corroborate the claim by the author of TMC paper of adding negligible time to train.

For the small IWAE and TMC models mentioned above, we, in Appendix C, present their conditional
reconstructions. I.e., given an MNIST test sample, what does the reconstruction look like. Note, these
are complementary experiments to the original TMC paper. As displayed in Fig. 5, both algorithms
produce almost perfect reconstructions. For future work, it would be interesting to see how well they
performed on more complex datasets, such as CIFAR-10 (Krizhevsky [2009]).

Figure 1: Results of the non-factorized IWAE and TMC models, evaluated on their respective
objective functions for both small and large models over 1200 epochs. Results corresponding to
legends noted with “TMC paper” was given to us by the author.

Model: Mean objective value over last 50 epochs
IWAE large −93.08± 0.19
IWAE small −93.35± 0.12
TMC large −91.94± 0.12
TMC small −91.63± 0.16

Table 1: Reproduced results of the TMC and IWAE averaged over the last 50 epochs reported in
negative log-likelihood (NLL).

The scores presented in Fig. 3 were obtained during our ablation study. We expected the two models
to give similar results, as they, indeed, did. Averaged over an increasing number of runs, the results

6

Figure 2: Results of the hyper-parameter search for the small TMC model, for different values of K
and learning rates over 500 epochs.

should become indistinguishable as they are in essence the same algorithms when there is only one
stochastic layer, i.e. no intermediate stochastic layers in contrast to the model shown in Fig. 4.
This since the parameters of the prior distribution are fixed – the model assumes a standard normal
distribution, why there is no new information when evaluating the latent variables under the same
distribution parameters. To support this claim, we refer to Alg. 1, specifically where we iterate
through the distribution parameters. Mathematically, as is shown in (Aitchison [2018]), the number
of evaluated importance samples grows exponentially with the layers, so if we reduce the number
of layers to one, we effectively evaluate K1 = K samples in the TMC, the same as for the IWAE.
Regarding the worsening of the objective value after approximately 200 epochs, we are not sure how
to explain this. Probably, it is due to the insufficiently small model (100 units per deterministic layer
and one stochastic layer with four units). The purpose of our ablation study was simply to show that
the TMC and IWAE are the same under the mentioned conditions, and so we do not dig deeper into
this phenomena.

In Appendix D, we display the TMC’s clustering abilities, compared to the IWAE, via a two-
dimensional latent space. By observing Fig. 6, it is clear that the TMC (right) yields less ambiguous
clusters than those produced by the IWAE. Especially, note to which small degree digit nine’s
representation mixes with the others digit representations, as opposed to its cluster for the IWAE
(left).

During our non-exhaustive hyper-parameter search, we evaluated the TMC model for K ∈
{1, 5, 20, 50}, and for each K we tested different learning rates lr ∈ {1e − 5, 1e − 4, 1e − 3}.
The results of this hyper-parameter search are presented in Fig. 2. Each of these different experiments
was run over 500 epochs for the small TMC model, unsurprisingly K = 50 with lr = 1e− 3 has the
best performance over these 500 epochs. This as we are effectively looking at more samples for each
batch. However, setting K = 50 increases the running time significantly as the number of matrix
calculations needed are more than doubled to that of K = 20 and the performance is marginally
better compared to that of setting K = 20 and lr = 1e− 3. The parameter settings proposed in the
TMC paper seems well suited for the previous experiments based on our hyper-parameter search. We

7

also tested with lr = 1e− 2, and this produced NaN results for all different values of K we tested,
this might be related to the inherent numerical instability of the TMC method, especially since we
have not used weight normalization in our experiments. The deployment of weight normalization
might very well alleviate this problem and a larger learning rate might be able to perform better than
those we have examined.

Figure 3: Results of the ablation study (more detailed description in text). The test was conducted
with K=5, batch size=128 and a learning rate of 1e-3 over 500 epochs.

6 Discussion and Conclusions

Although our reproduced results and the TMC paper results differ, the general observations of the
authors remain valid. I.e., the TMC clearly outperforms the IWAE model on the given dataset. This
is unsurprising as the TMC, for K = 20 and five layers, considers a factor million more importance
samples (Aitchison [2018]). Despite this, we see that the author’s claim concerning negligible time
difference between the two models is also justifiable, according to our findings. We note in our work,
that theAitchison [2018] intentions was not to achieve state-of-the-art performances, but to compare
the proposed the model to the baseline used in the TMC paper. Perhaps for this reason, the results
are presented in a way such that they are impractical to study in detail. Although the author very
skillfully and clearly describes the novelties in the TMC paper, understanding the model architecture
was, for us, quite challenging. Furthermore, we argue that the specifics regarding the training and
testing scheme could have been outlined in the TMC paper, at least for reproducibility. We believe,
the discrepancies in test results stems from two sources, us omitting the use of weight normalization,
and the presented one-shot performances, i.e. non-averaged.

To conclude, we have successfully reproduced the fundamental results of the NeurIPS 2019 paper
"Tensor Monte Carlo: Particle Methods for the GPU Era", in order to support the author’s claims.
Additionally, we have complemented the original paper with an algorithmic description, a figure
explaining the architecture and experiments displaying the TMC’s reconstruction and clustering
abilities. We applaud the author for an ingenious take to improve on the existing IWAE. We hope
future work will be done on the tensor Monte-Carlo algorithm.

7 Acknowledgements

We would like to thank Laurence Aitchison for supplying us with answers to our questions (patiently),
and the original results so that we could integrate them here.

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

8

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Laurence Aitchison. Tensor Monte Carlo: particle methods for the GPU era. arXiv preprint
arXiv:1806.08593, 2018.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

François Chollet et al. Keras. https://keras.io, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions,
2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-variance
gradient estimators for variational inference. In Advances in Neural Information Processing
Systems, pages 6925–6934, 2017.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks, 2016.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in neural information processing systems, pages 3738–3746,
2016.

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. Doubly reparameterized
gradient estimators for monte carlo objectives. arXiv preprint arXiv:1810.04152, 2018.

Appendices
A Numerically stable tensor inner product (in log-domain)

The operation of computing ratios of probabilities is typically unstable, especially if the probabilities
have small values. In order to average over a large number of importance samples in log-domain, we
need a numerically stable method. If we compute

eZik =
∑
j

eXijeYjk ,

9

http://tensorflow.org/
https://keras.io

in order to get
Zik = log

∑
j

eXijeYjk ,

very large or small values of Xij and (or) Yjk could lead to numerical instability. To circumvent
this issue, we subtract the largest values along j before computing the sum. Then, to ensure the
correctness of our marginal log-likelihoods, we add these values back as follows

Zik = log
∑
j

eXij−maxj(Xij)eYjk−maxj(Yjk) + maxj(Xij) + maxj(Yjk)

B TMC Architecture

Here we present a graphical overview of the model architecture we used for the TMC.

MLPs

x

µ

σ

z

Latent
variables

Sampling
step MLPs

µ

σ

z

Latent
variables

Sampling
step MLPs

µ

σ

Latent
variables

...

MLPs

µ

σ

Latent
variablesMLPs

µ

σ

Latent
variablesMLPs

µx̄

Latent
variables

Encoder/
recognition
model	(Q)

Decoder/
Generative
model	(P)

z

Q
z 	input	to	PM

LP

Q
z 	input	to	PM

LP

log	P(z|µ,	σ²)log	P(z|µ,	σ²) ...

log	P(z|0,	I)

Figure 4: TMC architecture as textually presented (Aitchison [2018]). The final stochastic layer
in the generative model assumes a Bernoulli distribution, why only the mean is computed in the
corresponding MLP.

C Reconstructions

Below we display the reconstructions for the small IWAE (left) and small TMC (right) models, given
an observation (sample) from the MNIST test set. In both figures, the far left column shows the input
test samples (original), and the remaining columns the reconstructions.

D Clustering

We compared the clustering abilities for the IWAE versus the TMC algorithms, given a two-
dimensional latent space (the latent space farthest from the data). In this experiment, there were two
stochastic layers in the recognition model with dimensions 50 and 2 (deterministic layers [100, 100]
and [100, 100] for the two MLPs). To obtain these data points, we averaged over K for every latent.
It is apparent from Fig. 6 that the TMC offers a richer latent space than the IWAE, for this specific
architecture. For instance, note how the digit nine’s representation (view color bar) is not mixing as
much, for the TMC (right), with its neighboring clusters as is the case for the IWAE (left).

10

Figure 5: Reconstructions from the small IWAE (left) and TMC (right) models, after 1200 epochs of
training.

Figure 6: Clusters by the IWAE (left) and TMC (right), after 700 epochs of training and the special
architecture mentioned in Appendix D. Best viewed in color.

11

	Introduction
	Background in Variational Autoencoders
	Analysis of the Tensor Monte-Carlo Algorithm
	What we Reproduce
	Tensor Monte-Carlo

	Reproducibility
	Dataset
	Implementation details
	Reproducability cost

	Results
	Discussion and Conclusions
	Acknowledgements
	Appendices
	Numerically stable tensor inner product (in log-domain)
	TMC Architecture
	Reconstructions
	Clustering

