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ABSTRACT

While deep learning-based classification is generally addressed using standard-
ized approaches, a wide variety of techniques are employed for regression. In
computer vision, one particularly popular such technique is that of confidence-
based regression, which entails predicting a confidence value for each input-target
pair (x, y). While this approach has demonstrated impressive results, it requires
important task-dependent design choices, and the predicted confidences often lack
a natural probabilistic meaning. We address these issues by proposing Deep Con-
ditional Target Densities (DCTD), a novel and general regression method with
a clear probabilistic interpretation. DCTD models the conditional target density
p(y|x) by using a neural network to directly predict the un-normalized density
from (x, y). This model of p(y|x) is trained by minimizing the associated nega-
tive log-likelihood, approximated using Monte Carlo sampling. We perform com-
prehensive experiments on four computer vision regression tasks. Our approach
outperforms direct regression, as well as other probabilistic and confidence-based
methods. Notably, our regression model achieves a 1.9% AP improvement over
Faster-RCNN for object detection on the COCO dataset, and sets a new state-of-
the-art on visual tracking when applied for bounding box regression.

1 INTRODUCTION

Supervised regression entails learning a model capable of predicting a continuous target value y from
an input x, given a set of paired training examples. It is a fundamental machine learning problem
with many important applications within computer vision and other domains. Common regression
tasks within computer vision include object detection (Jiang et al., 2018; Zhou et al., 2019), head-
and body-pose estimation (Xiao et al., 2018; Yang et al., 2019), age estimation (Rothe et al., 2016;
Pan et al., 2018), visual tracking (Danelljan et al., 2019) and medical image registration (Nietham-
mer et al., 2011; Chou et al., 2013), just to mention a few. While all of these tasks benefit from
accurate regression of the target values, high accuracy can even be safety-critical in e.g. automo-
tive and medical applications. Today, such regression problems are commonly tackled using Deep
Neural Networks (DNNs), due to their ability to learn powerful feature representations from data.

While classification is generally addressed using standardized losses and output representations, a
wide variety of different techniques are employed for regression. The most conventional strategy is
to train a DNN to directly predict a target y given an input x (Lathuilière et al., 2019). In such direct
regression approaches, the model parameters of the DNN are learned by minimizing a loss func-
tion, for example the L2 or L1 loss, penalizing the discrepancy between the predicted and ground
truth target values. From a probabilistic perspective, this approach corresponds to creating a simple
parametric model of the conditional target density p(y|x), and minimizing the associated negative
log-likelihood. The L2 loss, for example, corresponds to a fixed-variance Gaussian model. More
recent work (Kendall & Gal, 2017; Lakshminarayanan et al., 2017) has also explored learning more
expressive models of p(y|x), by letting a DNN instead output the full set of parameters of a certain
family of probability distributions. These probabilistic regression approaches however still restrict
the parametric model to fairly simple distributions in most cases, such as Gaussian (Chua et al.,
2018) or Laplace (Gast & Roth, 2018; Ilg et al., 2018), limiting the expressiveness of the learned
conditional target density. While these methods benefit from a clear probabilistic interpretation, they
may thus not fully exploit the predictive power of the DNN.
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Ground truth Gaussian DCTD (Ours)
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Figure 1: An illustrative 1D regression problem. The training data {(xi, yi)}2000i=1 is generated by
the ground truth conditional target density p(y|x). DCTD models p(y|x) by predicting the un-
normalized density from (x, y). In contrast to the Gaussian model p(y|x, θ) = N (y;µθ(x), σ2

θ(x)),
DCTD can learn complex target densities directly from data, including multi-modal ones.

The quest for improved regression accuracy has also led to the development of more specialized
methods, designed for a specific set of tasks. In computer vision, one particularly popular approach
is that of confidence-based regression. Here, a DNN instead predicts a scalar confidence value for
input-target pairs (x, y). The confidence can then be maximized w.r.t. y to obtain a target prediction
for a given input x. The approach is commonly employed for image coordinate regression tasks
within e.g. human pose estimation (Cao et al., 2017; Xiao et al., 2018) and object detection (Law &
Deng, 2018; Zhou et al., 2019), where a 2D heatmap over image pixel coordinates y is predicted.
Recently, the approach was also applied to the problem of bounding box regression by Jiang et al.
(2018). Their proposed method, IoU-Net, obtained state-of-the-art accuracy on object detection,
and was later also successfully applied to the task of visual tracking (Danelljan et al., 2019). The
training of such confidence-based regression methods does however entail generating additional
pseudo ground truth labels, by for example employing a Gaussian kernel (Xiao et al., 2018), and
selecting an appropriate loss function. This both requires numerous design choices to be made, and
limits the general applicability of the methods. Moreover, confidence-based regression methods do
not allow for a natural probabilistic interpretation in terms of the conditional target density p(y|x).
In this work, we therefore set out to develop a method combining the general applicability and clear
interpretation of probabilistic regression with the predictive power of confidence-based approaches.

Contributions We propose Deep Conditional Target Densities (DCTD), a novel and general re-
gression method with a clear probabilistic interpretation. DCTD predicts the un-normalized condi-
tional target density p(y|x) from the input-target pair (x, y). It is trained by directly minimizing the
associated negative log-likelihood by exploiting Monte Carlo approximations. At test time, targets
are predicted by maximizing the conditional target density p(y|x) through gradient-based refine-
ment. Compared to confidence-based approaches, our DCTD requires no pseudo-labels and benefits
from a direct probabilistic interpretation. Unlike existing probabilistic models, our approach can
learn highly flexible target densities directly from data, as visualized in Figure 1.

We evaluate the proposed method on four diverse computer vision regression tasks: object detection,
age estimation, head-pose estimation and visual tracking. Our DCTD method is found to outperform
both the direct regression baselines, and popular probabilistic and confidence-based alternatives.
Notably, our method achieves a 1.9% AP improvement over the FPN Faster-RCNN (Lin et al.,
2017) baseline on the COCO dataset (Lin et al., 2014) when applied for object detection. It also sets
a new state-of-the-art on standard benchmarks (Müller et al., 2018; 2016) when applied for bounding
box regression in the ATOM visual tracking algorithm (Danelljan et al., 2019).

2 BACKGROUND & RELATED WORK

In supervised regression, the task is to learn to predict a target value y? ∈ Y from a corresponding
input x? ∈ X , given a training set of i.i.d. input-target examples, D = {(xi, yi)}Ni=1, (xi, yi) ∼
p(x, y). As opposed to classification, the target space Y is a continuous set, e.g. Y = RK . In
computer vision, the input space X often corresponds to the space of images, whereas the output
space Y depends on the task at hand. Common examples include Y = R+ in age estimation (Rothe
et al., 2016), Y = R2 in image keypoint estimation (Xiao et al., 2018), and Y = R4 in object
bounding box regression (Jiang et al., 2018).

2



Under review as a conference paper at ICLR 2020

Direct regression Over the last decade, DNNs have been shown to excel at a variety of regression
problems. Here, a DNN is viewed as a function fθ : X → U , parameterized by a set of learnable
weights θ ∈ RP . The most conventional regression approach is to train a DNN to directly predict the
targets, y? = fθ(x

?), called direct regression. The model parameters θ are learned by minimizing a
loss `(fθ(xi), yi) that penalizes the discrepancy between the prediction fθ(xi) and the ground truth
target value yi on training samples (xi, yi). The most common choices are the L2 loss, `(y∗, y) =
‖y∗−y‖22, theL1 loss, `(y∗, y) = ‖y∗−y‖1, and their close relatives (Huber, 1964; Lathuilière et al.,
2019). From a probabilistic perspective, the choice of loss corresponds to minimizing the negative
log-likelihood − log p(y|x, θ) of a specific model p(y|x, θ) of the conditional target density. For
example, the L2 loss is derived from a fixed-variance Gaussian model, p(y|x, θ) = N (y; fθ(x), σ2).

Probabilistic regression More recent work (Kendall & Gal, 2017; Lakshminarayanan et al.,
2017; Chua et al., 2018) has explicitly taken advantage of this probabilistic perspective to achieve
more flexible parametric models p(y|x, θ) = p(y|φθ(x)), by letting the DNN output the parameters
φ of a family of probability distributions p(y|φ). For example, a general 1D Gaussian model can be
realized as p(y|φθ(x)) = N

(
y;µθ(x), σ2

θ(x)
)
, where the DNN outputs the mean and log-variance

as fθ(x) = φθ(x) = [µθ(x) log σ2
θ(x) ]T ∈ R2. The model parameters θ are learned by minimiz-

ing the negative log-likelihood −∑N
i=1 log p(yi|xi, θ) over the training set D. At test time, a target

estimate y? is obtained by first predicting the density parameter values φθ(x?) and then, for instance,
taking the expected value of p(y|φθ(x)). Previous work has applied Gaussian and Laplace models
on computer vision tasks such as object detection (Feng et al., 2019; He et al., 2019) and optical
flow estimation (Gast & Roth, 2018; Ilg et al., 2018). The aim of such probabilistic approaches is
often not only to achieve accurate predictions, but also to provide an estimate of the aleatoric uncer-
tainty (Kendall & Gal, 2017), which models noise and ambiguities inherent in the data itself. Our
method also entails predicting a conditional target density p(y|x, θ) and minimizing the associated
negative log-likelihood. However, our model p(y|x, θ) is not restricted to the functional form of any
specific probability density (e.g. Gaussian or Laplace), but is instead directly defined by the DNN
architecture itself, allowing for more expressive target densities.

Confidence-based regression Another category of approaches reformulate the regression prob-
lem as y? = arg maxy fθ(x, y), where fθ(x, y) ∈ R is a scalar confidence value predicted by
the DNN. The idea is thus to predict a quantity fθ(x, y), depending on both input x and target
y, that can be maximized over y to obtain the final prediction y?. This maximization-based for-
mulation is inherent in Structural SVMs (Tsochantaridis et al., 2005), but has also been adopted
for DNNs. We term this family of approaches confidence-based regression. Different from direct
regression, the predicted confidence fθ(x, y) can encapsulate multiple hypotheses and other am-
biguities. Confidence-based regression has been shown particularly suitable for image-coordinate
regression tasks, such as hand keypoint localization (Simon et al., 2017) and body-part detection
(Wei et al., 2016; Pishchulin et al., 2016; Xiao et al., 2018). In these cases, a CNN is trained to out-
put a 2D heatmap over the image pixel coordinates y, thus taking full advantage of the translational
invariance of the problem. A similar approach has also been employed to locate the two defining
corners (Law & Deng, 2018) or four extreme points (Zhou et al., 2019) of bounding boxes in object
detection. In computer vision, confidence prediction has also been successfully employed for tasks
other than pure image-coordinate regression. Jiang et al. (2018) proposed the IoU-Net for bounding
box regression in object detection, where a bounding-box y ∈ R4 and image x are both inputs to
the DNN to predict a confidence fθ(x, y). It employs a pooling-based architecture that is differen-
tiable w.r.t. the bounding box y, allowing gradient-based maximization to obtain the final estimate
y? = arg maxy fθ(x, y). IoU-Net was later also applied to visual tracking (Danelljan et al., 2019).

In general, confidence-based approaches are trained using a set of generated pseudo label confi-
dences ux,y and by employing a loss `(fθ(x, y), ux,y). One strategy (Pishchulin et al., 2016; Law
& Deng, 2018) is to treat the confidence prediction as a binary classification problem, where ux,y
represents either the class, ux,y ∈ {0, 1}, or its probability, ux,y ∈ [0, 1], and employ cross-entropy
based losses `. The other approach is to treat the confidence prediction as a direct regression problem
itself by applying standard regression losses, such as L2 (Simon et al., 2017; Danelljan et al., 2019;
Wei et al., 2016) or the Huber loss (Jiang et al., 2018). In these cases, the pseudo label confidences
ux,y can be constructed using a similarity measure S in the target value space, uxi,y = S(y, yi),
for example defined as the Intersection over Union (IoU) between two bounding boxes (Jiang et al.,
2018) or simply by a Gaussian kernel (Wei et al., 2016; Xiao et al., 2018). While these approaches
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have demonstrated impressive results, existing confidence-based approaches require important de-
sign choices. In particular, the strategy for constructing the pseudo labels ux,y and the choice of
loss `(fθ(x, y), ux,y) are often crucial for performance and highly task-dependent. Moreover, the
predicted confidence fθ(x, y) can be difficult to interpret, since it has no natural connection to the
conditional target density p(y|x). In contrast, our approach is directly trained to predict p(y|x) itself,
and does not require generation of pseudo label confidences or choosing a specific loss.

Regression-by-classification A regression problem can also be treated as a classification problem
by first discretizing the target space Y into a finite set of C classes. Standard techniques from
classification, such as softmax and the cross-entropy loss, can then be employed. Rothe et al. (2016)
additionally computed the softmax expected value to obtain a more fine-grained prediction, and
applied their method to the task of age estimation. Ruiz et al. (2018) applied the same method
to head-pose estimation, but also added an L2 loss term for the softmax expected value during
training. Again for age estimation, Pan et al. (2018) then added an additional loss term penalizing
the softmax variance. A hierarchical classification approach has also been proposed for both age
estimation (Yang et al., 2018) and head-pose estimation (Yang et al., 2019). The discretization
of the target space Y often complicates exploiting its inherent neighborhood structure. This has
been addressed by exploring ordinal regression methods for 1D problems (Cao et al., 2019; Diaz
& Marathe, 2019). Finally, classification into coarse discrete bins can be combined with direct
regression, a technique often utilized in 2D (Redmon et al., 2016; Liu et al., 2016) and 3D (Shi
et al., 2019; Qi et al., 2018) object detection. While our approach can be seen as a generalization
of the softmax model for classification to the continuous target space Y , it does not suffer from
the aforementioned drawbacks of regression-by-classification. On the contrary, our model naturally
allows the network to exploit the full structure of the continuous target space Y .

3 REGRESSION USING DEEP CONDITIONAL TARGET DENSITIES

In this work, we take the probabilistic view of regression by creating a model p(y|x, θ) of the con-
ditional target density p(y|x). Instead of defining p(y|x, θ) by letting a DNN predict the parameters
of a certain family of probability distributions (e.g. Gaussian or Laplace), we construct a versatile
model that can better leverage the predictive power of DNNs. To that end, we take inspiration from
confidence-based regression approaches and let a DNN predict a scalar value for any input-target
pair (x, y). Unlike confidence-based methods however, this prediction has a clear probabilistic in-
terpretation. Specifically, we view a DNN as a function fθ : X ×Y → R, parameterized by θ ∈ RP ,
that maps an input-target pair (x, y) ∈ X × Y to a scalar value fθ(x, y) ∈ R. Then, we define the
Deep Conditional Target Density (DCTD) according to,

p(y|x, θ) =
efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,y)dy , (1)

where Z(x, θ) is the normalizing constant. We train our DCTD model p(y|x, θ) by minimizing the
negative log-likelihood−log p({yi}i|{xi}i, θ)=

∑N
i=1−log p(yi|xi, θ), where each term is given by,

− log p(yi|xi, θ) = log

(∫
efθ(xi,y)dy

)
− fθ(xi, yi) . (2)

The training thus requires the evaluation of the normalizing constant Z(x, θ), involving the integral
in equation 2. This can be achieved using effective finite approximations. In some tasks, such
as image-coordinate regression, this is naturally performed by a grid approximation, utilizing the
dense prediction already employed in many such methods. In this work, we however investigate a
more generally applicable technique, namely Monte Carlo approximations. This procedure, when
employed for training the network, is detailed in Section 3.1.

At test time, given an input x?, our model in equation 1 allows evaluating the conditional tar-
get density p(y|x?, θ) for any y by first approximating the constant Z(x?, θ) and then predict-
ing the scalar fθ(x?, y) using the DNN. This enables the computation of, for instance, means
and variances of the target value y. In this work, we focus on finding the most likely prediction,
y? = arg maxy p(y|x?, θ) = arg maxy fθ(x

?, y), which does not require the evaluation of Z(x, θ)
during inference. Thanks to the auto-differentiation capabilities of modern deep learning frame-
works, we can apply gradient-based techniques to find the final prediction by simply maximizing
the network output fθ(x?, y) w.r.t. y. We elaborate on this procedure for prediction in Section 3.2.
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3.1 TRAINING

Our model p(y|x, θ) = efθ(x,y)/Z(x, θ) of the conditional target density is trained by minimizing
the negative log-likelihood

∑N
i=1− log p(yi|xi, θ). To evaluate the integral in equation 2, we em-

ploy a Monte Carlo approximation. Specifically, each term − log p(yi|xi, θ) is approximated by
sampling values y(k) from a proposal distribution q(y|yi) that depends on the ground truth target yi,

− log p(yi|xi, θ) ≈ log

(
1

M

M∑
k=1

efθ(xi,y
(k))

q(y(k)|yi)

)
− fθ(xi, yi), y(k) ∼ q(y|yi) . (3)

The final loss J(θ) is then obtained by averaging over all training samples (xi, yi) in the mini-batch,

J(θ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi,y
(i,m))

q(y(i,m)|yi)

)
− fθ(xi, yi) , (4)

where {y(i,m)}Mm=1 are M samples drawn from q(y|yi). Qualitatively, minimizing J(θ) encourages
the DNN to output large values fθ(xi, yi) for the ground truth target yi, while minimizing the pre-
dicted value fθ(xi, y) at all other targets y. In ambiguous or uncertain cases, the DNN can output
small values everywhere or large values at multiple hypotheses, but at a cost of a higher loss.

As seen in equation 4, the DNN fθ is applied both to the input-target pair (xi, yi), and all input-
sample pairs {(xi, y(i,m))}Mm=1 during training. While this can seem inefficient, most applications
in computer vision employ network architectures that first extract a deep feature representation for
the input xi. The DNN can thus be designed to combine this input feature with the target y at a
late stage, meaning that the input feature extraction process, which becomes the main computational
bottleneck, needs to be performed only once for each xi. In practice, we found our training strategy
to not add any significant computational overhead compared to the baselines.

Compared to confidence-based regression, a significant advantage of our approach is that there is no
need for generating task-dependent pseudo label confidences or choosing between different losses.
The only design choice of our method is the proposal distribution q(y|yi). Note however that since
the loss (equation 4) explicitly adapts to q(y|yi), this choice has no effect on the overall behaviour
of the loss, only on the quality of the sampled approximation. We found a simple mixture of a few
equally weighted Gaussian components, all centered at the target label yi, to consistently perform
well in our experiments. Specifically we set,

q(y|yi) =
1

L

L∑
l=1

N (y; yi, σ
2
l ), (5)

where the variances σ2
l are hyperparameters selected based on a validation set for each experiment.

3.2 PREDICTION

Given an input x? at test time, the trained DNN fθ can be used to evaluate the full target den-
sity p(y|x?, θ) = efθ(x

?,y)/Z(x?, θ), by employing the aforementioned techniques to approximate
Z(x?, θ). In many applications, the most likely prediction y? = arg maxy p(y|x?, θ) is however
the single desired output. For DCTD, this is obtained by directly maximizing the DNN output,
y? = arg maxy fθ(x

?, y), thus not requiring Z(x?, θ) to be evaluated. By designing the DNN fθ
to be differentiable w.r.t. the target y, the gradient ∇yfθ(x?, y) can be efficiently evaluated using
the auto-differentiation tools implemented in modern deep learning frameworks. We can therefore
perform gradient ascent to find a local maximum of fθ(x?, y). The gradient ascent refinement is
performed either on a single initial estimate ŷ, or on a set of random initializations {ŷk}Kk=1 to ob-
tain a final accurate prediction y?. As noted in Section 3.1, this prediction procedure can be made
highly efficient in practice by extracting the deep feature representation for x? only once. Back-
propagation is then performed only through a few final layers of the DNN fθ in order to evaluate the
gradient ∇yfθ(x?, y). Moreover, the gradient computation for a set of target candidates {ŷk}Kk=1
can be parallelized on the GPU by simple batching, requiring no significant overhead. Please refer
to Appendix B for a detailed algorithm of this prediction procedure.
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Table 1: Results for the object detection task on the test-dev split of the COCO dataset. Our approach
significantly outperforms the baseline Faster-RCNN and the confidence-based IoU-Net.

Formulation Direct Gaussian Laplace Confidence Confidence DCTD
Approach Faster-RCNN IoU-Net IoU-Net† Ours
AP (%) 37.2 36.7 37.1 38.3 38.2 39.1
AP50(%) 59.2 58.7 59.1 58.3 58.4 58.5
AP75(%) 40.3 39.6 40.2 41.4 41.4 41.8

4 EXPERIMENTS

We perform comprehensive experiments on four different computer vision tasks. Our DCTD method
is compared both to baseline regression methods and to state-of-the-art models. All experiments are
implemented in PyTorch (Paszke et al., 2017). Code will be made available upon publication.

4.1 OBJECT DETECTION

We first perform experiments for visual object detection, the problem of estimating a bounding box
for each object in the image from a set of given classes. Specifically, we compare our regression
method to other techniques for the task of bounding-box regression, by integrating them into an
existing object detection pipeline. To this end, we use the Faster-RCNN (Ren et al., 2015) frame-
work, which serves as a popular baseline in the object detection field due to its strong state-of-the-art
performance. It uses one network head for classification and the second for regressing the bound-
ing box using the direct method. We also compare our approach to the confidence-based IoU-Net
(Jiang et al., 2018). It extends Faster-RCNN with an additional branch that predicts the IoU overlap
between a target box y and the ground truth. The IoU prediction branch uses differentiable region
pooling (Jiang et al., 2018), allowing the initial bounding box predicted by the Faster-RCNN to be
refined using gradient-based maximization of the predicted IoU confidence.

For our approach, we employ an identical architecture as used in IoU-Net for a fair comparison.
Instead of training the network to output the IoU, we predict the exponent fθ(x, y) in equation 1,
trained by minimizing the negative log-likelihood (NLL) in equation 4. We parametrize the bound-
ing box as y = (cx/w0, cy/h0, logw, log h) ∈ R4, where (cx, cy) and (w, h) denote the center
coordinate and size respectively. The reference size (w0, h0) is set to that of the ground truth during
training and the initial box during inference. For the proposal distribution (equation 5) we employ
L = 3 isotropic Gaussians with standard deviation σl = 0.05 · 2l. In addition to the standard IoU-
Net, we compare with a version (denoted IoU-Net†) employing the same proposal distribution and
inference settings as in our approach. For both our method and IoU-Net†, we set the refinement
step-length using grid search on a separate validation set. We also compare with a Gaussian and a
Laplace probabilistic model for bounding box regression by modifying the Faster-RCNN regression
head to predict both the mean and log-variance of the distribution, and adopting the NLL loss.

Our experiments are performed on the large-scale COCO benchmark (Lin et al., 2014). As per the
official guideline, we use the 2017 train split (≈ 118 000 images) for training and the 2017 val split
(≈ 5 000 images) as the validation set for setting the hyperparameters. The results are reported on
the 2017 test-dev split (≈ 20 000 images), in terms of the standard COCO metrics AP (mean Average
Precision APT over 10 IoU thresholds T ∈ [0.5, 0.95]), AP50, and AP75. We initialize all networks
in our comparison with the pre-trained Faster-RCNN weights, using the ResNet50-FPN (Lin et al.,
2017) backbone and re-train only the newly added layers for a fair comparison. Further details are
provided in Appendix C. The results are shown in Table 1. Our DCTD approach obtains the best
results, outperforming both Faster-RCNN and IoU-Net by 1.9% and 0.8% in AP, respectively.

4.2 AGE ESTIMATION

In age estimation, we are given a cropped image x ∈ Rh×w×3 of a person’s face, and the task
is to predict his/her age y ∈ R+. We utilize the UTKFace (Zhang et al., 2017) dataset, specifi-
cally the subset of 16 434 images used by Cao et al. (2019). In this subset, ground truth age labels
yi ∈ [21, 60]. We also utilize the dataset split employed by Cao et al. (2019), with 3 287 test images
and 11 503 images for training. Additionally, we use 1 644 of the training images for validation.
Methods are evaluated in terms of the Mean Absolute Error (MAE). The DNN architecture fθ(x, y)
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Table 2: Results for the age estimation experiments. Refinement using DCTD consistently improves
MAE (lower is better) for the age predictions outputted by a number of baselines.

+DCTD Cao et al. (2019) Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

5.47 ± 0.01 4.81 ± 0.02 4.79 ± 0.06 4.85 ± 0.04 4.78 ± 0.05 4.81 ± 0.03
X - 4.65 ± 0.02 4.66 ± 0.04 4.81 ± 0.04 4.65 ± 0.04 4.69 ± 0.03

Table 3: Results for the head-pose estimation experiments. Refinement using DCTD consistently
improves the average MAE for Yaw, Pitch and Roll for the predicted pose outputted by our baselines.

+DCTD Yang et al. (2019) Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

3.60 3.09 ± 0.07 3.12 ± 0.08 3.21 ± 0.06 3.04 ± 0.08 3.15 ± 0.07
X - 3.07 ± 0.07 3.11 ± 0.07 3.19 ± 0.06 3.01 ± 0.07 3.11 ± 0.06

of our DCTD first extracts ResNet50 (He et al., 2016) features gx ∈ R2048 from the input image x.
The age y is processed by four fully-connected layers, generating gy ∈ R128. The two feature vectors
are then concatenated and processed by two fully-connected layers, outputting fθ(x, y) ∈ R. We
apply our DCTD to refine the age predicted by baseline models, using the gradient ascent maximiza-
tion of fθ(x, y) (Section 3.2). All baseline DNN models employ a similar architecture, including an
identical ResNet50 for feature extraction and the same number of fully-connected layers to output
either the age y ∈ R (Direct), mean and variance parameters for Gaussian and Laplace distributions,
or to output logits for C discretized classes (Softmax). The results are found in Table 2. We ob-
serve that age refinement provided by our DCTD method consistently improves the accuracy of the
predictions generated by the baseline methods. Further details are provided in Appendix D.

4.3 HEAD-POSE ESTIMATION

In head-pose estimation, we are given an image x ∈ Rh×w×3 of a person, and are tasked with
predicting the orientation y ∈ R3 of his/her head, where y is the Yaw, Pitch and Roll angles. We
utilize the BIWI (Fanelli et al., 2013) dataset, specifically the processed dataset provided by Yang
et al. (2019), in which the images have been cropped to faces detected using MTCNN (Zhang et al.,
2016). We also employ protocol 2 as defined by Yang et al. (2019), with 10 613 images for training
and 5 065 images for testing. Additionally, we use 1 010 training images for validation. The methods
are evaluated in terms of the average MAE for Yaw, Pitch and Roll. The network architecture of the
DNN fθ defining our DCTD takes the image x ∈ Rh×w×3 and orientation y ∈ R3 as inputs, but
is otherwise identical to the age estimation case (Section 4.2). Our DCTD model is again evaluated
by applying the optimization-based refinement to the predicted orientation y ∈ R3 outputted by a
number of baseline models. We use the same baselines as for age estimation, and apart from minor
changes required to increase the output dimension from 1 to 3, identical network architectures are
also used. The results are found in Table 3, and also in this case we observe that refinement using
DCTD consistently improves upon the baselines. Further details are provided in Appendix E.

4.4 VISUAL TRACKING

Lastly, we evaluate our approach on the problem of generic visual object tracking. The task is to es-
timate the bounding box of a target object in every frame of a video. The target object is defined by a
given box in the first video frame. We employ the recently introduced ATOM (Danelljan et al., 2019)
tracker as our baseline. Given the first-frame annotation, ATOM trains a classifier to first roughly
localize the target in a new frame. The target bounding box is then determined using an IoU-Net
based module, which is also conditioned on the first-frame target appearance using a modulation-
based architecture. We train our network to predict the conditional target density through fθ(x, y)
in equation 1, using a network architecture identical to the baseline ATOM tracker. In particular,
we employ the same bounding box parameterization as for object detection (Section 4.1) and sam-
ple M = 128 boxes during training from a proposal distribution (equation 5) generated by L = 2
Gaussians with standard deviations of 0.05 and 0.5. During tracking, we follow the same procedure
as in ATOM, sampling 10 boxes in each frame followed by gradient ascent to refine the estimate
generated by the classification module.

We demonstrate results on two standard tracking benchmarks: TrackingNet (Müller et al., 2018)
and UAV123 (Müller et al., 2016). TrackingNet contains challenging videos sampled from YouTube,
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Table 4: Results on the two tracking datasets TrackingNet and UAV123. The asterisk ∗ indicate an
approximate value (±1), taken from the plot in the corresponding paper, due to the unavailability of
the raw results. Our approach outperforms the baseline ATOM and other state-of-the-art trackers.

Dataset Metric SiamFC MDNet DaSiamRPN SiamRPN++ ATOM ATOM† Ours
Bertinetto et al. (2016) Nam & Han (2016) Zhu et al. (2018) Li et al. (2019) Danelljan et al. (2019)

TrackingNet
Precision (%) 53.3 56.5 59.1 69.4 64.8 66.7 68.9
Norm. Prec. (%) 66.6 70.5 73.3 80.0 77.1 78.3 79.5
Success (%) 57.1 60.6 63.8 73.3 70.3 72.1 73.7

UAV123
OP0.50 (%) - - 73.6 75∗ 78.9 79.6 80.1
OP0.75 (%) - - 41.1 56∗ 55.7 56.0 59.8
AUC (%) - 52.8 58.4 61.3 65.0 65.0 66.5

Figure 2: Visualization of the conditional target density p(y|x, θ) ∼ efθ(x,y) predicted by our net-
work for the task of bounding box estimation in visual tracking. Since the target space y ∈ R4 is
4-dimensional, we visualize the density for different locations of the top-right corner as a heatmap,
while the bottom-left is kept fixed at the tracker output (blue box). Our network predicts flexible
densities, expressing meaningful uncertainties in challenging cases.

with a test set of 511 videos. The main metric is the Success, defined as the average IoU overlap with
the ground truth. UAV123 contains 123 videos captured from a UAV, and includes small and fast-
moving objects. We report the overlap precision metric (OPT ), defined as the percentage of frames
having bounding box IoU overlap larger than a threshold T . The final AUC score is computed as
the average OP over all thresholds T ∈ [0, 1]. Hyperparameters are set on the OTB (Wu et al.,
2015) and NFS (Galoogahi et al., 2017) datasets, containing 100 videos each. Due to the significant
challenges imposed by the limited supervision and generic nature of the tracking problem, there are
not any competitive baselines employing direct bounding box regression. Current state-of-the-art
employ either confidence-based regression, as in ATOM, or anchor-based bounding box regression
techniques (Zhu et al., 2018; Li et al., 2019). We therefore only compare with the ATOM baseline
and include other recent state-of-the-art methods in the comparison. As in section 4.1, we compare
with a version of the IoU-Net based ATOM (denoted ATOM†) employing the same training and
inference settings as our final approach. The results are shown in Table 4. Our approach achieves a
significant 1.6% and 1.5% absolute improvement over ATOM on the overall metric on TrackingNet
and UAV123 respectively. Note that the improvements are most prominent for high-accuracy boxes,
indicated by the OP0.75 score. Moreover, our approach outperforms the recent SiamRPN++ (Li
et al., 2019), which employs anchor-based bounding box regression (Ren et al., 2015; Redmon &
Farhadi, 2016) and a much deeper backbone network (ResNet50) compared to ours (ResNet18).
Figure 2 visualizes the conditional target density generated by our approach for tracking.

5 CONCLUSION

We proposed Deep Conditional Target Densities (DCTD), a novel and generally applicable regres-
sion method with a clear probabilistic interpretation. It directly models the conditional target density
p(y|x) by predicting the un-normalized density through a DNN fθ(x, y), taking the input-target pair
(x, y) as input. The model is trained by minimizing the associated negative log-likelihood, employ-
ing a Monte Carlo approximation of the normalizing constant. At test time, targets are predicted by
maximizing the DNN output fθ(x, y) w.r.t. y via gradient-based refinement. Experiments performed
on four diverse computer vision applications demonstrate the high accuracy and wide applicability
of our method. However, this work constitutes an initial investigation of DCTD. Future directions
include exploring better architectural designs, studying other regression applications, and investigat-
ing DCTD’s potential for aleatoric uncertainty estimation.
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Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud. A comprehensive
analysis of deep regression. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2019.

Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 734–750, 2018.

Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution
of siamese visual tracking with very deep networks. In CVPR, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 740–755, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2117–2125, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. SSD: Single shot multibox detector. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 21–37. Springer, 2016.

Francisco Massa and Ross Girshick. maskrcnn-benchmark: Fast, modular reference implementation
of Instance Segmentation and Object Detection algorithms in PyTorch. https://github.
com/facebookresearch/maskrcnn-benchmark, 2018. Accessed: 04/09/2019.

Matthias Müller, Neil Smith, and Bernard Ghanem. A benchmark and simulator for uav tracking.
In ECCV, 2016.

Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-Subaihi, and Bernard Ghanem. Track-
ingnet: A large-scale dataset and benchmark for object tracking in the wild. In ECCV, 2018.

Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks for vi-
sual tracking. In CVPR, 2016.

Marc Niethammer, Yang Huang, and François-Xavier Vialard. Geodesic regression for image time-
series. In International conference on medical image computing and computer-assisted interven-
tion, pp. 655–662. Springer, 2011.

10

https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark


Under review as a conference paper at ICLR 2020

Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua. Ordinal regression with multiple
output cnn for age estimation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4920–4928, 2016.

Hongyu Pan, Hu Han, Shiguang Shan, and Xilin Chen. Mean-variance loss for deep age estimation
from a face. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5285–5294, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NeurIPS - Autodiff Workshop, 2017.

Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Peter V.
Gehler, and Bernt Schiele. Deepcut: Joint subset partition and labeling for multi person pose
estimation. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 4929–4937, 2016.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum PointNets for 3D
object detection from RGB-D data. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 918–927, 2018.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525, 2016.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 779–788, 2016.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39:1137–1149, 2015.

Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from
a single image without facial landmarks. International Journal of Computer Vision, 126(2-4):
144–157, 2016.

Nataniel Ruiz, Eunji Chong, and James M Rehg. Fine-grained head pose estimation without key-
points. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 2074–2083, 2018.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and
detection from point cloud. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–779, 2019.

Tomas Simon, Hanbyul Joo, Iain A. Matthews, and Yaser Sheikh. Hand keypoint detection in single
images using multiview bootstrapping. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 4645–4653, 2017.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin
methods for structured and interdependent output variables. J. Mach. Learn. Res., 6:1453–1484,
2005.

Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional pose machines.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pp. 4724–4732, 2016.

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. TPAMI, 37(9):1834–
1848, 2015.

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481, 2018.

11



Under review as a conference paper at ICLR 2020

Tsun-Yi Yang, Yi-Hsuan Huang, Yen-Yu Lin, Pi-Cheng Hsiu, and Yung-Yu Chuang. SSR-Net: A
compact soft stagewise regression network for age estimation. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2018.

Tsun-Yi Yang, Yi-Ting Chen, Yen-Yu Lin, and Yung-Yu Chuang. FSA-Net: Learning fine-grained
structure aggregation for head pose estimation from a single image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1087–1096, 2019. URL
https://github.com/shamangary/FSA-Net.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503,
2016.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5810–5818, 2017. URL https://susanqq.github.io/UTKFace/.

Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-up object detection by grouping
extreme and center points. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 850–859, 2019.

Zheng Zhu, Qiang Wang, Li Bo, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware siamese
networks for visual object tracking. In ECCV, 2018.

12

https://github.com/shamangary/FSA-Net
https://susanqq.github.io/UTKFace/


Under review as a conference paper at ICLR 2020

APPENDIX A ILLUSTRATIVE EXAMPLE

The ground truth conditional target density p(y|x) in Figure 1 is defined by a mixture of two Gaus-
sian components (with weights 0.2 and 0.8) for x < 0, and a log-normal distribution (with µ = 0.0,
σ = 0.25) for x ≥ 0. The training data {(xi, yi)}2000i=1 was generated by uniform random sampling
of x, xi ∼ U(−3, 3). Both models were trained for 75 epochs with a batch size of 32 using the
ADAM (Kingma & Ba, 2014) optimizer.

The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x, θ) = N
(
y;µθ(x), σ2

θ(x)
)
, fθ(x) = [µθ(x) log σ2

θ(x) ]T ∈ R2.

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi))2
σ2
θ(xi)

+ log σ2
θ(xi).

The DNN fθ is a simple feed-forward neural network, containing two shared fully-connected layers
(dimensions: 1 → 10, 10 → 10) and two identical heads for µ and log σ2 of three fully-connected
layers (10→ 10, 10→ 10, 10→ 1).

The DCTD model is defined using a feed-forward neural network fθ(x, y) containing two fully-
connected layers (1 → 10, 10 → 10) for both x and y, and three fully-connected layers (20 → 10,
10 → 10, 10 → 1) processing the concatenated (x, y) feature vector. It is trained using M = 1024
samples from a proposal distribution q(y|yi) (equation 5) with L = 2 and variances σ2

1 = 0.12,
σ2
2 = 0.82.

APPENDIX B PREDICTION USING DEEP CONDITIONAL TARGET DENSITIES

The procedure for prediction described in Section 3.2 is further detailed in Algorithm 1, where T
denotes the number of gradient ascent iterations, λ is the step-length and η is a decay of the step-
length.

Algorithm 1 Prediction via optimization-based refinement
Input: x?, ŷ, T , λ, η.

1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue← fθ(x

?, y).
4: ỹ ← y + λ∇yfθ(x?, y).
5: NewValue← fθ(x

?, ỹ).
6: if NewValue > PrevValue then
7: y ← ỹ.
8: else
9: λ← λ · η.

10: Return y.

APPENDIX C OBJECT DETECTION

Here, we provide further details about the network architectures, training procedure, and hyperpa-
rameters used for our experiments on object detection (Section 4.1)

C.1 NETWORK ARCHITECTURE

We use the Faster-RCNN (Ren et al., 2015) detector with ResNet50-FPN (Lin et al., 2017) as our
baseline. Faster-RCNN generates object proposals using a region proposal network (RPN). The
features from the proposal regions are then pooled to a fixed-sized feature map using the RoiPool
layer (Girshick, 2015). The pooled features are then passed through a feature extractor (denoted
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Figure 3: Network architectures for the different detection networks used in our experiments in
Section 4.1. The backbone feature extractor (ResNet50-FPN), and the region proposal network
(RPN) is not shown for clarity. We do not train the blocks in blue color, using the pre-trained Faster-
RCNN weights from Massa & Girshick (2018) instead. The blocks in red are initialized with the
pre-trained Faster-RCNN weights and fine-tuned. The blocks in green on the other hand are trained
from scratch.

Feat-Box) consisting of two fully-connected (FC) layers. The output feature vector is then passed
through two parallel FC layers, one which predicts the class label (denoted FC-Cls), and another
which regresses the offsets between the proposal and the ground truth box (denoted FC-BB). We
use the PyTorch implementation for Faster-RCNN from Massa & Girshick (2018). Note that we use
the RoiAlign (He et al., 2017) layer instead of RoiPool in our experiments as it has been shown to
achieve better performance (He et al., 2017).

For the Gaussian and Laplace probabilistic models (Gaussian and Laplace in Table 1), we replace
the FC-BBReg layer in Faster-RCNN with parallel two FC layers, denoted FC-BBMean and FC-
BBVar, which predict the mean and the log-variance of the distribution modeling the offset between
the proposal and the ground truth box for each coordinate.

For our confidence-based IoU-Net (Jiang et al., 2018) models (IoU-Net and IoU-Net† in Table 1), we
use the same network architecture as employed in the original paper. That is, we add an additional
branch to predict the IoU overlap between the proposal box and the ground truth. This branch uses
the PrRoiPool (Jiang et al., 2018) layer to pool the features from the proposal regions. The pooled
features are passed through a feature extractor (denoted Feat-Conf) consisting of two FC layers.
The output feature vector is passed through another FC layer, FC-Conf, which predicts the IoU. We
use an identical architecture for our approach, but train it to output fθ(x, y) in equation 1 instead.
Illustrations of the architectures are found in Figure 3.

C.2 TRAINING

We use the pre-trained weights for Faster-RCNN from Massa & Girshick (2018). Note that the
bounding box regression in Faster-RCNN is trained using a direct method, with an Huber loss (Hu-
ber, 1964). We trained the other networks in Table 1 (Gaussian, Laplace, IoU-Net, IoU-Net† and
DCTD) on the MS-COCO (Lin et al., 2014) training split (2017 train) using stochastic gradient de-
scent (SGD) with a batch size of 16 for 60k iterations. The base learning rate lrbase is reduced by
a factor of 10 after 40k and 50k iterations, for all the networks. We also warm up the training by
linearly increasing the learning rate from 1

3 lrbase to lrbase during the first 500 iterations. We use a
weight decay of 0.0001 and a momentum of 0.9. For all the networks, we only trained the newly
added layers, while keeping the backbone and the region proposal network fixed.

For the Gaussian and Laplace models, we only train the final predictors (FC-BBMean and FC-
BBVar), while keeping the class predictor (FC-Cls) and the box feature extractor (Feat-Box) fixed.
We also tried fine-tuning the FC-Cls and Feat-Box weights, with different learning rate settings,
but obtained worse performance on the validation set. The weights for both FC-BBMean and FC-
BBVar were initialized with zero mean Gaussian with standard deviation of 0.001. Both Gaussian
and Laplace models were trained with a base learning rate lrbase = 0.005 by minimizing the negative
log-likelihood.

For the IoU-Net, IoU-Net† and our DCTD model, we only trained the newly added confidence
branch. We found it beneficial to initialize the feature extractor block (Feat-Conf) with the corre-
sponding weights from Faster-RCNN, i.e. the Feat-Box block. The weights for the predictor FC-
Conf were initialized with zero mean Gaussian with standard deviation of 0.001. As mentioned in

14



Under review as a conference paper at ICLR 2020

the original paper, we used a base learning rate lrbase = 0.01 for the IoU-Net and IoU-Net† net-
works. For our DCTD network, we used lrbase = 0.001 due to the different scaling of the loss. Note
that we did not perform any parameter tuning for setting the learning rates. We generate 128 pro-
posals for each ground truth box during training. For the IoU-Net, we use the proposal generation
strategy mentioned in the original paper. That is, for each ground truth box, we generate a large set
of candidate boxes which have an IoU overlap of at least 0.5 with the ground truth, and uniformly
sample 128 proposals from this candidate set w.r.t. the IoU. For IoU-Net† and DCTD, we sample
boxes from a proposal distribution (equation 5) generated by L = 3 Gaussians with standard devi-
ations of 0.05, 0.1, and 0.2. The IoU-Net and IoU-Net† are trained by minimizing the Huber loss
between the predicted IoU and the ground truth, while DCTD is training by minimizing the negative
log likelihood of the training data.

C.3 INFERENCE

The inference in both Gaussian and Laplace models is identical to the one employed by Faster-
RCNN. Thus, we do not utilize the predicted variances for inference. For IoU-Net and IoU-Net†,
we perform IoU-Guided NMS as described in (Jiang et al., 2018), followed by optimization-based
refinement (Algorithm 1). For our approach we adopt the same NMS technique, but guide it with the
values fθ(x, y) predicted by or network instead. We use a step-length λ = 0.5 and step-length decay
η = 0.1 for IoU-Net. For IoU-Net† and our approach we perform the gradient-based refinement
in the relative bounding box parametrization y = (cx/w0, cy/h0, logw, log h) (see Section 4.1).
Here, we employ different step-lengths for position and size. For IoU-Net†, we use λ = 0.002 and
λ = 0.008 respectively, with a decay of η = 0.2. For our DCTD approach, we use λ = 0.0001 and
λ = 0.0004 with η = 0.5. For all methods, these hyperparameters (λ and η) were set using a grid
search on the MS-COCO validation split (2017 val). We used T = 10 refinement iterations for each
of the three models.

APPENDIX D AGE ESTIMATION

In this appendix, further details on the age estimation experiments (Section 4.2) are provided.

D.1 DCTD NETWORK ARCHITECTURE

The DNN architecture fθ(x, y) of the DCTD model first extracts ResNet50 features gx ∈ R2048 from
the input image x. The age y is processed by four fully-connected layers (dimensions: 1 → 16,
16 → 32, 32 → 64, 64 → 128), generating gy ∈ R128. The two feature vectors gx, gy are
then concatenated to form fx,y ∈ R2048+128, which is processed by two fully-connected layers
(2048 + 128→ 2048, 2048→ 1), outputting fθ(x, y) ∈ R.

D.2 DCTD TRAINING

The DCTD model is trained using M = 1024 samples from a proposal distribution q(y|yi) (equa-
tion 5) with L = 2 and variances σ2

1 = 0.12, σ2
2 = 202. It is trained for 75 epochs with a batch size

of 32, using the ADAM optimizer with weight decay of 0.001. The images x are of size 200× 200.
For data augmentation, we use random flipping along the vertical axis and random scaling in the
range [0.7, 1.4]. After random flipping and scaling, a random image crop of size 200 × 200 is also
selected. The ResNet50 is imported from torchvision.models in PyTorch with the pretrained
option set to true, all other network parameters are randomly initialized using the default initializer
in PyTorch.

D.3 DCTD PREDICTION

For this experiment, we use a slight variation of Algorithm 1, which is found in Algorithm 2. There,
T is the number of gradient ascent iterations, λ is the stepsize, Ω1 is an early-stopping threshold and
Ω2 is a degeneration tolerance. Following IoU-Net, we set T = 5, Ω1 = 0.001 and Ω2 = −0.01.
Based on the validation set, we select λ = 3. We refine a single estimate ŷ, predicted by each
baseline model.
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Algorithm 2 Prediction via optimization-based refinement (variation)
Input: x?, ŷ, T , λ, Ω1, Ω2.

1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue← fθ(x

?, y).
4: y ← y + λ∇yfθ(x?, y).
5: NewValue← fθ(x

?, y).
6: if |PrevValue − NewValue| < Ω1 or (NewValue − PrevValue) < Ω2 then
7: Return y.
8: Return y.

D.4 BASELINES

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM optimizer with
weight decay of 0.001. Identical data augmentation and parameter initialization as for DCTD is
used.

Direct The DNN architecture of Direct first extracts ResNet50 features gx ∈ R2048 from the input
image x. The feature vector gx is then processed by two fully-connected layers (2048 → 2048,
2048→ 1), outputting the prediction ŷ ∈ R. It is trained by minimizing either the Huber or L2 loss.

Gaussian The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x, θ) = N
(
y;µθ(x), σ2

θ(x)
)
, fθ(x) = [µθ(x) log σ2

θ(x) ]T ∈ R2.

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi))2
σ2
θ(xi)

+ log σ2
θ(xi).

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from the input image x.
The feature vector gx is then processed by two heads of two fully-connected layers (2048 → 2048,
2048→ 1) to output µθ(x) and log σ2

θ(x). The mean µθ(x) is taken as the prediction ŷ.

Laplace The Laplace model is defined using a DNN fθ(x) according to,

p(y|x, θ) =
1

2βθ(x)
exp

(
− |y − µθ(x)|

βθ(x)

)
, fθ(x) = [µθ(x) log βθ(x) ]T ∈ R2.

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

N

N∑
i=1

|yi − µθ(xi)|
βθ(xi)

+ log βθ(xi).

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from the input image x.
The feature vector gx is then processed by two heads of two fully-connected layers (2048 → 2048,
2048→ 1) to output µθ(x) and log βθ(x). The mean µθ(x) is taken as the prediction ŷ.

Softmax The DNN architecture of Softmax first extracts ResNet50 features gx ∈ R2048 from the
input image x. The feature vector gx is then processed by two fully-connected layers (2048→ 2048,
2048 → C), outputting logits for C = 101 discretized classes {0, 1, . . . , 100} It is trained by
minimizing either the cross-entropy (CE) and L2 losses, J = JCE + 0.1JL2 , or the CE, L2 and
variance (Pan et al., 2018) losses, J = JCE + 0.1JL2 + 0.05JV ar. The prediction ŷ is computed as
the softmax expected value.

D.5 FULL RESULTS

Full experiment results, expanding the results found in Table 2 (Section 4.2), are provided in Table 5.
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Table 5: Full results for the age estimation experiments. Refinement using DCTD consistently
improves MAE (lower is better) for the age predictions outputted by a number of baselines.

Method MAE
OR-CNN (Niu et al., 2016) 5.74 ± 0.05
CORAL-CNN (Cao et al., 2019) 5.47 ± 0.01
Direct - Huber 4.80 ± 0.06
Direct - Huber + DCTD 4.74 ± 0.06
Direct - L2 4.81 ± 0.02
Direct - L2 + DCTD 4.65 ± 0.02
Gaussian 4.79 ± 0.06
Gaussian + DCTD 4.66 ± 0.04
Laplace 4.85 ± 0.04
Laplace + DCTD 4.81 ± 0.04
Softmax - CE & L2 4.78 ± 0.05
Softmax - CE & L2 + DCTD 4.65 ± 0.04
Softmax - CE, L2 & Var 4.81 ± 0.03
Softmax - CE, L2 & Var + DCTD 4.69 ± 0.03

APPENDIX E HEAD-POSE ESTIMATION

In this appendix, further details on the head-pose estimation experiments (Section 4.3) are provided.

E.1 DCTD NETWORK ARCHITECTURE

The DNN architecture fθ(x, y) of the DCTD model first extracts ResNet50 features gx ∈ R2048

from the input image x. The pose y ∈ R3 is processed by four fully-connected layers (dimensions:
3 → 16, 16 → 32, 32 → 64, 64 → 128), generating gy ∈ R128. The two feature vectors gx, gy
are then concatenated to form fx,y ∈ R2048+128, which is processed by two fully-connected layers
(2048 + 128→ 2048, 2048→ 1), outputting fθ(x, y) ∈ R.

E.2 DCTD TRAINING

The DCTD model is trained using M = 1024 samples from a proposal distribution q(y|yi) (equa-
tion 5) with L = 2 and variances σ2

1 = 12, σ2
2 = 202 for Yaw, Pitch and Roll. It is trained for 75

epochs with a batch size of 32, using the ADAM optimizer with weight decay of 0.001. The images
x are of size 64 × 64. For data augmentation, we use random flipping along the vertical axis and
random scaling in the range [0.7, 1.4]. After random flipping and scaling, a random image crop of
size 64×64 is also selected. The ResNet50 is imported from torchvision.models in PyTorch
with the pretrained option set to true, all other network parameters are randomly initialized using
the default initializer in PyTorch.

E.3 DCTD PREDICTION

For this experiment, we also use the prediction procedure detailed in Algorithm 2. Again following
IoU-Net, we set T = 5, Ω1 = 0.001 and Ω2 = −0.01. Based on the validation set, we select
λ = 0.1. We refine a single estimate ŷ, predicted by each baseline model.

E.4 BASELINES

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM optimizer with
weight decay of 0.001. Identical data augmentation and parameter initialization as for DCTD is
used.

Direct The DNN architecture of Direct first extracts ResNet50 features gx ∈ R2048 from the input
image x. The feature vector gx is then processed by two fully-connected layers (2048 → 2048,
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2048 → 3), outputting the prediction ŷ ∈ R3. It is trained by minimizing either the Huber or L2

loss.

Gaussian The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x, θ) = N
(
y;µθ(x),Σθ(x)

)
, Σθ(x) = diag

(
σ2
θ(x)

)
,

y = [ y1 y2 y3 ]T ∈ R3,

µθ(x) = [µ1,θ(x) µ2,θ(x) µ3,θ(x) ]T ∈ R3,

σ2
θ(x) = [σ2

1,θ(x) σ2
2,θ(x) σ2

3,θ(x) ]T ∈ R3,

fθ(x) = [µθ(x)T log σ2
θ(x)T ]T ∈ R6,

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

N

N∑
i=1

( 3∑
k=1

(yk,i − µk,θ(xi))2
σ2
k,θ(xi)

+ log σ2
k,θ(xi)

)
.

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from the input image x.
The feature vector gx is then processed by two heads of two fully-connected layers (2048 → 2048,
2048→ 3) to output µθ(x) ∈ R3 and log σ2

θ(x) ∈ R3. The mean µθ(x) is taken as the prediction ŷ.

Laplace Following Gast & Roth (2018), the Laplace model is defined using a DNN fθ(x) accord-
ing to,

p(y|x, θ) =

3∏
k=1

βk,θ(x)−
1
2 exp

{
− 1

2

( 3∑
k=1

(yk − µk,θ(x))2

βk,θ(x)

) 1
2
}
,

y = [ y1 y2 y3 ]T ∈ R3,

µθ(x) = [µ1,θ(x) µ2,θ(x) µ3,θ(x) ]T ∈ R3,

βθ(x) = [β1,θ(x) β2,θ(x) β3,θ(x) ]T ∈ R3,

fθ(x) = [µθ(x)T log βθ(x)T ]T ∈ R6,

It is trained by minimizing the negative log-likelihood, corresponding to the loss,

J(θ) =
1

N

N∑
i=1

{( 3∑
k=1

(yk,i − µk,θ(xi))2
βk,θ(xi)

) 1
2

+

3∑
k=1

log βk,θ(xi)

}
.

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048 from the input image x.
The feature vector gx is then processed by two heads of two fully-connected layers (2048 → 2048,
2048→ 3) to output µθ(x) ∈ R3 and log βθ(x) ∈ R3. The mean µθ(x) is taken as the prediction ŷ.

Softmax The DNN architecture of Softmax first extracts ResNet50 features gx ∈ R2048 from the
input image x. The feature vector gx is then processed by three heads of two fully-connected layers
(2048→ 2048, 2048→ C), outputting logits for C = 151 discretized classes {−75,−74, . . . , 75}
for the Yaw, Pitch and Roll angles (in degrees). It is trained by minimizing either the cross-entropy
(CE) and L2 losses, J = JCE + 0.1JL2 , or the CE, L2 and variance (Pan et al., 2018) losses,
J = JCE + 0.1JL2 + 0.05JV ar. The prediction ŷ is obtained by computing the softmax expected
value for Yaw, Pitch and Roll.

E.5 FULL RESULTS

Full experiment results, expanding the results found in Table 3 (Section 4.3), are provided in Table 6.

APPENDIX F VISUAL TRACKING

Here, we provide further details about the training procedure and hyperparameters used for our
experiments on visual object tracking (Section 4.4).
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Table 6: Full results for the head-pose estimation experiments. Refinement using DCTD consistently
improves the average MAE for Yaw, Pitch, Roll (lower is better) for the predicted poses outputted
by a number of baselines.

Method Yaw MAE Pitch MAE Roll MAE Av. MAE
SSR-Net-MD (Yang et al., 2018) 4.24 4.35 4.19 4.26
VGG16 (Gu et al., 2017) 3.91 4.03 3.03 3.66
FSA-Caps-F (Yang et al., 2019) 2.89 4.29 3.60 3.60
Direct - Huber 2.78 ± 0.09 3.73 ± 0.13 2.90 ± 0.09 3.14 ± 0.07
Direct - Huber + DCTD 2.75 ± 0.08 3.70 ± 0.11 2.87 ± 0.09 3.11 ± 0.06
Direct - L2 2.81 ± 0.08 3.60 ± 0.14 2.85 ± 0.08 3.09 ± 0.07
Direct - L2 + DCTD 2.78 ± 0.08 3.62 ± 0.13 2.81 ± 0.08 3.07 ± 0.07
Gaussian 2.89 ± 0.09 3.64 ± 0.13 2.83 ± 0.09 3.12 ± 0.08
Gaussian + DCTD 2.84 ± 0.08 3.67 ± 0.12 2.81 ± 0.08 3.11 ± 0.07
Laplace 2.93 ± 0.08 3.80 ± 0.15 2.90 ± 0.07 3.21 ± 0.06
Laplace + DCTD 2.89 ± 0.07 3.81 ± 0.13 2.88 ± 0.06 3.19 ± 0.06
Softmax - CE & L2 2.73 ± 0.09 3.63 ± 0.13 2.77 ± 0.11 3.04 ± 0.08
Softmax - CE & L2 + DCTD 2.67 ± 0.08 3.61 ± 0.12 2.75 ± 0.10 3.01 ± 0.07
Softmax - CE, L2 & Var 2.83 ± 0.12 3.79 ± 0.10 2.84 ± 0.11 3.15 ± 0.07
Softmax - CE, L2 & Var + DCTD 2.76 ± 0.10 3.74 ± 0.09 2.83 ± 0.10 3.11 ± 0.06

F.1 TRAINING

We adopt the ATOM (Danelljan et al., 2019) tracker as our baseline, and use the PyTorch imple-
mentation and pre-trained weights from Danelljan & Bhat (2019). ATOM trains an IoU-Net based
module to predict the IoU overlap between a candidate box and the ground truth, conditioned on
the first-frame target appearance. The IoU predictor is trained by generating 16 candidates for each
ground truth box. The candidates are generated by adding a Gaussian noise for each ground truth box
coordinate, while ensuring a minimum IoU overlap of 0.1 between the candidate box and the ground
truth. The network is trained by minimizing the squared error (L2 loss) between the predicted and
ground truth IoU.

Our DCTD model is instead trained by sampling 128 candidate boxes from a proposal distribution
(equation 5) generated byL = 2 Gaussians with standard deviations of 0.05 and 0.5, and minimizing
the negative log likelihood of the training data. We use the training splits of TrackingNet (Müller
et al., 2018), LaSOT (Fan et al., 2019), GOT10k (Huang et al., 2018), and MS-COCO datasets for
our training. Our network is trained for 50 epochs, using the ADAM optimizer with a base learning
rate of 0.001 which is reduced by a factor of 5 after every 15 epochs. The rest of the training
parameters are exactly the same is in ATOM. The ATOM† model is trained by using the exact same
proposal distribution, datasets and settings. It only differs by the loss, which is the same squared
error between the predicted and ground truth IoU as in the original ATOM.

F.2 INFERENCE

During tracking, the ATOM tracker first apply the classification head network, which is trained on-
line, to coarsely localize the target object. 10 random boxes are then sampled around this prediction,
to be refined by the IoU prediction network. We only alter the final bounding box refinement step of
the 10 given random initial boxes, and preserve all other settings as in the original ATOM tracker.
The original version performs T = 5 gradient ascent iterations with a step length of λ = 1.0. For
our DCTD-based and the ATOM† version, we use T = 10 iterations, employing the bounding box
parameterization described in Section 4.1. For our approach we set the step length to λ = 2 · 10−4

for position and λ = 10−3 for size dimensions. For ATOM† we use λ = 10−2 for position and
λ = 5 ·10−2 for size dimensions. These parameters were set on the separate validation set. For sim-
plicity, we adopt the vanilla gradient ascent strategy employed in ATOM, for the two other methods
as well. That is, we have no decay (η = 1) and do not perform checks whether the confidence score
is increasing in each iteration.
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